

Abstract — A novel method for selecting the appropriate

architecture and learning rule of an artificial neural network for

a given application is discussed in this paper. Evolutionary

Artificial Neural Networks (EANN) use the adaptation

capabilities of genetic algorithms in which the natural selection

process is used to attain the optimum network structure and

learning algorithm for a specific task. ANNEbot is a framework

which allows the combined powers of learning and adaptation of

EANNs to be applied in various machine learning tasks. The

framework was tested on the Iris Classification problem and the

Wisconsin Breast Cancer Diagnosis problem, both of which

provided results with above 90% accuracy. ANNEbot was also

successfully applied on a robotic application for obstacle

avoidance.

Index Terms—Evolutionary Artificial Neural Networks, GA,

ANN.

I. INTRODUCTION

Over the years, the strong interest in artificial neural networks

(ANNs) amongst members in the scientific community has

been fueled by the many successful and promising

applications in optimization problems, speech recognition,

pattern recognition, signal processing, control problems,

classification problems, etc. However, due to various reasons

like inappropriate selections of network architecture and
learning algorithms, the level of performance produced by

these ANNs has been marginal. Even though there are claims

from time to time that a new training algorithm has been

proposed that can significantly increase performance and are

better than others, there is no guarantee of the validity of these

statements because most of these algorithms are proved by

using them on specific applications in which the given

algorithm would provide optimum performance. Therefore,

finding a mechanism to select the appropriate network

architecture and learning algorithm for a given task is of vital

importance in order for ANNs to be useful in the field of
machine learning. This paper attempts to address this issue.

It is apparent that finding the optimum ANN for a specific

problem relies heavily on human expertise and practical

knowledge about the different characteristics of particular

networks and the problem domains for which they are most

suited. However, as the problem domain becomes more

complex and amount of prior knowledge reduces, this method

becomes infeasible and unmanageable. In such situations, the

solution is an Evolutionary Artificial Neural Networks

(EANN). With no human intervention, Evolutionary

Algorithms are used in EANNs to adapt the various

parameters of ANNs such as connection weights, network

topology and learning rules in order to find the ANN that best
suits a given problem. Since the evolutionary algorithms go

through all possible combinations of ANN parameters, the

optimum ANN can be obtained without any prior knowledge

of the problem domain or ANN characteristics. In addition to

being able to adapt to any unknown problem environment, the

diverse adaptability of EANNs enable it to also adapt to

continuously changing, dynamic environments as well.

EANNs attain these capabilities by combining the two

fundamental forms of adaptability, learning and evolution.

Another advantage of EANNs over standard ANNs is that it is

able to minimize if not eliminate, the presence of multiple

stationary points, including multiple minima. How likely are
we to encounter a sizable number of local minima? Empirical

experience with training algorithms show that different

initializations yield different resulting networks. Thus

indicating the existence of multiple minima which in turn

implies that the minima obtained is local. If the minima were

global, there would be only one resulting network. Hence the

issue of multiple minima is very much real. However, by

using evolutionary algorithms to determine the optimum

ANN, we are able to reduce the probability of this occurring.

When compared with gradient descent or second-order

optimization techniques that can only find local optimum in a
neighborhood of the initial solution, evolutionary algorithms

(EAs) always try to search for a global optimal solution.

Through ANNEbot we hope to bring the capabilities of

EANNs to the above mentioned applications of ANNs.

ANNEbot is an EANN framework that can be imported as a

library or run as a standalone application which contains its

own GUI component. Because EANNs require a significant

amount of processing power and memory, ANNEbot is

specifically designed to be lightweight. Due to this reason,

using existing frameworks for ANNs which were more

focused on performance and not weight, were nor viable

[16,17,18]. Therefore ANNEbot consists of its own ANN
implementation.

The framework was tested for performance and scalability

using two standard classification problems, the iris

classification data set and the much larger Wisconsin breast

cancer diagnosis data set. ANNEbot was also applied to a

robotic application in which a robot had to learn to traverse an

obstacle course without colliding with any of the obstacles.

ANNEbot – An Evolutionary Artificial Neural

Network Framework.

