
 

 

 

 

 

 

 

 

 

 

 

 

Abstract — A novel method for selecting the appropriate 

architecture and learning rule of an artificial neural network for 

a given application is discussed in this paper. Evolutionary 

Artificial Neural Networks (EANN) use the adaptation 

capabilities of genetic algorithms in which the natural selection 

process is used to attain the optimum network structure and 

learning algorithm for a specific task. ANNEbot is a framework 

which allows the combined powers of learning and adaptation of 

EANNs to be applied in various machine learning tasks. The 

framework was tested on the Iris Classification problem and the 

Wisconsin Breast Cancer Diagnosis problem, both of which 

provided results with above 90% accuracy. ANNEbot was also 

successfully applied on a robotic application for obstacle 

avoidance. 

 
Index Terms—Evolutionary Artificial Neural Networks, GA, 

ANN.  

 
I. INTRODUCTION 

Over  the years, the strong interest in artificial neural networks 

(ANNs) amongst members in the scientific community has 

been fueled by the many successful and promising 

applications in optimization problems, speech recognition, 

pattern recognition, signal processing, control problems, 

classification problems, etc. However, due to various reasons 

like inappropriate selections of network architecture and 
learning algorithms, the level of performance produced by 

these ANNs has been marginal. Even though there are claims 

from time to time that a new training algorithm has been 

proposed that can significantly increase performance and are 

better than others, there is no guarantee of the validity of these 

statements because most of these algorithms are proved by 

using them on specific applications in which the given 

algorithm would provide optimum performance. Therefore, 

finding a mechanism to select the appropriate network 

architecture and learning algorithm for a given task is of vital 

importance in order for ANNs to be useful in the field of 
machine learning. This paper attempts to address this issue. 

It is apparent that finding the optimum ANN for a specific 

problem relies heavily on human expertise and practical 

knowledge about the different characteristics of particular 

networks and the problem domains for which they are most 

suited. However, as the problem domain becomes more 

complex and amount of prior knowledge reduces, this method 

becomes infeasible and unmanageable. In such situations, the 

solution is an Evolutionary Artificial Neural Networks  

 

 
 

 

 

 

 

 

 

 

(EANN). With no human intervention, Evolutionary 

Algorithms are used in EANNs to adapt the various 

parameters of ANNs such as connection weights, network 

topology and learning rules in order to find the ANN that best 
suits a given problem. Since the evolutionary algorithms go 

through all possible combinations of ANN parameters, the 

optimum ANN can be obtained without any prior knowledge 

of the problem domain or ANN characteristics. In addition to 

being able to adapt to any unknown problem environment, the 

diverse adaptability of EANNs enable it to also adapt to 

continuously changing, dynamic environments as well. 

EANNs attain these capabilities by combining the two 

fundamental forms of adaptability, learning and evolution. 

Another advantage of EANNs over standard ANNs is that it is 

able to minimize if not eliminate, the presence of multiple 

stationary points, including multiple minima. How likely are 
we to encounter a sizable number of local minima? Empirical 

experience with training algorithms show that different 

initializations yield different resulting networks. Thus 

indicating the existence of multiple minima which in turn 

implies that the minima obtained is local. If the minima were 

global, there would be only one resulting network.  Hence the 

issue of multiple minima is very much real. However, by 

using evolutionary algorithms to determine the optimum 

ANN, we are able to reduce the probability of this occurring. 

When compared with gradient descent or second-order 

optimization techniques that can only find local optimum in a 
neighborhood of the initial solution, evolutionary algorithms 

(EAs) always try to search for a global optimal solution.  

Through ANNEbot we hope to bring the capabilities of 

EANNs to the above mentioned applications of ANNs. 

ANNEbot is an EANN framework that can be imported as a 

library or run as a standalone application which contains its 

own GUI component. Because EANNs require a significant 

amount of processing power and memory, ANNEbot is 

specifically designed to be lightweight. Due to this reason, 

using existing frameworks for ANNs which were more 

focused on performance and not weight, were nor viable 

[16,17,18]. Therefore ANNEbot consists of its own ANN 
implementation.  

