
Mapping Dependency Relationships into Semantic

Frame Relationships

N. H. N. D. de Silva, C. S. N. J. Fernando, M. K. D. T.

Maldeniya, D. N. C. Wijeratne, A. S. Perera
Department of Computer Science and Engineering,

University of Moratuwa,

Moratuwa, Sri Lanka.

B. Goertzel
OpenCog Foundation.

United States

Abstract— We describe the refactoring process of the Natural

Language Understanding pipeline of OpenCog Artificial General

Intelligence Framework, a method for expanding the concept

ontology of the pipeline using statistical learning algorithms.

Further an experimental approach to automatically generating a

common sense knowledge base specifically with relation to

concept relationships derived from the natural language pipeline

using data mining techniques is detailed and evaluated.
Keywords-FrameNet; WordNet; Drools; Common Sense

Knowledgebase;

I. INTRODUCTION

Natural Language Processing (NLP) is a field of Artificial
Intelligence (AI) on which a lot of research had been and also
currently being carried out. It is a critically important hurdle in
the development of a complete AI that simulates human
behavior [1].

RelEx, which is a component, developed for the OpenCog
[2] framework is an English-language semantic dependency
relationship extractor, built on the Carnegie-Mellon Link
Grammar parser [3]. Subject, object, indirect object and many
other syntactic dependency relationships between words in a
sentence can be identified by RelEx.

A mapping of English sentences into semantic frame
relationships, similar to those of FrameNet, is provided
by RelEx via the component known as RelEx2Frame [4].
Compared to the default RelEx output, this provides a higher-
level, more abstract, but semantically more tractable
description of the parsed sentence. The goal of such framing is
to assist cognitive reasoning; rather than requiring a large
common-sense database, this approach enables a reasoning or
question answering system to deduce information which can be
directly inferred from natural language sentences based on the
linguistic structure and a relatively small set of framing rules.
Existing framing rules are specified as simple IF..THEN rules,
and are evaluated using a simple forward-chaining reasoner.
The RelEx2Frame forward-chaining reasoner code was written
by RelEx developers themselves without using any existing
forward-reasoning code.

In the field of artificial intelligence a common sense
knowledge base is a collection of facts that an average
individual is expected to know that is structured in such a way
as to allow artificial intelligence agents to use natural language
or make inferences about the surrounding world [5] [6].

Common Sense Knowledge Bases have been an area of
interest in the field of artificial intelligence for more than two
decades and even now there are number of ongoing Common
Sense Knowledge Base creation endeavors. Most of these
endeavors involve manually inserting the common sense
relationships and statistics and represent huge amount of
human effort over a large period of time. Thus these
knowledge bases suffer from issues such as difficulty of
updating and ensuring the validity of the statistics.

 SeMap looks into three main aspects of OpenCog in order
to enhance its natural language understanding capabilities.
Firstly, SeMap introduces a widely known open source rule
engine, Drools to standardize the current framing rules and
refactor the Relex2Frame architecture to accommodate the
changes in the rule base. The modifications to the Relex2Frame
architecture were carried out in such a way so as to mitigate the
drawbacks of using a standard rules engine.

Words in English language can be categorized into
considerable number of concepts (e.g.: Pronoun, Storing, Time
etc.). Words belong to each concept are called concept
variables. There are manually categorized concept variables,
present already. In the second phase we expanded that
repository by adding new concept variables which were found
by a WordNet [7] based supervised learning mechanism and a
statistical learning based approach using LEXAS algorithm [8].

Finally we describe a novel approach on building a
common sense knowledgebase, where we automate the
generation of common sense knowledge by using statistical
techniques on the results of RelEx natural language
understanding pipeline for a text corpus. The automation of the
process leads to its own set of unique problems including the
difficulties in ensuring the semantic value of the inference rules
generated.

The expected outcome of the project has a variety of
applications in real life IT Solutions. Mainly AI related
applications which require English language processing would
benefit from the project. Additionally the project deliverable
can be used in chat applications, text critiquing, information
retrieval from the web, question answering, summarization,
gaming, and translation as it is intended for general use rather
than focusing on specific areas of English language.

II. BACKGROUND

A. RelEx Natural Language Pipeline

RelEx pipeline of the OpenCog Artificial General
Intelligence open source project converts an English sentence
to a set of semantic frames. This pipeline is used for
standardization of the rule base as well as for the automated
generation of common sense knowledge approach considered
in this paper.

RelEx which is an English-language semantic dependency
relationship extractor identifies the subject, object, indirect
object and many other syntactic dependency relationships
between words in a sentence.

RelEx2Frame is used to map RelEx relations into a set of
semantic frames using hand coded large set of rules. Frames
are taken from two semantic resources, namely FrameNet and
Novamente. Input to RelEx2Frame is the output of RelEx on a
given sentence. Thus accuracy of the system heavily depends
on the accuracy of RelEx.

Ex: “Put the ball on the table”.

RelEx Relations Semantic Frames

imperative(Put) [2] ^1_Placing:Agent(put, you)

_obj(Put, ball) [2] ^1_Placing:Theme(put, ball)

on(Put, table) [2] ^1_Placing:Goal(put, table)

singular(ball) [2] ^1_Locative_relation:Figure(ball)

singular(table) [2] ^1_Locative_relation:Ground(table)

Lack of readability, difficulties in maintenance and
debugging are few issues of the existing RelEx2Frame.

B. Concept Word List Expansion

The exact requirement of the paper is to introduce a
methodology to learn new words that fall in to a certain
concept based on the words that are already in the list relevant
to the said concept. This is a very specific implementation, thus
implementations or algorithms that closely cater to the likes of
this situation are nonexistent. Therefore, statistical word
learning algorithms used for observation based learning and
sense identification were examined.