M.S.S. Mathotaarachchi, D.C. Perera, L. Udawatte, S. Perera
Department of Computer Science and Engineering,

 University of Moratuwa

Moratuwa, Sri Lanka.

II. EVOLUTIONARY ARTIFICIAL NEURAL NETWORKS

A. Evolution in Artificial Neural Networks.

Evolutionary Artificial Neural Networks combine the two

fundamental forms of adaptation - learning and evolution. The

learning aspect is provided by the Artificial Neural Network

and the evolution is provided by the evolutionary algorithm.
While the ANN learns and adapts, the EA finds the optimum

ANN that would be most suited for the problem and would

complete the task with more efficiency. In order to achieve

such a level of adaptation, the EA evolves the ANN

architecture, the learning rule and the connection weights

[3,4,14,15]. Currently ANNEbot is the only available EANN

framework in which the architecture of the ANN is modified

to best suit the application. The ANN frameworks available

today, only provide weight evolution using evolutionary

algorithms. The literatures available on EANNs either focus

only on the theoretical aspect or uses experimental EANN
implementations which are not available to the public.

Figure 1 : Evolution in Artificial Neural Networks

There are 3 main parts in the evolution of an evolutionary

artificial neural network. The evolution of connection weights

act as the most primitive of them all. Its aim is to find a near

optimal set of connection weights for a given ANN with a

fixed architecture. The evolution of the learning rule is the
evolution of the learning itself, which is similar to „learning to

learn‟, which in turn help us to improve EANN‟s learning

ability. The evolution of architecture is the process of deciding

its own architecture by the EANN according to the task at

hand, which provides us with a powerful adaptive system.

These levels are illustrated in Figure 1 [3]. The outermost

circle is the evolution of the architecture. The architecture has

to be decided in order to select the Learning Rule. The

connection weight evolution, which is the inner most circle,

can only happen once the Architecture and Learning Rule are

both fixed. The selections that are made in each of these layers

affect different components of the ANN.

1) Evolution of Connection Weights.

The method in which the ANN is trained is by adjusting of

connection weights. Evolutionary Algorithms can be used to

get a near-optimal set of connections. The connection weights

can be encoded before adding to the chromosome for the

Genetic operation or can be added as real values.

2) Evolution of Learning Rule.

The learning rule is the weight updating rule which decides

how connection weights are changed. The evolution of the

learning rule has to be implemented such that the evolution of

weight chromosomes are evolved at a faster rate, i.e. for every

learning rule chromosome, there will be several weight

chromosomes evolving at a faster time scale.

3) Evolution of Architecture.

The selection of the architecture effects the ANN as it may

change the structure of the topology as well as various

attributes of the ANN such as the number of input and output

neurons, the possible existence of hidden layers etc.

However, it must also be mentioned that the order of the two

outer most layers of evolution can be interchanged depending

on the nature of the problem. The next section will discuss the

typical cycles and how to choose the order of levels of

evolution.

B. Typical Cycles of Evolution in EANNs.

The order of cycles of evolution varies depending on the

nature of the problem and amount of prior knowledge

available [3]. From the point of view of engineering, the

decision on the level of evolution depends on what kind of

prior knowledge is available. If there is more prior knowledge

about EANN‟s architectures than that about their learning

rules or a particular class of architectures is pursued, it is

better to implement the evolution of architectures at the

highest level because such knowledge can be used to reduce

the search space and the lower level evolution of learning

rules can be more biased towards this kind of architectures [4].
On the other hand, the evolution of learning rules should be at

the highest level if there is more prior knowledge about them

available or there is a special interest in certain types of

learning rules. Therefore, as illustrated in Figure 2 [4] the

highest level of evolution can be either the evolution of the

Architecture or the learning rule.

Figure 2 : Levels of Evolution

1) Evolutionary search of connection weights

A typical cycle of the evolution of connection weights:

1. Generate an initial population of N weight

chromosomes. Evaluate the fitness of each EANN

depending on the problem.

2. Depending on the fitness and using suitable selection
methods reproduce a number of children for each

individual in the current generation.

3. Apply genetic operators to each individual child

generated above and obtain the next generation.

4. Check whether the network has achieved the required

error rate or the specified number of generations has

been reached. Go to Step 2.