The framework was tested for performance and scalability 

using two standard classification problems, the iris 

classification data set and the much larger Wisconsin breast 

cancer diagnosis data set. ANNEbot was also applied to a 

robotic application in which a robot had to learn to traverse an 

obstacle course without colliding with any of the obstacles. 
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II. EVOLUTIONARY ARTIFICIAL NEURAL NETWORKS 

A. Evolution in Artificial Neural Networks. 

Evolutionary Artificial Neural Networks combine the two 

fundamental forms of adaptation - learning and evolution. The 

learning aspect is provided by the Artificial Neural Network 

and the evolution is provided by the evolutionary algorithm. 
While the ANN learns and adapts, the EA finds the optimum 

ANN that would be most suited for the problem and would 

complete the task with more efficiency. In order to achieve 

such a level of adaptation, the EA evolves the ANN 

architecture, the learning rule and the connection weights 

[3,4,14,15]. Currently ANNEbot is the only available EANN 

framework in which the architecture of the ANN is modified 

to best suit the application. The ANN frameworks available 

today, only provide weight evolution using evolutionary 

algorithms. The literatures available on EANNs either focus 

only on the theoretical aspect or uses experimental EANN 
implementations which are not available to the public.  

 

Figure 1 : Evolution in Artificial Neural Networks 

There are 3 main parts in the evolution of an evolutionary 

artificial neural network. The evolution of connection weights 

act as the most primitive of them all. Its aim is to find a near 

optimal set of connection weights for a given ANN with a 

fixed architecture. The evolution of the learning rule is the 
evolution of the learning itself, which is similar to „learning to 

learn‟, which in turn help us to improve EANN‟s learning 

ability. The evolution of architecture is the process of deciding 

its own architecture by the EANN according to the task at 

hand, which provides us with a powerful adaptive system. 

These levels are illustrated in Figure 1 [3]. The outermost 

circle is the evolution of the architecture. The architecture has 

to be decided in order to select the Learning Rule. The 

connection weight evolution, which is the inner most circle, 

can only happen once the Architecture and Learning Rule are 

both fixed. The selections that are made in each of these layers 

affect different components of the ANN. 

1)  Evolution of Connection Weights. 

The method in which the ANN is trained is by adjusting of 

connection weights. Evolutionary Algorithms can be used to 

get a near-optimal set of connections. The connection weights 

can be encoded before adding to the chromosome for the 

Genetic operation or can be added as real values.  

2) Evolution of Learning Rule. 

The learning rule is the weight updating rule which decides 

how connection weights are changed. The evolution of the  

learning rule has to be implemented such that the evolution of 

weight chromosomes are evolved at a faster rate, i.e. for every 

learning rule chromosome, there will be several weight 

chromosomes evolving at a faster time scale. 

3) Evolution of Architecture. 

The selection of the architecture effects the ANN as it may 

change the structure of the topology as well as various 

attributes of the ANN such as the number of input and output 

neurons, the possible existence of hidden layers etc. 

However, it must also be mentioned that the order of the two 

outer most layers of evolution can be interchanged depending 

on the nature of the problem. The next section will discuss the 

typical cycles and how to choose the order of levels of 

evolution. 

B. Typical Cycles of Evolution in EANNs. 

The order of cycles of evolution varies depending on the 

nature of the problem and amount of prior knowledge 

available [3]. From the point of view of engineering, the 

decision on the level of evolution depends on what kind of 

prior knowledge is available. If there is more prior knowledge 

about EANN‟s architectures than that about their learning 

rules or a particular class of architectures is pursued, it is 

better to implement the evolution of architectures at the 

highest level because such knowledge can be used to reduce 

the search space and the lower level evolution of learning 

rules can be more biased towards this kind of architectures [4]. 
On the other hand, the evolution of learning rules should be at 

the highest level if there is more prior knowledge about them 

available or there is a special interest in certain types of 

learning rules. Therefore, as illustrated in Figure 2 [4] the 

highest level of evolution can be either the evolution of the 

Architecture or the learning rule. 