1) LEXAS algorithm
LEXAS algorithm (Ng and Lee 1996) [8] is an algorithm to

disambiguate word senses by applying statistical learning over
multiple knowledge sources.

In the training phase, a set of sentences; S with words that
are sense tagged is given. The algorithm extracts information
about w; Parts of Speech (PoS) relevant to the words that occur
near w, morphological form of w in the sentence and words

frequently co-occur with w. If the word w is a noun, the verbs
that take w as the object are also taken into account. In the
testing phase all the above information is extracted from the
given sentence and the result is compared with all the training
examples and the sense which has the closest match is
presented as the solution.

2) Word Independent Context Pair Classification Model
Word Independent Context Pair Classification Model (Niu

et al. 2005) [9] is a word sense disambiguation model which
uses maximum entropy modeling to train the word independent
context pair classification model via an annotated corpus. Then
that classification results are used to cluster the word mentions
in the raw corpus. This algorithm is guaranteed to deliver the
efficiency of the supervised Naïve Bayes system. The
Maximum Entropy Modeling for Context Pair Classification
step of this algorithm proved useful for the requirement
discussed in this paper.

3) Statistical Word Learning Based on Cross-Situational

Observation Algorithm
The cross-situational observation based statistical word

learning algorithm (Yu et al. 2006) [10] is a statistical learning
algorithm that learns word object pairs by analyzing co-
occurrences. It is designed to handle word object pairs in
ambiguous environments where multiple word candidates exist
for any possible object and multiple object candidates exist for
any possible word.

C. Common Sense Knowledgebases

Existing well known knowledge bases include OpenCyc by
CyCorp[11] and NELL(Never Ending Language Learning) by
Carnegie-Mellon University[12].

1) OpenCyc

This is the largest and the most well-known common sense
knowledge base currently and it's the result of almost three
decades of accumulation. The primary criticism of this project
is the fact that the addition of assertions is carried out manually
and the large size of the knowledge makes it difficult to update
as well as test for the level of quality [11].

The knowledge base structure is based on concepts known
as constants which include individuals, collections, truth
functions etc.

The key predicates used in describing items in Cyc are
inheritance (#$isa) and generalization (#$genls)

Ex:

“Kumar Sangakkara is a cricketer” would be represented as

 #$isa #$KumarSangakkara #$Cricketer

 3 4 5

Load & Serialize

De-Serialize

 2 3 n

 2 3 n

Serialized Knowledge

Base Store

Drools Rule

File Store

Condition

Index

K1

K2

K3

K4

K5

Deliver Claim

Lists

KB obsolete
Notification

R

Sc
h

ed
u

le
 K

B
s

D
ev

el
o

p
 C

la
im

 L
is

ts

S1

S2

S3

Sn

R R R

E1 E2 E3 En

Request KBs

Execution Manager

(Flow control, KB Scheduling)

Hand over

KBs

The knowledge base also contains statements which
accommodate variables which are called rules. Further Cyc is
divided in to a number of domain based collections called
micro theories which are constrained to have no contradicting
statements. The native inference engine of Cyc supports
general logical deductive operations such as modus ponens,
modus tollens etc.

2) NELL

This is a much more recent project initiated by Carnegie-
Mellon University that crawls the web and continuously
extracts the semantic information from unstructured web pages.
The project is based on a seed data set of categories and
relations and expands this data set using the information
extracted by crawling the web. While the approach for the
development of NELL is quite similar to the one employed in
this project, the common sense knowledge base developed in
the project generates inference rules as opposed to category
based relations accumulated in NELL[12].

While relatively new NELL has already accumulated
around 850,000 beliefs such as

“American_forestry_association is a professional organization”
and “information created contact”

The accuracy of the knowledge base is maintained through
manual supervision and input from voluntary monitors.

III. STANDADIZATION OF RELATION-FRAMENET RULE BASE

The existing Relex2Frame architecture consists of over
5000 hard coded rules on .txt format. The project required to
port these rules to a standard rule engine to accommodate both
backward and forward chaining which would be useful for
future developments in Frame2Relex.

In selecting an appropriate rule engine, factors such as
platform independency, native Java and backward chaining
support were considered. Thus Drools[13] was chosen as the
most suitable rule engine for our purposes considering other
alternatives.

After analyzing several Relex2Frame prototype
architectures the performance results provided conclusive
evidence that the incorporation of a standard rule engine using
the Rete‟s algorithm with over 5000 rules in the rule base
results in significant degradation of performance. In order to
achieve performance comparable to the framework with the
native rule engine, it was decided to incorporate concurrency in
to its operation as well as to use techniques such as indexing,
buffering and batch processing. In that aspect, the following
(Fig. 1) Asynchronous Concurrent architecture was designed to
mitigate the drawbacks of using Drools in Relex2Frame.

The proposed Asynchronous Concurrent architecture based
on events is designed for batch processing of sentences in
executing upon a text corpus to improve the overall throughput.
The Drool rule knowledge base consisting of 5,341 rules were
divided in to 54 small knowledge bases with each 100 rules
and the knowledge bases are kept serialized for quick loading.
A knowledge base buffer is maintained of fixed number of

small rule bases at a time to service requests from processed
sentences. Centralized control over sentence processing and
knowledge base scheduling is kept to optimize the overall
functionality of the system while the responsibilities of
processing of each sentence are delegated to its own sentence
object.

Figure 1. Relex2Frame Asynchronous Concurrent Architecture

A. Component Overview

The proposed architecture is composed of Sentence,
Evaluator, Knowledge Base Manager, Knowledge Base Buffer,
Execution Manager and Condition index components.