5. End.

2) Evolutionary search of Architecture

A typical cycle of the evolution of architectures

1. The evolution of architectures has to be implemented
such that the evolutions of weight chromosomes are

evolved at a faster rate.

2. Generate an initial population of N architecture

chromosomes. Evaluate the fitness of each EANN

depending on the problem.

3. Depending on the fitness and using suitable selection

methods reproduce a number of children for each

individual in the current generation.

4. Apply genetic operators to each individual child

generated above and obtain the next generation.

5. Check whether the network has achieved the required

error rate or the specified number of generations has
been reached. Go to Step 3.

6. End.

3) Evolutionary search of Learning Rule

A typical cycle of the evolution of Learning Rule

1. The evolution of learning rules has to be implemented

such that the evolution of architecture chromosomes is

evolved at a faster rate.

2. Generate an initial population of N learning rules.

Evaluate the fitness of each EANN depending on the

problem.

3. Depending on the fitness and using suitable selection
methods reproduce a number of children for each

individual in the current generation.

4. Apply genetic operators to each individual child

generated above and obtain the next generation.

5. Check whether the network has achieved the required

error rate or the specified number of generations has

been reached. Go to Step 3.

6. End.

III. METHODOLOGIES

A. Structure of the ANN

The structure of the ANN which is used in this project is a

fully feed forward network. It consists of one input layer, one

output layer and a set of hidden neurons. The difference

between the architecture used in ANNEbot and the standard
neural network architecture is that there is no layer to which

the hidden neuron belongs. The hidden neurons will organize

themselves through the architecture evolution process. The

differences between the two architectures are illustrated in

Figure 3. This evolution in architecture happens dynamically

during run time as the neural network evolves. Therefore,

instead of using a readily available Neural Network library, a

custom Neural Network module had to be implemented as the

readily available tools lacked the support for the evolution of

such dynamic architectures.

Figure 3 : Differences between the standard ANN structure and the
ANN used in the framework

B. Integration of the Genetic Algorithm

JGAP [20] Java Genetic Algorithm tool was used for the

implementation of the GA component of the framework.

JGAP is used in such a way that the users of the EANN frame

work will only have to provide the fitness function needed to

evaluate the fitness of one particular chromosome. The fitness

function is specific to the problem which the EANN

framework is used to solve and is thus left as a component of

the framework that is to be user defined.

C. Evolution of the ANN.

The activity diagram in Figure 4 illustrates the overall

evolution process of the EANN in ANNEbot. The main

iterations are centered on the main operations described in

figure 2. ANNEbot implements two levels of evolution i.e.

weights evolution and architecture evolution. Architecture
evolution consists of two sub parts, namely connection

reduction and hidden node addition.

The first step is to initialize the ANN with the minimum

number of hidden neurons i.e. one, and make the structure a

fully connected feed forward network. In the next step, this

initial ANN is sent to the GA for the weights search. After the

optimum weight set is obtained, it moves to the connection

reduction stage in which the least weighted connection is

removed and the ANN is retrained. The reasoning behind this

heuristic is that the least weighted connection is assumed to be

the connection with the least significance to the ANN. By
removing it and obtaining the fitness, it is possible to identify

if the ANN needs that connection or not. If the fitness is the

same or it has improved, the ANN without that connection is

passed on to the next stage of evolution. The objective of this

stage is to obtain the simplest network structure for a given set

of neurons that can provide the required functionality for a

given problem.

After the connection reduction stage is complete the ANN

goes to the hidden neuron addition stage. The heuristic used

for hidden node addition is splitting the highest connected

hidden node. The highest connected node is assumed to be the

node representing the most number of features and so dividing
these features and representing them using more hidden nodes

improves the ANNs ability to converge to a more optimum

solution. After a hidden neuron is added it moves to the

weight search in which the optimum weights are obtained for

the new ANN. After the weight search it goes to the

connection reduction stage in which the optimum structure for

the new set of neurons are searched. Then it compares with the

old ANN and evolution continues only if the fitness of the new

ANN is better than the old ANN. If the fitness is less than or

equal to the old ANN, the evolution process terminates.