  



 

 

 
Figure 2 : Levels of Evolution 

1) Evolutionary search of connection weights 

A typical cycle of the evolution of connection weights: 

1. Generate an initial population of N weight 

chromosomes. Evaluate the fitness of each EANN 

depending on the problem. 

2. Depending on the fitness and using suitable selection 
methods reproduce a number of children for each 

individual in the current generation. 

3. Apply genetic operators to each individual child 

generated above and obtain the next generation. 

4. Check whether the network has achieved the required 

error rate or the specified number of generations has 

been reached. Go to Step 2. 

5. End. 

2) Evolutionary search of Architecture 

A typical cycle of the evolution of architectures  

1. The evolution of architectures has to be implemented 
such that the evolutions of weight chromosomes are 

evolved at a faster rate. 

2. Generate an initial population of N architecture 

chromosomes. Evaluate the fitness of each EANN 

depending on the problem. 

3. Depending on the fitness and using suitable selection 

methods reproduce a number of children for each 

individual in the current generation.  

4. Apply genetic operators to each individual child 

generated above and obtain the next generation.  

5. Check whether the network has achieved the required 

error rate or the specified number of generations has 
been reached. Go to Step 3.  

6. End. 

3) Evolutionary search of Learning Rule 

A typical cycle of the evolution of Learning Rule  

1. The evolution of learning rules has to be implemented 

such that the evolution of architecture chromosomes is 

evolved at a faster rate. 

2. Generate an initial population of N learning rules. 

Evaluate the fitness of each EANN depending on the 

problem. 

3. Depending on the fitness and using suitable selection 
methods reproduce a number of children for each 

individual in the current generation. 

4. Apply genetic operators to each individual child 

generated above and obtain the next generation. 

5. Check whether the network has achieved the required 

error rate or the specified number of generations has 

been reached. Go to Step 3. 

6. End. 

III. METHODOLOGIES 

A.  Structure of the ANN 

The structure of the ANN which is used in this project is a 

fully feed forward network. It consists of one input layer, one 

output layer and a set of hidden neurons. The difference 

between the architecture used in ANNEbot and the standard 
neural network architecture is that there is no layer to which 

the hidden neuron belongs. The hidden neurons will organize 

themselves through the architecture evolution process.  The 

differences between the two architectures are illustrated in 

Figure 3. This evolution in architecture happens dynamically 

during run time as the neural network evolves. Therefore, 

instead of using a readily available Neural Network library, a 

custom Neural Network module had to be implemented as the 

readily available tools lacked the support for the evolution of 

such dynamic architectures. 

 

Figure 3 : Differences between the standard ANN structure and the 
ANN used in the framework 

B. Integration of the Genetic Algorithm 

JGAP [20] Java Genetic Algorithm tool was used for the 

implementation of the GA component of the framework. 

JGAP is used in such a way that the users of the EANN frame 

work will only have to provide the fitness function needed to 

evaluate the fitness of one particular chromosome. The fitness 

function is specific to the problem which the EANN 

framework is used to solve and is thus left as a component of 

the framework that is to be user defined.  



 

 

C. Evolution of the ANN. 

The activity diagram in Figure 4 illustrates the overall 

evolution process of the EANN in ANNEbot. The main 

iterations are centered on the main operations described in 

figure 2. ANNEbot implements two levels of evolution i.e. 

weights evolution and architecture evolution. Architecture 
evolution consists of two sub parts, namely connection 

reduction and hidden node addition. 

The first step is to initialize the ANN with the minimum 

number of hidden neurons i.e. one, and make the structure a 

fully connected feed forward network. In the next step, this 

initial ANN is sent to the GA for the weights search. After the 

optimum weight set is obtained, it moves to the connection 

reduction stage in which the least weighted connection is 

removed and the ANN is retrained. The reasoning behind this 

heuristic is that the least weighted connection is assumed to be 

the connection with the least significance to the ANN. By 
removing it and obtaining the fitness, it is possible to identify 

if the ANN needs that connection or not. If the fitness is the 

same or it has improved, the ANN without that connection is 

passed on to the next stage of evolution. The objective of this 

stage is to obtain the simplest network structure for a given set 

of neurons that can provide the required functionality for a 

given problem. 