1) Sentence
A sentence represents an execution unit of the Relex2Frame

framework, in that it represents a single input sentence to the
RelEx Framework and retains the RelEx output related to the
sentence as a collection and is fed in to the RelEx2Frame
framework in blocks. Sentence plays a key role in the proposed
architecture which is designed as an autonomous unit that
“processes” it with necessary services requested from
management objects. It is responsible for generating a
knowledge base claim list for execution against it using the
Condition Index, requesting and acquiring knowledge bases
from the Execution Manager as well as retaining the list of
semantic nodes that fit the represented sentence.

2) Evaluator
The evaluator is responsible for comparing the RelEx

relations for a sentence with the relations or relation families
required to be present in the rules for satisfaction. The
evaluator categorizes the space of rules in RelEx2Frame in to

four primary categories and evaluates the presence of unique
relationships using an index of concept variables and a working
memory that refreshes per rule to hold temporary variables.

3) Knowledge Base Manager
The Knowledge Base Manager is a “wrapper” for the

standard Knowledge Base object of the Drools Rule Engine
designed to serialize the object on creation (if the serialized
version doesn't exist) in order to minimize the time taken to
load the object. Currently each Knowledge Base Manager
represents a knowledge base with a hundred mapping rules
though this can be changed accordingly.

During testing, it was discovered that a given knowledge
base could be held by multiple sentences for processing
without generating operational issues since the knowledge base
itself doesn‟t experience any modification during processing.
This approach improves performance significantly in
comparison to when a knowledge base is held exclusively by a
single sentence at a given time.

4) Knowledge Base Buffer
This is a container for a set of Knowledge Bases

(Knowledge Base Manager Objects) where the knowledge base
loading and removal is scheduled based on Execution Manager
calls. The container size is a variable that may be changed to
achieve optimal performance based on available hardware.

5) Execution Manager
The Execution Manager represents the (limited) centralized

control mechanism of the architecture. It is responsible for
scheduling the loading of knowledge bases in to the working
memory of the framework by using the claim list submitted by
executing Sentences prior to execution.

The Execution Manager employs the knowledge base claim
lists of individual sentences in execution at a given time to
generate a priority queue for scheduling the knowledge bases
in to the buffer by considering the number of requests for a
knowledge base as the basis for assigning priority.

6) Condition Index
The Condition index is an index of all relationships or

relationship families in the space of mapping rules where the
values pointed to by a particular key (relationship) are pointers
to the knowledge bases that included the rules which contained
that key.

In addition to further improve the performance of indexing,
the rules are organized in the knowledge base files such that the
most frequently fired rules being clustered together to limit the
number of knowledge bases necessary for processing of a
sentence. The architecture was tested with the following rule
clustering algorithms which yielded different results.

i. Higher priorities to the frequent relation headers

ii. Association of relations

iii. Relation frequency in rules

iv. Hybrid of 2 and 3 algorithms

v. Minimizes the distribution of relation headers

vi. Self Organizing Map

vii. k-means clustering algorithm

B. System Functionality

The run time operation of the RelEx2Frame framework
involves multiple Sentences processing themselves by
requesting the relevant Knowledge Bases. The sequence of
operations involved in the processing of a batch of sentences is
as follows.

Once a Sentence block is transferred to RelEx2Frame, each
sentence will generate its Knowledge Base Request list by
querying the condition index based on its relationship
collection. These request lists will be used by the Execution
Manager in initializing the Knowledge Base buffer with a set
of knowledge bases that will be most requested by the
Sentences in the block being processed at the given time
reducing the overall volume of I/O activity.

The sentences process independent from each other while
required knowledge bases are acquired from the knowledge
base buffer. The knowledge base manager would handle the
knowledge bases among the sentences and remove obsolete
and bring in new knowledge bases to the buffer.

IV. CONCEPT WORD LIST EXPANSION

The variable base of RelEx is a collection of word lists,
where each list covers an ontological concept and is comprised
of a set of ontologically close set of words and a title which is a
hyponym of the said set of words.

A. Ontological database based expansion of word lists

The first of the two methodologies that were used in this
project for expanding the current variable base was intended to
exploit the aforementioned structure that the RelEx developers
used so far. Since the words are already categorized in to
ontological groups, an ontology based expansion process was
suggested. It was understood that an ontological database
which already has organized its word repository into a tree
structure preserving the relations between the words is ideal to
achieve this end. From the said tree structure, the hyponym-
hypernym connections and the synonym connections were
used.

1) Concept expanding using hyponym-hypernym structure

Figure 2. Flow diagram for the simplified architecture for concept expanding

using hyponym-hypernym structure

The old Concept database is the current concept variable
store, which is a hand written list of words categorized in to
concepts. But due to the fully manual input method that the
original developers used to develop this; the set is non
exhaustive when compared with the words in the English
language. The Concept loader load concepts from the current
concept database and insert them into a data structure that can
be easily handled by the subsequent modules.

The lexical database connector is used to query the lexical
database and extract hyponym trees and hypernym trees rooted
at the given word. For each word several hyponym/ hypernym
trees are returned according to the senses of the given word.

Hypernym tree builder and Hyponym tree builder queries
the lexical database through the lexical database connector for
each word in a given list. The resultant tree is then converted in
to sense trees using the internal node structure.

Minimum common ancestor finder takes two words and
their relevant sense trees from the hypernym tree builder at a
time and simultaneously does a bottom up search for each pair
of tress to find the common ancestor. Table I shows the
ancestor finder matrix.

For each of the selected common ancestors, the collective
distance to the two seed words is calculated. This calculated
distance is observed to be directly proportional to the
ontological distance between the two senses. Thus it was
possible to conclude that the sense tress with the ancestor that
has the minimum collective distance will be having a high
probability of falling in to the same ontological class.

After all the word pairs are analyzed, the common ancestors
for each word pairs are put in to a list and sorted in the
descending order of frequency. For each pair, only the ancestor
with the highest frequency is put to the hash list that is passed
to hyponym tree builder.

