

GPU Acceleration of Logistic Regression with

CUDA

P.K.K.Madhawa, M.S.Jeevananda, P.M.B.C. Malmi, U.R.V.Sandaruwan, K.Wimalawarne

Dept. of Computer Science and Engineering

University of Moratuwa

Moratuwa, Sri Lanka

Abstract-- Logistic regression (LR) is a widely used machine

learning algorithm. It is regarded unsuitably slow for high

dimensional problems compared to other machine learning

algorithms such as SVM, decision trees and Bayes classifier.

In this paper we utilize the data parallel nature of the

algorithm to implement it on NVidia GPUs. We have

implemented this GPU-based LR on the newest generation

GPU with Compute Unified Device Architecture (CUDA).

Our GPU implementation is based on BFGS optimization

method. This implementation was extended to multiple GPU

and cluster environment. This paper describes the

performance gain while using GPU environment.

Keywords: machine learning, classification, CUDA, logistic

regression, GPGPU

I. INTRODUCTION

Classification is the process of assigning given input data

in to one of the given number of categories for its most

effective and efficient use. Logistic regression (LR) is one

of the oldest classification algorithms found in machine

learning literature which is used for prediction of

the probability of occurrence of an event by fitting data to

a logit function logistic curve [1]. The major drawback of

the LR algorithm is its slow compared to other

classification algorithms.

Several machine learning researchers have introduced

several methods to improve the efficiency of the

algorithm [2]. With the advent of multi-core machines
and distributed computing the inherently parallel nature of

the algorithm is utilized and being used in many

production fraud detection and advertising quality and

targeting products [1]. Apache Mahout has a LR

implementation which runs on top of distributed

computing framework Apache hadoop [3]. Researchers at

Microsoft research have developed a multi-core LR

algorithm which is included in Microsoft Sigma machine

learning toolkit [4].

This paper presents an implementation of LR algorithm to

be run on general purpose Graphical Processing Units
(GPU). Nowadays, most desktop computers are equipped

with programmable GPUs with plenty powerful Single

Instruction Multiple Data (SIMD) processors that can

support parallel data processing and high-precision

computation.

The massively parallel nature of the GPU architecture is

shown in Fig. 1.

GPU has evolved into a highly parallel, multi-threaded,

many core processor with tremendous computational

horsepower and very high memory bandwidth. GPU

threads are executed in SIMD (Single Instruction Multiple

Data) and manage by the hardware.
In this architecture we keep the GPU as co-processor to
the CPU such that we can keep CPU-based storage and

transfer between CPU and GPU. CUDA is the language

which is supported for the NVIDIA graphics card. There

is no support for recursion and iterative functions which

has conditional clauses. We have to merge the completed

work run in CPU and GPU separately.
We implemented all the large scale matrix and vector

operations to be run on the GPU.

Figure 2: Transfer data between CPU and GPU

DRAM

Figure 1: The GPU Devotes More Transistors to Data Processing

Main

Memory

Memory for
GPU

CPU

Back to CPU for Encoding

Copy processing data

Copy the result

1

2

2

3

http://en.wikipedia.org/wiki/Probability
http://en.wikipedia.org/wiki/Logistic_curve

A. General purpose GPU Computing

The functionality of Graphics Processing Units (GPU)

has, traditionally, been very limited. In fact, for many

years the GPU was only used to accelerate certain parts of

the graphics pipeline. Once specially designed for

computer graphics and difficult to program, today’s GPUs

are general-purpose parallel processors with support for

accessible programming interfaces and industry-standard

languages such as C. With the introduction of the CUDA
architecture GPU established as a general purpose

computing device which doesn’t need any graphic APIs

[5].
CUDA represents the co-processor as a device that can

run a large number of threads. The threads are managed

by representing parallel tasks as kernels (the sequence of

work to be done in each thread) mapped over a domain

(the set of threads to be invoked) [6]. Kernels are scalar

and represent the work to be done at a single point in the

domain. The kernel is then invoked as a thread at every

point in the domain. The parallel threads share memory

and synchronize using barriers. Parallelism can be
obtained using GPUs through data parallelism, thread

parallelism and task parallelism.