The user can specify a maximum number of hidden nodes. But
if the fitness does not improve with the addition of a hidden

node the evolution process terminates. The same applies for

the connection reduction stage. If the fitness was reduced by

removing a connection, removing more connections would

only further reduce the fitness.

D. Simulation of a Robot using the Framework

To simulate a robot which travels from a start position to an

end position, Simbad, the Java 3D robot simulator was used.

When used as an application, Simbad runs as the main

program while the EANN framework was used as a library.

Figure 4 : ANN evolution process in ANNEbot

IV. RESULTS

A. Iris Classification Test

Fisher‟s Iris classification dataset[20] is perhaps the best

known database to be found among pattern recognition

literature. Fisher's paper is a classic in the field and is

referenced frequently to this day. The data set contains 3

classes of 50 instances each (total 150), where each class

refers to a type of iris plant. One class is linearly separable
from the other 2; the latter are NOT linearly separable from

each other.

Predicted attribute: Class of iris plant

Input Variables
1. sepal length in cm

2. sepal width in cm

3. petal length in cm

4. petal width in cm

Output Classes
1. Iris Setosa

2. Iris Versicolour

3. Iris Virginica
Before the test, the full dataset was divided in to 3 sections,

namely, the training set, validation set and test set with 60, 45

and 45 data instances respectively. Out of these sets, training

and validation sets were used in the training process of the

ANN using ANNEbot and the test set was used to measure the

final performance of the resultant network.

Figure 5 illustrates the final fitness scores of the respective

network. Fitness value is calculated as a percentage value

from the number of correctly classified instances against the

total number of data instances. The x-axis of the graph

represents the corresponding network architecture. „HN‟

stands for Hidden Neuron count and „Con‟ stands for the

number of connections in the network.

Figure 5 : Fitness vs. Architecture for Iris classification

According to figure 5, the best fitness value was reached with
1 hidden neuron with 16 connections. Although the same

fitness value is reached with a higher number of hidden

neurons and connections, the network with 1 hidden neuron

and 16 connections is chosen as the most optimal network as it

produces the best fitness with the least complexity.

Figure 6 illustrates the training, validation and testing scores

of the networks against their architecture. These scores are

generated as a percentage of the correctly classified instances

against the total number of data instances in their respective

data sets.

Figure 6 : Test Scores vs. Architecture for Iris classification

Figure 7 illustrates the fitness variation against the generation

count of the best network which has only 1 hidden neuron and

16 connections. This graph is taken during the training process

of the network which uses the genetic algorithm, and shows us
the convergence of the fitness value over the number of

generations.

Figure 7 : Fitness vs. Evolution for best network for Iris classification

The network structure of the ANN for the best network for Iris

classification is displayed below in Figure 8. From this

diagram we can see that not all neurons are connected to each

other and one of the inputs directly connects to the output

layer without connecting to the hidden neuron in the middle.

This result is in accordance with the actual mathematical

properties of the iris petal classification problem.

Figure 8 : Network diagram for the best network for Iris classification

Using evolutionary algorithms and heuristic methods,

ANNEbot could successfully classify the Iris classification

problem with satisfactory accuracy of over 99%, resulting in

the optimal structure which cannot be retrieved using any

other classical neural network method.

B. Wisconsin Breast Cancer Classification

For the Wisconsin dataset[20] the input features are computed

from a digitized image of a fine needle aspirate (FNA) of a

breast mass. They describe characteristics of the cell nuclei

present in the image. There are 32 attributes in this dataset
including the ID number and the desired output.

Predicted attribute: Diagnosis i.e. malignant or benign

Attribute Information:

1. ID number

2. Diagnosis (M = malignant, B = benign)

3. 3-32

Ten real-valued features are computed for

each cell nucleus:

a) radius (mean of distances from center to

points on the perimeter)