Hyponym tree pruner calculates the cardinality of the set
that is taken by applying set intersection to the original word
set and the word set acquired from the tree rooted by each
ancestor in the list that was taken from the Hyponym tree
builder. The ancestor nodes are sorted in the descending order
of cardinality and only the top subset of ancestor nodes that
collectively contribute to 50% or more are handed over to the
node filter.

 (1)

TABLE I. MINIMUM COMMON ANCESTOR FINDER MATRIX

 Word 1

 Sense 1 Sense 2

W
o

r
d

 2
 Sense 1 ancestor 1 ancestor 2

Sense 2 ancestor 2 ancestor 1

Sense 3 ancestor 1 ancestor 3

Node evaluator takes the shortlisted ancestor nodes and
traverses the hypernym tree rooted by each ancestor node while

listing the nodes of which the intersection between the set of
words in the node and the original word set is non empty. The
cardinality of the said resulting set intersection is given as the
initial weight.

After building the selected node list, the said initial weight
of each node is then increased by a constant factor multiplied
by the cardinality of the intersection of set of ancestors of the
said node and the selected node list. The resultant weight of
each node is again increased by a constant factor multiplied by
the cardinality of the intersection of set of siblings of the said
node and the selected node list. The evaluated node list is
passed to the node filter.

(2)

Node filter takes the evaluated node list and orders them in
the descending order of weights. The upper 80% of the
aggregated value of the entire batch are selected. The words
from the selected node are put in to a set. The original word set
is subtracted from the said set and the resultant set is handed
over to the human input handler.

Human input handler takes the word set given by the Node
filter alongside the original set of words for that given concept
in a graphical user interface. The human can then select the
words that are desirable in the context of the given concept.
The human input handler takes the union of the human selected
word set and the original word set and hands it over to the
Concept database writer.

Concept database writer takes the set of words from the
human input handler and writes them in to a new concept
database following all the conventions that the original RelEx
developers have used in developing the original concept
variable database.

2) Concept expanding using synonym structure

Figure 3. Flow diagram for the simplified architecture for concept expanding

using synonym structure

The only difference between the Hyponym tree builder and
the direct Hyponym tree builder is the fact that the latter
imposes limit of 2 to the depth of the trees that are returned.

B. Statistical learning based on corpus for expansion of
word lists

The second methodology used in this project for expanding
the current variable base was intended to exploit the inherent
features of the English language. These include the fact that the
words that belong to the same concept tends to fall in the same
position of a sentence. The following set of sentences can be
used as an example.

 The cat sat on the fence

 The cat ran under the fence

 The cat stood near the fence.

It can be observed that the words occurring around the set
of words; {on, under, near} tends to show statistical pattern.
The said words fall in to the same concept in the old version of
the concept store. Namely; at_location. What this module of
the program was expected to achieve is, if given a sentence;
“The cat jumped over the fence”, in an instance where the
word over is not on the current concept list for at_location;
predict the probability of the word over being belonged to the
concept at_location.

It was found that this can be achieved from using a
statistical learning algorithm. It was discovered that no direct
implementation of statistic based concept classification similar
to the requirement of this project has been done. Thus the
closest implementation; statistical word learning algorithms
that are used for observation based learning and sense
identification were taken in to consideration. As described in
the related work section, three widely used such algorithms;
LEXAS algorithm [8], Word Independent Context Pair
Classification Model [9] and Statistical Word Learning Based
on Cross-Situational Observation Algorithm [10] were
analyzed with the requirements of the project.

1) Observations and Design decisions in building a

suitable algorithm
It was observed that the Vector Space Model (VSM) based

similarity measure of the Word Independent Context Pair
Classification Model to have the same effect as the Unordered
Set of Surrounding Words based similarity measure of the
LEXAS algorithm. Further, the Latent Semantic Analysis
measure of the Word Independent Context Pair Classification
Model was observed to be the same as the Local Collocations
measure of the LEXAS algorithm. Latent Semantic Analysis
(LSA) based relationship similarity measure of the Word
Independent Context Pair Classification Model was observed
to be a unique feature.

It was possible to determine that the methodology used in
Statistical Word Learning Based on Cross-Situational
Observation Algorithm could be absorbed in to the Unordered
Set of Surrounding Words based similarity measure of the
LEXAS algorithm.

From the above set of observations and micro level
decisions; if was ultimately decided to use an adaptation of the
LEXAS algorithm for this project. The unique feature; Latent
Semantic Analysis (LSA) based relationship similarity measure
of the Word Independent Context Pair Classification Model
was decided to be incorporated in to the Unordered Set of
Surrounding Words based similarity measure of the LEXAS
algorithm.

2) Statistic collection from corpus

Figure 4. Simplified architecture for statistic collection from corpus

Fired concept word pair collector was integrated in to
RelEx so that when a rule gets fired with relevant to a given
sentence and returns true, the concept word pairs that were
cross validated in the process are put in to a list, indexed by the
concept so that ultimately it would return a list of successfully
fired concepts and a list of words each of those concepts that
made the successful firing instances.

Unordered word set collector takes all the words in the
given sentence from RelEx, where initial list members are the
added in to a new list where the each word is accompanied by
the number of occurrences of that word in the said sentence.
This list gets handed over to the basic statistic builder.

POS analyzer takes the concept indexed list from the Fired
concept word pair collector and the RelEx relation list for the
analyzed sentence from the RelEx rule firing system. The Part
Of Speech data for each word considered was extracted from
the RelEx relations and was handed over to the basic statistic
builder.

Collocation data builder takes the concept indexed list from
the Fired concept word pair collector and the words in the
given sentence from RelEx. It then builds collocation data for
each of the words in the concept indexed list. This collocation
data gets handed over to the basic statistic builder.