After the connection reduction stage is complete the ANN 

goes to the hidden neuron addition stage. The heuristic used 

for hidden node addition is splitting the highest connected 

hidden node. The highest connected node is assumed to be the 

node representing the most number of features and so dividing 
these features and representing them using more hidden nodes 

improves the ANNs ability to converge to a more optimum 

solution. After a hidden neuron is added it moves to the 

weight search in which the optimum weights are obtained for 

the new ANN. After the weight search it goes to the 

connection reduction stage in which the optimum structure for 

the new set of neurons are searched. Then it compares with the 

old ANN and evolution continues only if the fitness of the new 

ANN is better than the old ANN. If the fitness is less than or 

equal to the old ANN, the evolution process terminates. 

The user can specify a maximum number of hidden nodes. But 
if the fitness does not improve with the addition of a hidden 

node the evolution process terminates. The same applies for 

the connection reduction stage. If the fitness was reduced by 

removing a connection, removing more connections would 

only further reduce the fitness. 

D. Simulation of a Robot using the Framework 

To simulate a robot which travels from a start position to an 

end position, Simbad, the Java 3D robot simulator was used. 

When used as an application, Simbad runs as the main 

program while the EANN framework was used as a library. 

 

 

 

 
Figure 4 : ANN evolution process in ANNEbot 

IV. RESULTS 

A. Iris Classification Test 

Fisher‟s Iris classification dataset[20] is perhaps the best 

known database to be found among pattern recognition 

literature. Fisher's paper is a classic in the field and is 

referenced frequently to this day. The data set contains 3 

classes of 50 instances each (total 150), where each class 

refers to a type of iris plant. One class is linearly separable 
from the other 2; the latter are NOT linearly separable from 

each other.  

Predicted attribute: Class of iris plant 

Input Variables 
1. sepal length in cm  

2. sepal width in cm  

3. petal length in cm  

4. petal width in cm  

Output Classes 
1. Iris Setosa  

2. Iris Versicolour  

3. Iris Virginica 
Before the test, the full dataset was divided in to 3 sections, 

namely, the training set, validation set and test set with 60, 45 

and 45 data instances respectively. Out of these sets, training 

and validation sets were used in the training process of the 

ANN using ANNEbot and the test set was used to measure the 

final performance of the resultant network.  

 



 

 

Figure 5 illustrates the final fitness scores of the respective 

network. Fitness value is calculated as a percentage value 

from the number of correctly classified instances against the 

total number of data instances. The x-axis of the graph 

represents the corresponding network architecture. „HN‟ 

stands for Hidden Neuron count and „Con‟ stands for the 

number of connections in the network.  

 

 
Figure 5 : Fitness vs. Architecture for Iris classification 

 

According to figure 5, the best fitness value was reached with 
1 hidden neuron with 16 connections. Although the same 

fitness value is reached with a higher number of hidden 

neurons and connections, the network with 1 hidden neuron 

and 16 connections is chosen as the most optimal network as it 

produces the best fitness with the least complexity.  

 

Figure 6 illustrates the training, validation and testing scores 

of the networks against their architecture. These scores are 

generated as a percentage of the correctly classified instances 

against the total number of data instances in their respective 

data sets.  
 

 
Figure 6 : Test Scores vs. Architecture for Iris classification 

 

Figure 7 illustrates the fitness variation against the generation 

count of the best network which has only 1 hidden neuron and 

16 connections. This graph is taken during the training process 

of the network which uses the genetic algorithm, and shows us 
the convergence of the fitness value over the number of 

generations.   

 

 
Figure 7 : Fitness vs. Evolution for best network for Iris classification 

 

The network structure of the ANN for the best network for Iris 

classification is displayed below in Figure 8. From this 

diagram we can see that not all neurons are connected to each 

other and one of the inputs directly connects to the output 

layer without connecting to the hidden neuron in the middle. 

This result is in accordance with the actual mathematical 

properties of the iris petal classification problem. 
 

 
Figure 8 : Network diagram for the best network for Iris classification 

 

Using evolutionary algorithms and heuristic methods, 

ANNEbot could successfully classify the Iris classification 

problem with satisfactory accuracy of over 99%, resulting in 

the optimal structure which cannot be retrieved using any 

other classical neural network method.  