B. Memory hierarchy of the GPU

GPU's memory system creates a branch in a modern

computer's memory hierarchy. The GPU, just like a CPU,

has its own caches and registers to accelerate data access

during computation. GPUs, however, also have their own

main memory with its own address space meaning that

programmers must explicitly copy data into GPU memory

before beginning program execution.

Programmers can partition the problem into sub problems
that can be solved independently in parallel by blocks of

threads. (such as a figure number). GPU has on board

device memory, which has high bandwidth and a high

latency. Threads within the same thread block are divided

into SIMD groups, called warps. A warp of threads can

combine accesses to consecutive data items in one device

memory segment into a single memory access transaction,

or called coalesced access.

Data is prepared for processing on the GPU by copying it

to the graphics board’s memory. Data transfer is
performed using DMA and can take place concurrently

with kernel processing. Once written, data on the GPU is

persistent unless it is deallocated or overwritten,

remaining available for subsequent kernels.

But all these massive parallelism comes with a price. The

fact that they adopt the SIMD / MIMD parallel processing

scheme means that algorithms only benefit from the

architectural properties, if they can be adapted to that

scheme. Moreover, important fundamental constructs

such as integer data operands are missing and associated

operations such as bit-shifts and bitwise logical
operations. The GPU lacks 64-bit double precision

number formats.

II. LOGISTIC REGRESSION

Logistic regression is a simple model for predicting the

probability of event and is often used for binary

classification. When the possible outcomes are coded as 0
and 1, we can train the logistic regression model that will

predict the probability of the second event.

A. Binary logistic model

∆𝑤 = −𝐻−1 ∗ ∇𝑓(𝑤)

The logistic function is defined as

Host

Host

Device

Grid 0

BLOCK (0,0)

BLOCK (1,0)

BLOCK (2,0)

BLOCK (0,1)

BLOCK (1,0)

BLOCK (1,0)

Device
Grid 1

BLOCK (0,0)

BLOCK (1,0)

BLOCK (0,2)

BLOCK (0,1)

BLOCK (1,1)

BLOCK (1,2)

Serial code

Parallel code

Serial code

Parallel code

Contant Memory

Global Memory

BLOCK (0,0)

Shared Memory

Registers Registers

Thread (0,0) Thread (0,0)

BLOCK (1,0)

Shared Memory

Registers Registers

Thread (0,0) Thread (0,0)

Host

Figure 3: Serial code executes on the host while parallel code

executes on the device.

Figure 4: Hardware implementation of the CUDA memory

zz

z

e+
=

e+

e
=zf

1

1

1

The logistic function is useful because it can take any

value as an input from negative infinity to positive

infinity, whereas the output is confined to values between

0 and 1. The output f(z) represents the probability of a
particular outcome, given the set of explanatory

variables.

The variable z is a measure of the total contribution of all

the independent variables used in the model and is known

as the logit.

The variable z is defined as

kk210 xw+xw+xw+w=z 21

Where 0w is called intercept and kw,ww ..2,.1, are called

regression coefficients.

Methods such as Maximum likelihood estimation and

iteratively re-weighted squares are used for parameter

estimation.

B. Newton’s method

Newton method updates the weight vector (w) in the

following way [7]

 𝑤𝑘+1 = 𝑤𝑘 + 𝑠𝑘

Where k is the iteration index and sk , the Newton

direction, is the solution of the following linear system:

 kkk wf=swf 2

Where ∇2f(w) is the Hessian of f(w) and ∇f(w) is the
gradient vector of f(w).

Two types of methods are used for solving the above

linear system: direct methods (e.g., Gaussian elimination),

and iterative methods (e.g., Jacobi and conjugate

gradient).