b) texture (standard deviation of gray-

scale values)
c) perimeter

90

92

94

96

98

100

H
N

: 1
 …

H
N

: 1
 …

H
N

: 1
 …

H
N

: 1
 …

H
N

: 1
 …

H
N

: 2
 …

H
N

: 2
 …

H
N

: 3
 …

H
N

: 3
 …

Fitness

Fitness

75

80

85

90

95

100

H
N

: 1
 C

o
n

: 1
9

H
N

: 1
 C

o
n

: 1
8

H
N

: 1
 C

o
n

: 1
7

H
N

: 1
 C

o
n

: 1
6

H
N

: 1
 C

o
n

: 1
5

H
N

: 2
 C

o
n

: 2
1

H
N

: 2
 C

o
n

: 2
0

H
N

: 3
 C

o
n

: 2
6

H
N

: 3
 C

o
n

: 2
5

Training

Validation

Testing

0

20

40

60

80

100

1

11 21 31 41 51 61 71 81 91

Fitness

Fitness

d) area

e) smoothness (local variation in radius

lengths)

f) compactness (perimeter^2 / area - 1.0)

g) concavity (severity of concave portions

of the contour)

h) concave points (number of concave

portions of the contour)

i) symmetry

j) fractal dimension ("coastline

approximation" - 1)

This dataset was also divided into three datasets as training,

validation and testing with 369, 100 and 100 data instances.

This test was conducted to measure the performance of

ANNEbot with complex networks.

Figure 9 illustrates the final fitness scores of the respective

network for the Wisconsin classification. The fitness value is

calculated as a percentage of the number of correctly classified

instances out of the total number of data instances.

Figure 9 : Fitness vs. Architecture for Wisconsin classification

According to figure 5, the best fitness value was reached with

2 hidden neurons with 121 connections.

Figure 10 illustrates the training, validation and testing scores

of the networks against their architecture for the Wisconsin

classification. These scores are generated as a percentage of

the correctly classified instances against the total number of

data instances in their respective data sets.

Although in some architectural configurations there are
individual scores (validation score of 3 hidden neurons with

151 connections) higher than that of the optimal (2 hidden

neurons with 121 connections), the collective score of that

configuration is lower than the optimal as shown in figure 9.

Figure 10 : Test Scores vs. Architecture for Wisconsin classification

Figure 11 illustrates the fitness variation against the generation

count of the best network which has only 2 hidden neuron and

121 connections.

Figure 11 : Fitness vs. Evolution for best network for Wisconsin

classification

The network structure of the ANN for the best network for

Wisconsin breast cancer classification is displayed below in

Figure 12.

Figure 12 : Network diagram for the best network for Wisconsin

classification

86
88
90
92
94

Fitness

Fitness

75

80

85

90

95

100

Training

Validation

Testing

0

20

40

60

80

100

1

11 21 31 41 51 61 71 81 91

Fitness

Fitness

Although the complexity of the problem is higher than the Iris

classification, for this Wisconsin breast cancer classification,

ANNEbot could produce the optimal network structure with a

desirable accuracy of over 90%.

C. Robot Application Simulation

ANNEbot was tested for its performance on robotic
applications using the Simbad robot simulator. After the

training of the neural network, the robot was tasked to avoid

obstacles using this trained neural network. The robot did not

hit any obstacles on its way around the environment. Also

with a different environment, the robot gave a similar

performance which indicated that the neural network is not

specific to a single environment. The final neural network

structure used in the robot is shown in Figure 13.

Figure 13 : Optimal Network Structure for Obstacle Avoidance in

Robot Application

V. CONCLUSION

The paper discusses the use of Evolutionary Artificial Neural

Networks together with heuristics to find the optimal neural

network for tasks such as classification and other machine

learning tasks. The results discussed in section IV, suggests

that the approach can deliver highly satisfactory results when

considering classification. Also the results obtained from the

robot simulation suggest that an area like robotics can also

benefit largely from the inherent adapting capability of

evolutionary neural networks.

ANNEbot can adopt some methodologies discussed in some
of the literature ([5], [8]) on evolutionary artificial neural

networks, which might lead to better performance. Since these

methods are still very much experimental and new, adaptation

needs to be carried out with proper techniques and testing.

ACKNOWLEDGMENT

We would like to express our heartfelt gratitude to our

supervisors, Prof. Lanka Udawatte and Dr. Shehan Perera, and

to our project coordinator Dr. Shantha Fernando for all the

support and guidance provided during the development of

ANNEbot.

REFERENCES

[1] I.A. Basheer and M. Hajmeer, "Artificial neural networks: fundamentals,

computing, design and application," Journal of Microbiological

Methods, 43, 2000

[2] S. Haykin, Neural Networks – A Comprehensive Foundation 2nd

Edition: Pentice Hall, 1999, pp. 11-105.