B. Wisconsin Breast Cancer Classification 

For the Wisconsin dataset[20] the input features are computed 

from a digitized image of a fine needle aspirate (FNA) of a 

breast mass. They describe characteristics of the cell nuclei 

present in the image. There are 32 attributes in this dataset 
including the ID number and the desired output.  

Predicted attribute: Diagnosis i.e. malignant or benign 

Attribute Information: 

1. ID number  

2. Diagnosis (M = malignant, B = benign)  

3. 3-32 

Ten real-valued features are computed for 

each cell nucleus:  

a)  radius (mean of distances from center to 

points on the perimeter)  

b)   texture (standard deviation of gray-

scale values)  
c)  perimeter  
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d)  area  

e)  smoothness (local variation in radius 

lengths)  

f)  compactness (perimeter^2 / area - 1.0)  

g)  concavity (severity of concave portions 

of the contour)  

h)  concave points (number of concave 

portions of the contour)  

i)  symmetry  

j)  fractal dimension ("coastline 

approximation" - 1)  
 

This dataset was also divided into three datasets as training, 

validation and testing with 369, 100 and 100 data instances. 

This test was conducted to measure the performance of 

ANNEbot with complex networks.  

 

Figure 9 illustrates the final fitness scores of the respective 

network for the Wisconsin classification. The fitness value is 

calculated as a percentage of the number of correctly classified 

instances out of the total number of data instances. 

 

 
Figure 9 : Fitness vs. Architecture for Wisconsin classification 

 

According to figure 5, the best fitness value was reached with 

2 hidden neurons with 121 connections.  

 

Figure 10 illustrates the training, validation and testing scores 

of the networks against their architecture for the Wisconsin 

classification. These scores are generated as a percentage of 

the correctly classified instances against the total number of 

data instances in their respective data sets.  

 

Although in some architectural configurations there are 
individual scores (validation score of 3 hidden neurons with 

151 connections) higher than that of the optimal (2 hidden 

neurons with 121 connections), the collective score of that 

configuration is lower than the optimal as shown in figure 9.  

 
Figure 10 : Test Scores vs. Architecture for Wisconsin classification 

 

Figure 11 illustrates the fitness variation against the generation 

count of the best network which has only 2 hidden neuron and 

121 connections.  

 

 
Figure 11 : Fitness vs. Evolution for best network for Wisconsin 

classification 

The network structure of the ANN for the best network for 

Wisconsin breast cancer classification is displayed below in 

Figure 12. 

 

 
Figure 12 : Network diagram for the best network for Wisconsin 

classification 
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Although the complexity of the problem is higher than the Iris 

classification, for this Wisconsin breast cancer classification, 

ANNEbot could produce the optimal network structure with a 

desirable accuracy of over 90%. 

C. Robot Application Simulation  

ANNEbot was tested for its performance on robotic 
applications using the Simbad robot simulator. After the 

training of the neural network, the robot was tasked to avoid 

obstacles using this trained neural network. The robot did not 

hit any obstacles on its way around the environment. Also 

with a different environment, the robot gave a similar 

performance which indicated that the neural network is not 

specific to a single environment.  The final neural network 

structure used in the robot is shown in Figure 13. 

 

 
Figure 13 : Optimal Network Structure for Obstacle Avoidance in 

Robot Application 

V. CONCLUSION 

The paper discusses the use of Evolutionary Artificial Neural 

Networks together with heuristics to find the optimal neural 

network for tasks such as classification and other machine 

learning tasks. The results discussed in section IV, suggests 

that the approach can deliver highly satisfactory results when 

considering classification. Also the results obtained from the 

robot simulation suggest that an area like robotics can also 

benefit largely from the inherent adapting capability of 

evolutionary neural networks.  

 

ANNEbot can adopt some methodologies discussed in some 
of the literature ([5], [8]) on evolutionary artificial neural 

networks, which might lead to better performance. Since these 

methods are still very much experimental and new, adaptation 

needs to be carried out with proper techniques and testing.  
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