Due to the low number of iterations, conjugate gradient

method is the most widely used method to solve this

linear system.

The formulas used to find the hessian matrix and the

gradient vector of the function f(w) are shown below.

∇𝑓 𝑤 = 𝑤 + 𝐶 𝜎 𝑦𝑖𝑤
𝑇𝑥𝑖 − 1 𝑦𝑖𝑥𝑖 ,

𝑙

𝑖=1

∇2𝑓 𝑤 = 𝐼 + 𝐶𝑋𝑇𝐷𝑋

Where I is an identity matrix and D is a diagonal matrix.

The disadvantages of Newton’s method are the added cost

of finding the Hessian matrix and the cost of solving a

linear system to find the inverse Hessian matrix. Finding

the diagonal matrix D on the GPU doesn't utilize the

hardware, since only the diagonal elements are calculated.

Quasi-Newton methods are used to overcome these

problems.

.

C. BFGS method

 Instead of finding the inverse of the Hessian matrix

inverse Hessian is approximated inside each iteration. The

algorithm starts with H
-1 = I. At each step w is updated as

[8]

 ∆𝑤 = −𝐻−1 ∗ ∇𝑓(𝑤)

𝑤 𝑘 + 1 = 𝑤 𝑘 + ∆𝑤

In the BFGS algorithm, the H-1 is updated as below.

𝑏 = 1 +
∆𝑔𝑇𝐻−1 ∗ ∇𝑓(𝑤)

∆𝑤𝑇∆𝑔

𝐻𝑛𝑒𝑤
−1 = 𝐻−1 +

1

∆𝑤𝑇∆𝑔
(𝑏∆𝑤∆𝑤𝑇 − ∆𝑤∆𝑔𝑇𝐻−1

− 𝐻−1∆𝑔∆𝑤𝑇)

Advantages of this method are, this doesn't need

calculation of the Hessian matrix and its inverse in each

iteration and most of the matrix and vector operations can

be easily parallelized using GPU architecture.

III. IMPLEMENTATION

At the implementation our objective was to minimize the

number of kernel methods in order to reduce the time

wasted on thread initialization and synchronization.
Nevertheless the number of kernel methods cannot be

reduced to one, since synchronization can be done only

among threads in a single block. Independent tasks in

kernel methods were identified and task parallelism

approach was employed in order to improve the

performance further.

Using time complexity analysis, tasks which had a higher

time complexity (ex: - matrix multiplications) were

identified. Shared memory architecture was employed to

mitigate the time overruns in the GPU. These time

overruns occurred due to the heavy data transfers of the

matrix multiplication between the global memory and the
registers of the GPU. By using the shared memory, these

time overruns could be mitigated significantly.

Even though shared memory provides such a performance
gain, it is a limited. Therefore it is not possible to use this

approach as it is for any data set. In order to overcome

this we used an approach, which divides the matrices in to

sub matrices and do the operations for sub matrices

independently and combine the solutions at the end.

IV. EXPERIMENTAL RESULTS

In this section, we present our experimental results on

classification and training of the Logistic Regression on

GPU.

A. Experimental Setup

Our experiments were performed on a PC with an

NVIDIA GTX480 GPU and an Intel Core i7 CPU,

running on Ubuntu 10.04 Lucid. The GPU consists of 15
SIMD multi-processors, each of which has 32 processors

running at 1.45 GHZ. The GPU memory is 1.5GB with

the peak bandwidth of 141.7 GB/sec. The CPU has 8

cores running at 2.4 GHZ. The main memory is 8 GB

with the peak bandwidth of 5.6 GB/sec. The GPU uses a

PCI-E bus to transfer data between the GPU memory and

the main memory with a theoretical bandwidth of 4

GB/sec. The PC has a 160 GB SATA magnetic hard disk.

All source code was written in C and compiled using gcc.

The version for CUDA was 4.0.