[3] X. Yao: "Evolving Artificial Neural Networks," Proc. of the IEEE, vol.

87, no. 9, pp. 1423-1439, Sept. 1999.

[4] A. Abraham, “Meta Learning Evolutionary Artificial Neural Networks”

Science Direct: Neurocomputing 56 (2004), pp. 1-38, Mar 2003.

[5] L.M. Almeida and T.B Ludermir, "Tuning Artificial Neural Networks

Parameters Using an Evolutionary Algorithm," presented at Eighth

International Conference on Hybrid Intelligent Systems, 2008. HIS '08,

vol., no., pp.927-930, 10-12 Sept. 2008

[6] L. Fausett, Fundamentals of Neural Networks – Architecture,

Algorithms and Applications: Pearson Education, 2009, pp. 30-59.

[7] Y. Katada and J. Nakazawa, "Investigation of simply coded evolutionary

artificial neural networks on robot control problems," presented at IEEE

congress on Evolutionary Computation, 2008. CEC 2008. vol., no.,

pp.2178-2185, 1-6 June 2008

[8] S. Minghui, W. Pan, H. de Garis and K. Chen; , "Approach to

controlling robot by artificial brain based on parallel evolutionary neural

network," presented at 2nd International Conference on Industrial

Mechatronics and Automation (ICIMA), 2010, vol.2, no., pp.502-505,

30-31 May 2010

[9] L. Jian-juan, "Application of evolutionary neural networks in integrated

navigation system," presented at 2nd International Symposium on

Systems and Control in Aerospace and Astronautics (ISSCAA), 2008,

vol., no., pp.1-5, 10-12 Dec. 2008

[10] Y. Guo, L. Kang, F. Liu, H. Sun and L. Mei, "Evolutionary Neural

Networks Applied to Land-cover Classification in Zhaoyuan, China,"

IEEE Symposium on Computational Intelligence and Data Mining,

2007. CIDM 2007, vol., no., pp.499-503, March 1 2007-April 5 2007

[11] D. Floreano and F.Mondana, "Automatic creation of an Autonomous

agent: Genetic evolutions of a Neural Network driven robot ,"

unpublished.

[12] S. Baluja, " Evolution of an Artificia1 Neural Network Based

Autonomous Land Vehicle Controller," lEEE Transactions on Systems,

Man, and Cybernetics-part B Cybernetics, vol. 26, no. 3, June 1996

[13] S. Barber, “AI: Neural Network for beginners,” (2007, May 19).

[Online] Available: http://www.codeproject.com/KB/recipes/

NeuralNetwork_1 [Accessed: 2010, Sept 30].

[14] S. Pal, S. Vipsita and P.K. Patra, "Evolutionary approach for

approximation of artificial neural network," presented at IEEE 2nd

International Advance Computing Conference (IACC), 2010, vol., no.,

pp.172-176, 19-20 Feb. 2010

[15] X. Yao and M.M. Islam, "Evolving artificial neural network ensembles,"

Computational Intelligence Magazine, IEEE , vol.3, no.1, pp.31-42,

February 2008

[16] J. Pitt, “OpenCog Wiki - The Open Cognition Project,” (2010, Aug 22).

[Online] Available:

http://wiki.opencog.org/w/The_Open_Cognition_Project [Accessed:

2010, Sept 29].

[17] J. Heaton, “Encog Java and DotNet Neural Network Framework,”(2009)

[Online] Available: http://www.heatonresearch.com/encog [Accessed:

2010, Sept 29].

[18] D. Hudson and M. Cohen, Neural Networks and Artificial Intelligence

for Biomedical Engineering : Wiley IEEE press, 1999, pp. 14-90.

[19] Klaus Meffert, “JGAP: Java Genetic Algorithms Package,”. [Online]

Available: http://jgap.sourceforge.net/ [Accessed: 2010, Sept 27].

[20] A. Asuncion and D. Newman. (2007) UCI Machine Learning

Repository. [Online]. http://archive.ics.uci.edu/ml, [Accessed: 2010, Oct

30]