Basic statistic builder takes the collected statistic data from
the unordered word set collector, POS analyzer and the
collocation data builder and aggregates this new statistical data
to the current statistical data that is maintained for a given
concept. In the case where there was no previous record of the
given concept, a new statistic slot gets opened for it and the
new statistical data is inserted. Concept breaker takes the
concept statistics and breaks them in to concept headers.

TABLE II. COLLOCATION EXAMPLES

Left offset Right offset Collocation Example

-3 -1 only enables him [word]

-2 -1 from the [word]

-2 1 waist down [word] uses

-1 -1 Superhuman [word]

-1 1 down [word] uses

-1 2 powered [word] that not

1 1 [word] invent

1 2 [word] the waist

1 3 [word] walk but gives

Concept minimizer takes a raw concept statistic and prunes
it according to a given set of rules.

 Words in the word frequency list, POS data and
Collocation data are filtered out by a minimum frequency
threshold.

 Common words such as a, an, the, to and of are removed
from the word frequency list.

 Words accompanied by punctuation marks are ripped of
the punctuation marks

 Words that are actually numbers, are completely dropped
from the statistic

The minimized concept statistic is handed over to the
minimized concept statistic writer. Minimized concept statistic
writer writes the minimized concept statistics in to minimize
concept statistics files.

3) Statistic based prediction from corpus

Figure 5. Simplified architecture for statistical prediction from corpus

Unfired concept word pair collector was integrated in to

RelEx so that when a rule tries to get fired with relevant to a
given sentence but returns false, the concept word pairs that

were cross validated in the process are put in to a list, indexed
by the concept so that ultimately it would return a list of tested
concepts and a list of words each of those concepts that were
checked against the said concept. This concept indexed list was
handed over to the POS analyzer and the collocation data
builder.

Sense similarity matcher uses a lexical database to come up
with a value to represent how close two words are according to
the semantics of the word. When the similarity increases the
value approaches 1 and when similarity decreases the value
approaches 0. The same word given to compare with itself will
be given the value 1.

Statistic comparer takes the minimized statistic for the
sentence from concept minimizer and loads the saved statistic
for the relevant concepts via the minimized concept statistic
reader. The POS and collocation data are compared directly
and in cases where a match is found, the occurrence frequency
at the minimized statistic for the sentence is multiplied by the
occurrence frequency at the loaded minimized concept statistic
and a constant. The said value is then added to the aggregated
similarity measure. Each word in the unordered word set of the
minimized statistic for the sentence is compared with each
word in the unordered word set of loaded minimized concept
statistic using the sense similarity matcher. These values are
added to the aggregated similarity measure without applying a
specific weight. (I.e. the weight is 1) The aggregated similarity
measure for concepts against each word is used to calculate the
percentage probability of the word belonging to that concept.
The concepts are then sorted in the descending order of
probability. The top five (if the concept count is less than five
that number) possible concepts are handed over to the user
output module which displays the word concept belonging
probabilities for a human to consider.

V. COMMON SENSE KNOWLEDGE BASE GENERATOR

The discussed approach automatically generates a common
sense knowledge base in the form of a set of inference rules
based on the semantic frames extracted using the RelEx
pipeline using a version of English Wikipedia as a corpus.

The derived rules take the basic form indicated by the given
examples which are representation of the common sense
knowledge regarding intelligence and comprehension.

^1_Mental_property (stupid)& ^1_Mental_property: Protagonist ($var0)
^1_Grasp: Cognizer (understand, $var0) <0.3>

^1_Mental_property (smart) & ^1_Mental_property: Protagonist ($var0)
^1_Grasp: Cognizer (understand, $var0) <0.8>

Each rule indicates the probability with which the semantic

nodes in the consequent are valid for a given text input given
those in the premise are known to be valid.

A. Association Mining Approach

The closest standard approach in data mining that considers
problems similar to generating the common sense rules of the
form shown in the given examples from a mass of semantic
frames acquired from processing a text corpus is Association
Mining.

The proposed approached that has been developed for the
Common Sense Knowledge Base generation is derived from
this field of data mining. The unique nature of the problem
places a number of constraints on the association mining
algorithm that can be employed for the purpose of generating
the inference rules. The following considerations were
particularly significant in the selection of an appropriate
algorithm.

i. The low frequency of occurrence of semantic frames

requiring a significantly low support threshold.

ii. The need to capture rules from a wide range of

probabilities requiring a low confidence threshold.

iii. The skewed nature of the semantic frame occurrence

distribution.

The FP-Growth [14] family of algorithm was selected

based on these considerations and forms the basis core of the
rule generation mechanism.

1) Feature Vector Design

Since the inference rules contained in the Common Sense
Knowledge Base are essentially association relationships
among semantic frames, that the feature vector should contain
semantic frames is an obvious conclusion.

The first iteration of the mining application for the
generation of inference rules directly used the existing set of
semantic frames output from RelEx pipeline as the feature
vector. This amounted to the vector consisting of 4359
features.

However using the original frames as features led to
inference rules that were of a generic nature due to the coarse
grain of the concept division in the concept variable store used
by the pipeline. For example the store contained the concept
$mental_property which included values (words) for concepts
such as being “intelligent” or “stupid”. Thus the derived rules
would only encompass relations common to both being
“intelligent” and “stupid” and rules that consider the
consequences of being only “intelligent” or being only
“stupid” would not be generated.

The second iteration used a set of frames based on a
concept variable store where the concept division was fine
grained to the extent that feature vector contained multiple
features that were only differentiated by the newly introduced
concept division. For example instead of having a given frame
(feature) which contained the feature $mental_property there
would now be two features which differed due to having the
sub concepts $mental_property-intelligent and
$mental_property-stupid. The resulting feature vector

contained 25,782 features/frames. The approach for generating
new concept division will be discussed in some detail under the
heading „Sub Concept Clustering‟.

While this approach resulted in rules significantly closer to
the expectation the decrease in frequency of a given frame due
to the original frames splitting in a set of new frames means
that the size of the corpus required for generating reasonable
results is significantly greater than that was originally apparent.

2) Core Common Sense Generation Algorithm

Three key modification/additions have been made to the
standard FP-Growth algorithm in designing the approach for
generating the Common Sense Knowledge Base.

Use of All_Confidence(α) objective measure

The frequency of occurrence of semantic frames has been
observed to be consistent with a skewed distribution with a low
support threshold.

In order to avoid the loss of valid rules due the
ineffectiveness of support and standard confidence as objective
measures for pruning rules in such circumstances,
All_Confidence which is a more appropriate measure is used
[15].

(3)

Fast Updated Algorithm for Incremental Updating of the

Common Sense Knowledge Base.

The generation and maintenance of a common sense
knowledge base is a long term process and involves processing
huge quantities of text in this case. Therefore a mechanism that
allows incremental updating of the common sense whenever
new data is provided is critical to ensure maintainability of an
automatically generated common sense knowledge base.

For this purpose the Fast Updated Algorithm (Fig. 6) which
partitions item-sets in the context of frequency and presence in
processed and new transactions and treats each case uniquely
has been incorporated in to the core algorithm.

Figure 6. Fast Updated Algoritm

The algorithm proposed by Tzung-Pei Hong et al is used as
the basis for designing the algorithm for supporting the
incremental updating of the Common Sense Knowledge Base
[16].

Use of Subjective Semantic Relatedness Measure

In general association mining is carried out to discover high
support, high confidence or at least high confidence
associations between items. However in this circumstance an
association mining algorithm is used to find associations
between concepts that likely occur in a general corpus
comparatively infrequently leading to a low support threshold
requirement and the confidence threshold has to also be small
to capture inverse relationships. This inevitably results in some
low quality associations that are likely coincidental not being
filtered by the objective measures.

Thus filtering these low quality rules requires a subjective
mechanism unique to the problem being considered. In this
case the concept of semantic relatedness of the premise of the
inference rule to the consequent is used as an experimental
approach with some degree of success.

The semantic relatedness measure is calculated by
considering the average value of relatedness between unique
words in the premise and the consequent based on the approach
specified by Jiang and Conrath which measures the semantic
similarity between word pairs using corpus statistics and
lexical taxonomy [17].

(4)

3) Sub Concept Clustering
The sub concept clustering sub system was designed with

two components where each of them can be replaced with
another similar component with same input and output. This
view allows us to experiment with multiple possible
component designs and decide the best to suit our needs and
also provides highest accuracy. The two components can be
namely identified as,

Sub Concept Cluster Generator

In this component, the objective is to cluster concept
variables of a given concept into sub concept clusters where
variables within a sub concept cluster have the same semantic
meaning.

The association between two concept variables is used as
the criteria for clustering variables together into sub concepts.
For this, Wordnet Ontology is used to find the synonyms set of
given two variables and the level of intersection between the
two synonym sets is considered as the Semantic Similarity
Measure (SSM). The synonym sets are taken for each concept
variable and the association matrix is constructed with the
SSM. Only the word pairs over the chosen threshold value is
considered for clustering together. Finally the word
associations with SSM over the threshold value are sorted from
highest SSM to lowest.

Sub concept clusters are generated based on the word pair
and existing words in the sub clusters. A word is added to a sub
concept cluster only if the particular word is associated with at
least two other words that are already in the sub concept
cluster. The number of clusters depends on the semantic
meaning differences between the variables of the clusters.

Sub Concept Cluster Merger

The sub concept clustering process further increases the
number of concepts (since after sub concept clustering each
sub concept is treated like a concept) which results in increased
number of possible different frames from Relex2Frame. This
would complicate common sense knowledge base generation
process due to hardware limitations in processing. Thus Sub
Concept Cluster Merger component was designed to further
reduce the number of clusters through merging sub concept
clusters together which have close semantic meaning.

Merging is done at a concept variable level rather than sub
concept level. Each variable‟s semantic similarity with all the
variables in sub concept cluster, which is considered for
merging, is taken in to consideration in deciding whether to
merge the concept variable to the second sub concept cluster.

B. Implementation

A version of the proposed common sense knowledge base
generation mechanism was implemented in JAVA for the
purpose testing, evaluation and validation of accuracy and
efficiency.

The core association mining algorithm was based on the
implementation of FP-Growth in the WEKA data mining
library, while implementations for the following functionality
was developed internally [18].

i. Automatic generation of input (Attirbute Relation

Files) from a given text corpus.[19]

ii. Incremental Updating Support for the Common

Sense Knowledge Base

iii. Subjective Semantic Quality based Filtering of

generated rules.

VI. RESULTS AND PERFORMANCE

A. Standadization of Relation-FrameNet rule base

Performance testing of the proposed Relex2frame
Asynchronous Concurrent architecture was carried out on an
Intel Core i5 2410M 2.3GHz computer with maximum JVM of
4GB with a batch of 5 sentences.

Table III shows the results obtained for different sentence
and knowledge base buffer sizes. The sentence buffer indicates
the level concurrency between processing of sentences, while
KB buffer indicates memory allocated in terms of Knowledge
bases in run time. It is clearly visible that the system performs
well, under higher number of sentences being processed
simultaneously with higher KB buffer.

Throughput of the system decreases as the number of
concurrently processing sentences increases due to high
competition for acquiring knowledge bases. It was found that
optimum combination of sentence and KB buffers as 3 and 10,
where it almost provides 1 sentence completely processed in
one second. But compared to existing Relex2Frame system,
this is still inefficient where it processes a sentence within
500ms.

TABLE III. PERFORMANCE FOR DIFFERENT SENTENCE AND KNOWLEDGEBASE

BUFFER SIZES

Sentence

Buffer
KB Buffer Latency (s)

Approximate-

Throughput(/sec)

2 2 4.6 0.43

2 3 3.4 0.59

2 5 3.4 0.59

2 10 3.4 0.59

3 5 5 0.6

3 10 3.1 0.97

4 15 4.4 0.91

Performance obtained from different rule clustering
algorithms in Relex2Frame architecture, was tested based on
the number of knowledge base claims for a given sentence.
Higher the knowledgebase claims, lesser performance is
expected as Relex2Frame system will have to process higher
number of rules for same results. Table IV shows that
clustering of rules such that, it minimizes the distribution of
relation headers, gives the best performance by a significant
margin. All the other algorithms require over 40 knowledge
bases for execution, while by minimizing the distribution of
relation headers average number of claims is 35.4.

TABLE IV. RULE CLUSTERING ALGORITHM PERFORMANCES

Algo.

No.

Max. KB

claim

per

relation

KB claims
Average

KB

Claim per

sentence

S
a

m
p

le
 1

S
a

m
p

le
 2

S
a

m
p

le
 3

S
a

m
p

le
 4

S
a

m
p

le
 5

1 52 52 52 52 52 38 49.2

2 45 51 44 44 53 42 46.8

3 20 49 50 48 50 41 47.6

4 35 50 44 44 51 40 45.8

5 18 45 32 32 43 25 35.4

6 45 51 49 48 51 22 44.2

7 36 49 47 44 50 28 43.6

B. Concept Word List Expansion

1) Ontological database based expansion of word lists
The first part of concept variable expansion was based on

the 276 concepts and the 4716 current members of the said
concepts. After this iteration there were a total of 5089 concept
variables under the said concepts. Thus it can be concluded that
373 new concept variables (words) has been added to the
concept variable store in this iteration. For example the concept
$Travel which only had the words; commute, journey, tour,
travel, voyage was expanded by adding the words; sail,
navigate by this iteration

2) Statistical learning based on corpus for expansion of

word lists
In the duration of implementation of this project only a

portion of the minimized Wikipedia corpus was used to create
the concept statistic. Shown below in Table V is a collection of
concept predictions we were able to extract after running on
few files of the said corpus.

TABLE V. CONCEPT PREDICTIONS

Concept
Suggested

word

Calculated value of

belongingness

$atLocation

to 8.0

of 7.0

from 18.0

$relTime

of 33.0

on 8.0

from 5.0

during 32.0

between 5.0

around 3.0

$Intentionally_act walk 1.0

Higher the calculated value of belongingness, the algorithm

deems the possibility of the word belonging to the said concept
to be higher. From the predictions shown in Table V, it is
obvious to a human that the words to, of, from are accurately
predicted to fall in to $atLocation and words on, from, during,
between, around are accurately predicted to fall in to $relTime.

C. Common Sense Knowledge Base Generator

The initial execution results of the second iteration in
Common Sense Knowledge Base generation indicate a
promising increase in specificity and quality, and in our belief
justifies the approach used for automatic generation of
common sense rules.

 The example rule shown below is extracted from results
output of around 1000 rules (containing only one premise
argument and one consequent argument each) for 300,000
sentences at a minimum support requirement of 0.01. While
these rules indicate a clear increase in semantic value, the
confidence figure itself can‟t be considered truly reliable due to
the comparatively small size of the corpus used.

^1_Bringing: Theme ($bringing-carry, var0) ==>

 ^1_Removing: Theme ($removing- evacuate, $var0) <(0.51)>

This rule indicates that when an item to be brought to a
destination sometimes it has first been evacuated from a
source.

Consider the statement “The fireman carried the
unconscious victim out of the burning building”. A system
using the above rule would recognize the possibility that the
fireman is evacuating the victim.

VII. FUTURE WORK

As discussed earlier, the general propose rule engine
Drools, performs suboptimal on low order hardware. This is
due to the overheads the Drools have introduced in making the
rule engine general. Since in this project the incorporation of
Drools has been done in a loosely coupled way, a different rule
engine can be easily integrated in to the system. A rule engine
that is optimized to fire rule sets of thousands is recommended
for this application since there are more than 5000 mapping
rules.

Currently the statistical prediction is done per sentence.
This can be enhanced to be done on a document basis, run
basis or as a continued process where it is prompted only after
a certain occurrence threshold is exceeded. If the
aforementioned threshold method is implemented, it would be
possible to fully automate the concept variable addition
process. If the hardware permits, a concurrent architecture can
also be incorporated in to the structure.

The following can be the logical next steps in improving
the common sense knowledge base generation mechanism.

i. The quality measures that are used to filter the rules
can be improved. This will result in an increase of
quality of the selected rules themselves.

ii. The rule building base can be expanded to paragraph
based or document based scope from the current per-
sentence scope. This will result in richer rules which
represent more complex common sense rules that
were described in the length of paragraphs or
documents.

VIII. CONCLUSION

The experiment on standardizing the existing rule base of
RelEx2Frame provides us with clear conclusion that use of
standard rule engine such as Drools is not the optimum
approach. A standard rule engine using the Rete‟s algorithm
with over 5000 rules in the rule base results in significant
degradation of performance thus making it non-viable solution.

From the experiments done on the concept variable store of
the OpenCog AGI Framework, it was observed that the above
discussed methodologies were successful in adding more than
500 new concept variables to the 295 concepts. It is understood
that this expansion would empower the AI agents that use
OpenCog to respond to new concepts, that it was not equipped
to respond before. Since statistical learning is a continued
process, this variable addition can be carried out further by
processing more corpuses. With this success in the experiment,
it is safe to conclude that the two fold methodology discussed
in this paper is suitable for the expansion process of ontology
based wordlists.

The proposed approach for automatically generating
common sense knowledge through a corpus based data mining
shows significant promise as evidenced by early results. A
more mature version of the generating mechanism based
improved subjective quality measures can be used on a
significantly larger text corpus than the one used in testing, to
generate a common sense knowledge base, that would prove

useful in applications such as intelligent chat agents, text
critiquing applications and other similar intelligent agents.

ACKNOWLEDGMENT

Firs we would like to thank, Department of Computer
Science and Engineering of University of Moratuwa, for giving
us this opportunity by providing the final year project course
module. We are grateful to Dr. Ben Goertzel who gave us his
fully support and we are honored to have him as our external
supervisor. It is our pleasure to thank Dr. Shehan Perera, our
internal supervisor. Without his guidance this would not have
been possible. We would also like to thank Dr. Shantha
Fernando for coordinating the course and the department staff
for the support extended. We would like to extend our gratitude
to all the developers of OpenCog framework especially Dr.
Joel Pitt, Linas Vepstas and Jared Wigmore, for their enormous
support. Our special thanks go to Mrs.Vishaka Nanayakkara,
former head of the Department and Dr. Chandana Gamage,
head of the Department for encouraging and guiding us
throughout the research. Finally, an honorable mention goes to
our families and friends who were always behind us and
encouraged us to do our best.

REFERENCES

[1] “Narual Language Processing,”[Online].Available:

http://research.microsoft.com/en-us/groups/nlp/.[Accessed:21-Nov-011]

[2] “The Open Cognition Project – OpenCog Wiki,” [Online]. Available:
http://wiki.opencog.org/w/The_Open_Cognition_Project. [Accessed: 23-

Sep -2010].

[3] “RelEx Dependency Relationship Extractor – OpenCog Wiki,” [Online].
Available : http://wiki.opencog.org/w/RelEx. [Accessed: 23- Sep -2010].

[4] “RelEx2Frame – OpenCog Wiki,” [Online]. Available:
http://wiki.opencog.org/w/RelEx2Frame. [Accessed: 23- Sep -2010].

[5] Henry Lieberman, “ Usable Artificial Intelligence Needs Common Sense

Knowledge Workshop on Usable Artificial Intelligence”, in ACM
Conference on Computers and Human Interaction (CHI-08), Florence,

Italy, April 2008

[6] “Commonsense knowledge base - Wikipedia,” [Online]. Available:
http://en.wikipedia.org/wiki/Commonsense_knowledge_base.

[Accessed: 13- Feb -2011].

[7] “Princeton University. WordNet – A Lexical Database for English”
[Online]. Available: http://wordnet.princeton.edu/. [Accessed: 24- Feb -

2010].

[8] H. T. Ng and H. B. Lee, “Integrating Multiple Knowledge Sources to
Disambiguate Word Sense: An Exemplar-Based Approach”, in Proc.

34th Annu. Meeting on Association for Computational Linguistics, 1996,
pp. 40 – 47.

[9] C. Niu, W. Li, R. K. Srihari, and H. Li, “Word Independent Context Pair

Classification Model for Word Sense Disambiguation“, in Proc. 9th
Conf. on Computational Natural Language Learning, 2005.

[10] C. Yu, L. B. Smith and S. Brandfon, “Statistical Word Learning Based
on Cross-Situational Observation”, in Proc. 5th Int. Conf. Development

and Learning, 2006.

[11] “OpenCyc.org.” [Online]. Available: http://opencyc.org/. [Accessed: 05-
Apr -2011].

[12] “Read the Web:: Carnegie Mellon University.” [Online]. Available:

http://rtw.ml.cmu.edu/rtw/. [Accessed: 23- Mar -2011].

[13] The JBoss Drools Team. “Drools Expert Documentation,” [Online].
Available:

http://wiki.opencog.org/w/RelEx
http://en.wikipedia.org/wiki/Commonsense_knowledge_base
http://wordnet.princeton.edu/
http://opencyc.org/
http://rtw.ml.cmu.edu/rtw/

http://downloads.jboss.com/drools/docs/5.1.1.34858.FINAL/drools-

expert/html/index.html [Accessed: 15-Nov-2010]

[14] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate

generation,” ACM SIGMOD Record, vol. 29, no. 2, p. 1–12, 2000.

[15] H. Xiong, P. Tan and V. Kumar, “Mining Strong Affinity Association
Patterns in Data Sets with Skewed Support Distribution,” in Proc. 3rd

IEEE Int. Conf. Data Mining, 2003, pp. 1-4.

[16] T. P. Hong, C. W. Lin, and Y. L. Wu, “Incrementally fast updated
frequent pattern trees,” Expert Systems with Applications, vol. 34, no. 4,

p. 2424–2435, 2008.

[17] J. J. Jiang and D. W. Conrath, “Semantic similarity based on corpus

statistics and lexical taxonomy,” Arxiv preprint cmp-lg/9709008, 1997.

[18] “Weka 3 - Data Mining with Open Source Machine Learning Software

in Java.” [Online]. Available: http://www.cs.waikato.ac.nz/ml/weka/.
[Accessed: 26-Aug-2011].

[19] “Attribute-Relation File Format (ARFF).” [Online]. Available:

http://www.cs.waikato.ac.nz/ml/weka/arff.html. [Accessed: 26-Aug-
2011].

http://downloads.jboss.com/drools/docs/5.1.1.34858.FINAL/drools-expert/html/index.html
http://downloads.jboss.com/drools/docs/5.1.1.34858.FINAL/drools-expert/html/index.html
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/arff.html