Comparison: We compared the GPU based

implementation with a CPU based implementation

Data sets: For testing purposes we used two large data

sets which have different number of feature parameters.

We obtained handwritten digits dataset from MNIST[10]

which has 784 features and training set of 60,000

examples. Other than that we used internet advertisement

data set obtained from the Machine Learning Repository

of University of California, Irvine which has 1584

features [11]

Metric: We measured the elapsed time for the completion

of the training process. Since comparison experiments

were conducted on the same input file we excluded the

initial file input from the total time measurement.

B. Results

figure 5: shows the total running time of training process
of the algorithm for MNIST dataset to all implementation

.

Figure 5: Elapsed Time with varying number of data objects

Figure6: shows the total running time of training process

of the algorithm for internet advertisement dataset to all

implementation

Figure 6: Elapsed Time with varying number of data objects for a
dataset with large number of features

Figure 7: Highlighted GPU performances

0

100

200

300

400

500

600

700

800

1000 2000 3000 4000 5000 6000El
ap

se
d

 t
im

e
 t

o
 C

o
n

ve
rg

e
d

 (s
e

c)

Number of data items (N)

CPU Single GPU

Multiple GPU Cluster

V CONCLUTION AND FUTURE WORK

In this research we showed that, by parallelizing the time

consuming matrix and vector operations on the GPU can

reduce the running time by a significant amount. Our

primary purpose in this research is to prove that
developing GPU-aware data mining software is possible

and useful.

We have studied detailed performance of our algorithm.

In particular, we have examined the time breakdown of

our GPU-accelerated Logistic Regression algorithm and

have come to the conclusion that the Logistic Regression

algorithm cannot be improved further using GPU

accelerations since to be accelerated by the GPU by a

huge factor it is required that the paralleled tasks need to

have complex operations.

ACKNOWLEDGEMENTS
The GPU cluster was sponsored by the LK-Domain.

REFERENCES

 [1] Paul R. Komarek, Andrew Moore, “Logistic Regression for Data

Mining and High-Dimensional Classification”, Carnegie Mellon Univ.,

May, 2004

[2] Paul R. Komarek , AndrewW. Moore ,“Fast Robust Logistic

Regression for Large Sparse Datasets with Binary Outputs” Dept. of

Mathematical Sciences. Carnegie Mellon University October 22, 2003

(revised Mar 26, 2007)

[3] Cheng T. Tau et al “Map-Reduce for Machine Learning on

Multicore”, Advances in Neural Information Processing Systems

, Massachusetts Institute of Technology, 2007

[4] Thomas P. Minka, “A comparison of numerical optimizers for

logistic regression”

[5] NVIDIA CUDA C Programming Guide, 3.2version, NVIDIA

Corporation, USA, 2010.

[6] NVIDIA (2011, July 30) [online]. Available:

http://www.nvidia.com/object/cuda_home_new.html

[7] CJ Lin et al, “Trust Region Newton Method for Large-Scale Logistic

Regression”, Journal of Machine Learning Research, 9 (2008) 627-650

, 2009

[8] Malik Hj. Abu Hassan, Mansor B. Monsi & Leong Wah June

, “Limited Modified BFGS Method for Large-Scale Optimization”

[9] G. Holmes; A. Donkin and I.H. Witten (1994). "Weka: A machine

learning workbench". Proc Second Australia and New Zealand

Conference on Intelligent Information Systems, Brisbane, Australia.

Retrieved 2007-06-25.

[10] professor ,Yann LeCun, THE MNIST DATABASE[online].

Avaliable :http://yann.lecun.com/exdb/mnist/

[11] UCI, machine learning repository, internet data

advertisement,[online] .

Available:http://archive.ics.uci.edu/ml/datasets/Internet+Advertisement

s [online]

http://yann.lecun.com/
http://yann.lecun.com/exdb/mnist/
http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements
http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements
http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements

