

Miyaesi: Java Based Implementation for Automatic

Music Transcription

H. Abeykoon, T. Kaushalya, N. Akram, A. Dissanayaka, S. Weerawarana, C. De Silva
Department of Computer Science & Engineering,

University of Moratuwa,
Moratuwa, Sri Lanka.

Abstract—Music Notes play a major role in the music world.

They are extremely important for musicians and composers.

Sometimes people like to know music notes of an already

composed music which raises the need of music transcription. In

the past decade up to now researches and engineers have come

up with vivid techniques to do music transcription automatically

using probability and signal processing. With the advent of

computer science which facilitated encoding and recording music

in digital format it became an important topic. Nevertheless,

implementation specific details are still rare to find addressing

Automatic Music Transcription (AMT). In this paper we discuss

concepts behind automatic music transcription and how they are

applied in the system Miyaesi, an automatic music transcription

system implemented using Java programming language. Further,

we discuss how time domain signal analysis and spectrum
analysis leads to automatic instrument identification.

Keywords-automatic music transcription, MIDI files, WAV

Format, Windowing, Onset Detection

I. INTRODUCTION
In our research the primary target is providing a new

algorithmic approach for mining out the musical notes of a

monophonic music track which is in the .WAV file format
leveraging the Java sound interface. Sub optimal goals of the

implementation were generating a comprehensive music sheet

with the decoded notes, converting music information into a

MIDI file and allowing the user to edit the score and playback.

The instruments being analyzed in the proposed system are

limited to piano, violin, guitar and flute in the implementation,

but the concepts can be extended.

Music transcription refers to extraction of musical notes and

other related information from a given music piece. This is a

difficult and challenging task done by skillful human

musicians. Automatic Music Transcription is an algorithmic

approach to simulate that cognitive process using signal

processing techniques. The transcription task can be identified

as the convertion of an acoustic signal into a MIDI like

symbolic representation. In broad, music transcription is two

folded as monophonic music transcription and polyphonic

music transcription. Monophonic transcription refers to

transcription of music data where only one instrument is being

played at any given instance of time whereas in polyphonic it
can be more than one.

Automatic music transcription had been researched for more

than ten years. In many ways the problem is identified to be

analogous to automatic speech recognition but has not

received a sufficient academic or commercial value over time.

Amazingly, speech recognition of a single person is not a

completely solved problem. The main challenge in such a

system is modeling human sound analysis using digital signal

processing techniques and complex anthologies. Human brain

is very good at estimations in real time. Unlike speech, music

is always made out of discreet music segments which are
triggered simultaneously. Sounds from various instruments are

combined in various permutations and combinations which

adds a dynamic complexity for music. Prediction of individual

pieces and recognizing them individually is extremely hard

even with existing complicated mathematics and statistics.

Inherited noises existing in sound samples aggravate the

situation. As an alternative solution, several websites that

deliver the notes when searched from the title of a famous

song are available. But that needs an online connection and the

chance of not finding your song in their database is more

probable.

Structured Audio Coding can be identified as an application of

Automatic Music. It mainly focuses in arranging acoustic

information into a compact format like MIDI. WAV file

format is specified under RIFF (Resource Interchange File

Format) specification to store sound data as digitized samples,

whereas MIDI is a symbolic representation of music notes and

events triggering at different times. Hence, converting a WAV

file to MIDI falls into the problem of Automatic Music
Transcription at the end.

A system which does the automatic music transcription should

have several basic components which can be visible in any

automatic music transcription system proposed in earlier

researches as well. The difference is mainly the analysis

methods, algorithms and interpretations. For example,

frequency analysis is done applying a FFT (Fast Fourier

Transformation), autocorrelation and zero crossing [1], [2].
Amplitude analysis with time is critical in an Automatic Music

Transcription System. Many algorithms exist for smoothing

waves, detecting onsets, detecting peaks etc. Most instrument

classification algorithms have rule based music model built,

and the matter of converting logics to probability is handled in

various ways.

Implementation of such a system heavily depends on the APIs,

Programming languages and libraries being used. Java is a

very famous high level programming language from Oracle

used by almost all in research, scientific and industrial

programming tasks. It has rich APIs and libraries available

which cooperate to build rich applications. Considering the
above mentioned facts Miyaesi system was built using Java.

Unlike traditional systems, our system differs from analysis

perspectives and architectural perspectives. Several open

source libraries were used along with the Sound Programming

Interface provided with Java for the implementation. System

specific details providing necessary mathematical information

are discussed in brief in this paper.

This paper is organized as follows. In the second section
which is immediately after introduction, General challenges in

Automatic Music Transcription are addressed. Music file

representation formats are introduced in the third section.

Brief overview of related work on Automatic Music

Transcription is provided in the fourth section. Fifth section

describes Architecture of an enabling framework for AMT,

while implementation approach is discussed in sixth and

future research directions are explained in seventh.

II. CHALLENGES IN AUTOMATIC MUSIC

TRANSCRIPTION
The challenge in music transcription is mainly the complexity

of the problem. Even for a human musician to do an accurate

transcription needs trainings of years. There is not a

deterministic way how the music is composed, as thousands of

combinations exist. Not only the note being played, but also

the time duration each note is heard is different from each

other. In polyphonic music when several instruments are

played together extracting information that how many

instrument are played in that instance, what are individual

frequency information and amplitude information related to

each instrument is extremely complex, and still an unsolved

question.

Frequency estimation is usually done applying a FFT function

over segmented data. A common problem arising there is

harmonic sounds in the spectral structure. More over practical

harmonics are not exactly an integral multiple of fundamental

frequency. Finding the base frequency analyzing through the

spectrum is one of the problems arising.

Inspection of a whole wave form of a music piece cannot be

done with digitized data. We have to segment it down to

individual parts for the sake of analysis. Then sizes of a

segment, spectral leakages with rectangular windowing and

correlations appearing between adjacent segments tend to

cause problems.

To track time information of each note, boundaries of notes

should be identified. This is usually done using amplitude

variation of the acoustic wave form. But due to sudden

variations, amplitude depending on the recording, noise added

to the original signal creates a collection of problems which is

sufficient enough to deceive a system implemented with

simple rules and statistics.

Instrument classification is another research area combined

with Automatic Music Transcription. Most of the techniques

focus on music genre classification based on the features of

extracted signals. Objective features like instrumentation,

timbral texture, and rhythmic patterns are used for

classification. Challenge in this process is identifying correct

features that separate out similar instrumental sound together

and different instrumental sounds to different groups. Features

also differ depending on the technology used in the instrument

– a violin can be a one with strings, metal wires or electric.

The way of separating out time domain signal when several

instruments are played together is extremely difficult.

Over time many researchers have tried to find answers to

above problems, being partially successful.

III. MUSIC FILE FORMATS

Music can be stored in various file formats, some depending

on the platforms and some not. In this section WAV, MIDI

file formats are discussed in case they are related to Automatic
Music Transcription (AMT).

WAV format w is a part of Microsoft’s RIFF (Resource

Interchange File Format) specification for the storage of

multimedia files. A WAVE file is a type of RIFF file with a

“WAVE” chunk specifying the data format and a Data chunk

containing actual sound information. The default byte ordering

of a WAVE file is little endian. If it is other way round that

WAVE files are in RIFX format not in RIFF format. RIFF
provides a way of storing all types of multimedia with

different extensions. For example .RMI is for MIDI

information while .RMN is for multimedia movie. In WAVE

sound format data is not compressed, leaving out all signal

information to be there making the file size relatively larger

than a .mp3 file having same recording. Linear quantization

of data is achieved using PCM (pulse code modulation). Data

is stored with abstractions like frames and samples to be easy

in the manipulation.

MIDI (Musical Instrument Digital Interface) defines a

communication protocol between general computers and

electronic music instruments. Earlier sequencers were built

using hardware, but with high level languages like Java

software based sequencers are available. In computers MIDI

data can be streamed or sequenced. Standard MIDI files define

a part of complete MIDI specification to address the timing

issues that arise with MIDI wire Protocol. A standard MIDI

file is a digital file containing only a set of MIDI events and

time values to trigger them [13], [14]. Additionally,
instrumental control information which is needed for playback

is also included there. The standardization helps one software

to create a MIDI file and different software or different type of

computer can edit it and playback. All data values are stored

in big-endian format with variable length. MIDI files are

organized into data chunks (similar to RIFF files). Each chunk

is prefixed with an 8 byte header: 4 byte ID string used to

identify the type of chunk followed by a 4 byte size which

defines the chunk's length as number of bytes following this

chunk's header. Header chunk contains chunk ID and size,

format type, number of tracks and time division information.

MIDI events contain MIDI Channel events, Note_on events,
Note_off events, Note_After Touch events, Controller events,

program change events and more.

Music Transcription system – Miyaesi uses WAV file format

as the input. Formats like .mp3 is not suitable there because

they use compression techniques to store data and also remove

some original data preserving vital information. When all data

is not present in a directly decodable format the error rate of

the estimations during the analysis becomes high.

As WAV files represent digital encoding of acoustic sound

and MIDI files represent a symbolic format in the high level

converting a .WAV file to a .MIDI file is an application of

Structured Audio Coding which comes under AMT. A true

conversion between the two formats is unavailable as the

problem of AMT is not solved yet.

Java sound programming interface is the API defined in Java

to manipulate all types of sounds. It supplies mechanisms for

manipulating system resources such as audio mixers, MIDI

synthesizers, file readers and writers. There are other Java

interfaces like JMF which is a higher level API for capturing

and playing back time-based media as well.

Javax.sound.sampled package has many methods and

attributes defined to process sound data as objects.

IV. RELATED WORK

Different approaches to do music transcription exist.

Following are some common researched areas which are

related to AMT.

1. Frequency detection of input music or sound in

general

2. Onset detection of notes

3. Instrument classification and identification

4. Temporal detection

5. Voice removal methods from a general song and

retain musical part

6. Polyphonic music decoding to identify separate
instruments

A. Frequency detection

Frequency detection is vital to identify the notes of a music

peace because the notes are based on frequency. Signal

processing has a close relationship with this area. Following

are some of approaches which can be used to detect frequency

in automatic music transcription.

1) Autocorrelation method
Autocorrelation is one of the approaches which work in the

time domain which usually requires a number of periods of

data from reliable estimate, and thus some averaging of the

frequency signal is unavoidable. The method often exhibit

difficulty in detecting the period of a periodic signal which is

missing the fundamental harmonic in the harmonic series. [1]

2) Zero crossing method
Zero crossing is a method based on counting the number of

times the amplitude crossed the zero amplitude level and scale

the result into sampling frequency. Although this is a simple
approach for pitch detection this does not work well with

complex waveforms which are composed of multiple sine

waves with differing periods. [2]

3) Fourier Analysis
Fourier analysis also has a few variations – Fast Fourier

Transformation (FFT), Discrete Fourier Transformation, and

Short Time Fourier Transformation (STFT).

In our project we have taken the approach of Fourier

transformation in a specialized way for pitch detection. It is

closer to STFT which is good for music transcription because it

can give time information based on a moving window.

B. Onset Detection

Onset detection means detecting the beginning of the notes,

using the amplitude level which is present. An onset detection

function is a function whose peaks are intended to coincide

with the times of note onsets. According to literature there are
two main methods to detect onsets. First one is using

amplitude or the power and the second one is using phase

differences.

1. If an audio signal is observed in the time-frequency plane,

the onset of a new sound has noticeable energy increase in

the frequency bands in which the sound is not masked by

other simultaneous components. Thus an increase in

energy (or amplitude) within some frequency band(s) is a

simple indicator of an onset.

2. When the phase of the signal is considered in various

frequency bands, it is unlikely that the frequency

components of the new sound are in phase with previous
sounds, so irregularities in the phase of various frequency

components can also indicate the presence of an onset. [3]

In our research we were more biased to the first solution in

case it was in line with the STFT we have used.

C. Instrument classification and identification

Instrument classification can be mainly divided into three

parts as

1. Identifying features that are different from one
instrument to another.

2. Converting identified properties to numbers in order

to feed them to a “Neural Network”.

3. Checking if the results are acceptably accurate.

Figure1: General model for instrument classification

Time domain signal contains too much irrelevant data to use

directly for classification. So feature extraction is inevitable
and the results of classification will be purely based on the

selection of correct features. Features can be further divided as

temporal features and spectral features.

Spectral Features: Ceptral coefficients, Frequency and

magnitude wrapping, Spectral centroid, Bandwidth, Spectral

irregularities in harmonics (standard deviation of harmonic

amplitudes from spectral envelope).

Temporal Features: Rising speed (average slope in the

attacking phase), degree of Sustaining(length of the sustaining

phase), Degree of vibration(sum of amplitudes of prominent

ripples in the sustaining phase), releasing speed(average slope

in the releasing phase)[4].
There are other important aspects when extracting features.

Prior to analysis it is a must to normalize the amplitude values

to a common range because the amplitude the instruments are

heard can be changed from situation to situation. It is evident

that one can select many features, but we have to select

features, reduce dimensions, make them independent and go

into the analysis. When classifying the instruments using

feature vector, number of features we select, affect the

accuracy of the classification. By using a sufficient number of

features we can decrease the error rate and improve the

classification results.

D. Temporal detection

In modern music tempo means “Beats per Minute”. This

feature has a relation with onset detection. A note can be one

of three types - Crochet, Minim and Semibreve. A note

duration is always an integer multiple of a beat. Thus in a
music piece note duration is not same from note to note. But

as a general rule beats per a minute is same for the whole

music piece [5].After normalizing amplitude values and

smoothing out the wave it is easy to detect the beats.

E. Voice removal methods

A WAV file has sound frames organized alternatively which

are decoded and sent to left speaker and the right speaker.

Voice removal methods take the advantage of this feature. In

stereo, voice is placed centered but the instruments are not.

Thus when the left channel and the right channels are

separated out voice channel is presented in both channels –

more or less with same intensity. So when the polarity of one

channel is inverted and adds to the other voice gets cancelled

out. But if the intensities are not exactly same in voice (it

depends on the quality of the recording) some voice parts are
retained in the resultant channel. This method is called

“Center Pan Voice Removal” [6]. The advance voice removals

are based on filters. Range pass filtering is generally used in

such voice removing methods. Although advance techniques

are used in various methods it is unable to remove voice with

100% accuracy.

F. Polyphonic music decoding to identify separate

instruments

Separating simultaneously playing instruments from a

polyphonic music is really complex. Many people have

researched under this area and have come up with several high

level probabilistic models.

Independent Subspace Analysis (ISA) method: This is
similar to independent component analysis (ICA), but relaxes

the constraint on the number of observed mixture signals. It

can separate individual sources from a single–channel mixture

by using sound spectra. The problem here is although this

method is based on single independence in music signals there

exist dependencies in both time and frequency domains. [7]

Convolutive Sparse Coding (CSC): This method eliminates

the disadvantages in ISA method. Here the mixed signal is

considered as a vector – a vector comprised of linear mixing

of many source vectors. Weights are given to the sources by

analysis. Both source vectors and the weights are assumed to
be unknown. The sources are obtained by multiplying the

observation matrix by an estimate of the un-mixing matrix.

The main assumption in sparse coding techniques is that the

sources are non-active most of the time, which means that the

mixing matrix has to be sparse. The estimation can be done

using a cost function that minimizes the reconstruction error

and maximizes the sparseness of the mixing matrix. In this

paper they have taken a 30-dimensional objective feature

vector. They have used WEKA tool for classification [8].

Black Board System: In order to transcribe polyphonic music
correctly it is needed to identify which frequency components

are due to which notes. Each played note will typically

generate frequency components at multiples of its fundamental

frequency which are called harmonics. Moreover, notes which

are harmonic to each other is actually played to make the

music pleasing to human ear. Thus detecting such polyphonic

notes are not easy at all. The blackboard system proper is a

knowledge-based inference engine that can incorporate

information from a variety of sources to produce hypotheses

about (in our case) the notes present in the audio signal. The

blackboard is a hypothesis database upon which initial input

observations are first written. There is also a set of expert

agents, or knowledge sources (KSs) which are able to make

inferences about some of the hypotheses that may appear on

the blackboard. Each KS is an expert at doing some small part.

When all the KSs get together and update the data on the

blackboard at the end of the day a good result remains on the
black board.

Genetic Algorithms for music transcription: This is a

completely new approach to transcribe music. The underlying

concept is as the polyphonic music creates a complex

frequency lattice which is hard to decode. The new approach

tries to reconstruct it using small pieces without trying to

deconstruct it. Genetic algorithms are one of many tools used

to explore large search spaces. The idea is to simulate the

evolutionary process that species undergo in nature. Genetic

algorithm simulates survival of the fittest, with the fittest

individual at the end of our simulation being our solution in
the search space. A collection of individuals are created in the

Gene Pool. The less-fit individuals die away and the more-fit

individuals live and go on to reproduce. Their reproduction

creates slightly altered versions of themselves, using some sort

of mutation of their genetic material. [9]

Figure 2: program flow of genetic algorithm. Extracted from [9]

Other than above mentioned methods, there are other methods

such as Non-negative sparse coding, Non-negative matrix

factorization (NMF)[10].

According to the researches we found that almost every
technique mentioned above is very complex and

implementation is time consuming.

V. MIYAESI SYSTEM ARCHITECTURE

Miyaesi automatic music transcription system is comprised of

following components in the system implementation.

1. Load music file to the system

2. Preprocess the data for analysis

3. Estimate frequencies of segmented data

4. Onset Detection
5. Identify the instrument being played

6. Combine instrument information and frequency

information to create a synthetic music (MIDI)

7. Generate a notation sheet

8. Facilitate editing notes and playback

Figure 3: Activity Diagram of Miyaesi

Above mentioned components should interact with each other

to do the transcription. There is a systematic flaw of data

through the system. Most areas along the processing are

sequential, because the output of one stage should be the input

to the next stage. In order to gain the performance, owing to
the above pattern of data flow the most suitable architecture is

the “Pipeline Architecture”. In the Miyaesi system this

architecture is used to organize the above mentioned

components to a logical order. The advantages of using

pipelining are that any component on the way can be

implemented separately as a class or package, independent

updating is possible without affecting other tasks. To do

experiments with a model that kind of environment is

essential.

VI. MIYAESI SYSTEM IMPLEMENTATION

A. Loading Music information

The input format of the music information to the Miyaesi

system is .WAV. To read a WAVE file Miyaesi uses Java

Sound API, which facilitates reading a WAVE file to a pure
byte array.

Samples are snapshots of an analog signal. During discreet

time instances the values of the amplitude are captured

successively and they are organized as a series.

Figure 4: Sampling of an analog wave

After reading audio data as bytes following meta information

can be extracted from the headers of the WAVE file.

 AudioFormat – If it is linear quantization (Pulse

Code Modulation) this value is refered to 1. Values

other than one means some compression is there.

 BitsPerSample – this value can be 8 or 16

representing the number of bits per sample.

 SampleRate – for most WAVE files this is 44100Hz.

 ByteRate

(SampleRate*NumChannels*BitsPerSample) /8

 Number of channels – 1 means mono sound and 2

means stereo.

 Endian format – big or little endian

First an AudioInputStream is created. Then read the data in

WAVE file is read as an audioInputStream to the application.

AudioFormat can be extracted from the AudioInputStream.

Some of the above details can be directly obtained from the

AudioFormat and AudioInputStream, but some have to be

calculated. For example

𝑺𝒂𝒎𝒑𝒍𝒆 𝑺𝒐𝒖𝒏𝒅 𝑳𝒆𝒏𝒈𝒕𝒉 =
𝑭𝒓𝒂𝒎𝒆 𝒍𝒆𝒏𝒈𝒕𝒉

𝑭𝒓𝒂𝒎𝒆 𝒓𝒂𝒕𝒆

(1)

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑬𝒒𝒖𝒊𝒔𝒊𝒅𝒆𝒏𝒕 𝑷𝒐𝒊𝒏𝒕𝒔
= 𝑺𝒂𝒎𝒑𝒍𝒆 𝑺𝒐𝒖𝒏𝒅 𝑳𝒆𝒏𝒈𝒕𝒉
∗ 𝑺𝒂𝒎𝒑𝒍𝒆 𝒓𝒂𝒕𝒆/𝟐

 (2)

The above information is vital for music transcription.

Whatever analysis that has to be done should be performed on

the byte array that resides in the computer memory after the
WAVE file is read.

B. Preprocessing Data for Analysis

Before analyzing the digital data read from the file, they

should get preprocessed due to several reasons – such as noise

existence and format problems. Following is a brief discussion

on a few common issues a sound analysis system faces.

1) Voice and Noise Removal of Stereo Data

Noise can appear in a WAV file due to a sound mixing
problem at the studio or during format conversion. Generally

noise has very high frequencies and random patterns. This

makes identifying of noise part very hard. Professional

systems ask user to input a noise sound profile (it has only the

noise part recorded), and according to that estimates the noise

of the rest of the sound track. With automatic transcription

approach this is not acceptable anyway as it takes away the
automation. General way is to set up a low frequency pass

filter to the original and get rid of some noise (the audible

range of human is from 20Hz to 20 kHz). Estimating the

actual noise threshold is a problem as well.

If we are analyzing only the music information voice included

in a WAVE file should obviously be removed. Then the same

problem with noise arises. But thanks to the way a stereo wave

file is recoded it is possible to remove some of the voice. In

WAVE files frames are organized alternatively into a single

byte stream such that odd samples go to the left channel and

even samples go to the right channel. At the runtime channels

are decoded separately and amplitude signals are provided to
the left and right speakers. Using this organization of the

frames we can separate out the frames representing left

channel and the right channel. Then the polarity of one

channel is inversed and the two channels are merged together

again. If the voice was center-panned, that is voice

components were equal on left and right parts they will cancel

out because of the inversion. Using this method voice can be

removed up to 80%, but not beyond. There are limitations in

that method such as reverberation is preserved and

instrumental information such as bass getting cancelled out as

they are also center-panned. In a way it is good because bass
sounds are not distorting out other important instrumental

information.

2) Big endian-Little endian Conversion

The original bytes from the WAVE file itself do not represent

the amplitude values. In our system we get two adjacent bytes

combined to a short value. That is because generally in

WAVE files one sample is represented by two bytes. If the file

has been stored in little endian it is necessary to collect the

bytes in reverse order before getting the short value. The

sample count of the whole music sample is given by the

following equation.

𝑠𝑎𝑚𝑝𝑙𝑒 𝑐𝑜𝑢𝑛𝑡 =
𝑓𝑟𝑎𝑚𝑒𝐿𝑒𝑛𝑔𝑡 ∗ 𝐹𝑟𝑎𝑚𝑒𝑠𝑖𝑧𝑒 ∗ 8

𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑠𝑎𝑚𝑝𝑙𝑒 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑛𝑛𝑒𝑙𝑠

 (3)

3) Segmentation

Segmentation of original data is another necessary thing that

has to be performed before analysis. Most statistical methods

tend to have loops. Hence time complexity will be high if the

operations are applied on the whole data set. Further to apply

FFT (Fast Fourier Transformation) segmentation of data with

respect to some timing window must be done, because
frequency information will tell only power of each frequency

component. To assign the results to a particular time the data

belong to that timing window only should be analyzed. FFT

functions usually require data points entered to be a power of

two. In Miyaesi system a segment contains 16384 (214) bytes

from the original byte array. (Hence converted to amplitude

values it would be 8192).

4) Sampling frequency

In the preprocessing step we did not change the sampling rate

because it destroys the matching between segments and

respective time values. The sampling rate is usually 44100Hz,

because according to Nyqiust-Shannon sampling theorem

sampling frequency should at least be double as the highest

original frequency (22 kHz).

5) Apply Windowing

An FFT applied on a data set produces spectral values riding
on a curve, not a single point at a single frequency. Performing
an FFT on values acquired during a finite sampling interval
spreads out and distorts the results. If a rectangular window
was used side lobes arise as a result of abrupt increase and
decrease. Thus shaping the rectangular window reduces the
spectral leakage. This is achieved by multiplying each endian
converted value in a segment by the corresponding windowing
value. Such standard windowing functions are Hanning
window, Hamming window and Blackman-Harris window.
The differences between these windowing functions depend on
the degree of side-lobe roll-off. [11]

Figure 5: window shaping - Hanning Window

𝑤𝑛𝐻𝑎𝑛𝑛𝑖𝑛𝑔 = 0.5 − 0.5 cos 2𝜋𝑛/𝑁 (4)

𝑤𝑛𝐻𝑎𝑚𝑚𝑖𝑛𝑔 = 0.54 – 0.46𝑐𝑜𝑠(2𝜋𝑛/𝑁) (5)

𝑤𝑛𝐵𝑙𝑎𝑐𝑘𝑚𝑎𝑛 = 𝑎0 – 𝑎1𝑐𝑜𝑠(2𝜋𝑛/𝑁)
+ 𝑎2𝑐𝑜𝑠(4𝜋𝑛/𝑁) – 𝑎3𝑐𝑜𝑠(6𝜋𝑛/𝑁)

(6)
Where a 0 = 0.355768, a1 = 0.487396,a2 = 0.144232, and a3 =
0.012604.

Miyaesi was programmed to allow the user to apply a
windowing depending on the quality of the results he/she
observes.

Figure 6: Options for windowing in Miyaesi

C. Frequency Estimation from Segmented Data

We used a STFT (Short Time Fourier Transformation) to

convert time domain data to frequency domain. The original

byte array was segmented to sub-arrays containing 16384

bytes (windowing size, which mapped into 0.09287 seconds)

and endian conversion was done as described in previous

section. There sub-arrays were the inputs to the STFT function
we have implemented. Implementing a STFT is rather

mathematical and standardized, so that for the implementation

purpose it is very easy to find a standard algorithm written in

Java.

The result from STFT is actually a two dimensional mapping

or a spectrum between frequency bins and their respective

power. The frequency represented by a bin (array position) is

calculated using the following scale factor.

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑠𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟

=
𝑏𝑖𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∗ (𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒)/2

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑏𝑖𝑛𝑠

(7)
The frequency f0 related to the maximum power is chosen to

represent the frequency of the wave of that whole segment

analyzed. In other words, frequency of the wave at time

segment tt is f0. As described, frequencies related to all

segments are found. From preprocessing state time values

related to segments were calculated and they were input to

frequency estimating component.

The raw frequencies obtained from the above process do not

always represent frequencies related to standard musical notes.

Thus an approximation is needed. The simplest way to

perform it is to compare the subtraction between the actual
frequency and the adjacent standard note frequencies and

make the approximation to the smaller gap.

Table 1: Mapping between a few notes and frequencies

NOTE FREQUENCY (Hz)

C3 130.81

C#
3/Db

3 138.59

E4 329.63

F4 349.23

There are also other methods existing in the literature like

auto-correlation and zero crossing [2],[11].

D. Onset Detection

An onset means beginning of a musical note. To create a note,

duration of that note and the time value to trigger that note is

essential. That task is performed by this component in the

system. Input to the component is the whole array of endian

converted values, and the output is a list of time values

indicating where the onsets are observed.
Onset detection is an area which has been studied well. Various
methods are proposed [3]. Two methods that were not very
successful in the system implementation are discussed first.
Prior to analyze amplitude values for onsets smoothing out the
wave from is essential because amplitude variation of any
music piece is very complex with spikes and sudden variations
which hide the actual global patterns we want. We used
following method to average out the wave form using
following equation.

𝐴𝑠𝑒𝑔𝑚𝑒𝑛𝑡 =
 𝑎𝑘

𝑛
𝑘=0

𝑛 (8)

Where n is the number of discrete amplitude values present in a
segment and a is the amplitude value. The season is during
estimation of note edges it is not intended to go beyond the
resolution of one segment.

1) Onset Detection Using a Moving Window

First method was based on a moving window. A window is

maintained adding new values to the head and at the same
time removing old values from the tail. Number of values in

the window is kept as a constant. Another window with the

same concept is kept in the front of the previous window’s

head as well. The mean values of two windows are compared

at each new value. If the subtraction is significant consider it

as an onset. The problem here is when the new value is passed

from front window to the back window still the values are

beyond the threshold when averages are compared.

2) Onset Detection Based on Increment Values

The second method was based on the increments between

amplitude values. To be a candidate point on which an onset

stands that point needs to be a local minimum. A simple check

would be verifying whether adjacent values are greater than

the one considered. If the increments at left and right of a

candidate point are beyond some threshold it can be

considered as an onset.

𝑎′
1 =

𝑎𝑡+1− 𝑎𝑡

 𝑡+1 −𝑡
 (9)

𝑎𝑛𝑑

 𝑎′2 =
𝑎𝑡− 𝑎𝑡−1

 𝑡 −(𝑡−1)
 (10)

3) Miyaesi Onset Detection Technique

But in Miyaesiwe used a simple and straightforward way based
on the normalization of data, mathematical concepts like
confidence interval (CI), and acceptance and rejection of
hypothesis. Next the first order differentiation of the averaged
function was taken with respect to time. As it is done in a
discrete manner it was simple enough to apply the following
function.

∆𝑓𝑘 =
𝑎𝑘+1 − 𝑎𝑘

𝑡𝑘+1 − 𝑡𝑘 (11)

Then each value was converted to the normalized value
(considering mean and the standard deviation). This approach
simplifies the information of music data to a standard normal
function.

 𝑧𝑘 =
∆𝑓𝑘 − ∆𝑓𝑘

𝜎∆𝑓𝑘
 (12)

Data points having high modulus of the normal value (z value)

can be considered as the points where amplitude of smoothed

curve rising or falling relatively rapidly. Another thing to note

is that as the time gaps between adjacent segments are equal,

differentiated values are high where there is a high amplitude

gap. Points with high amplitude variations relatively can be

considered as onsets or beginning of true notes. This method

gave best results out of the three methods discussed.

Figure 7: Smoothed wave, differentiation and onsets

Figure 8: Onset detection and editing facilities available in Miyaesi

E. Identify the instrument being played

In order to perform a proper music transcription identifying

notes is not enough. Musical instrument with which the note

has to be played has a much illusion to hear the proper music.

Even many available commercial applications which claim to

do the transcription do not care about the instrument; they just

allow the user to select a suitable one. In the system Miyaesi,
we tried to classify features and identify the instrument with

which the note between the particular onsets is played. As

there is not a direct relationship with frequency and the

instrument, we had to go for features based on temporal

envelope of the wave shape and the spectrum relevant to that

note. Six features were used to build the feature vector to train

a neural network using supervised learning [4], [12].

1. Average gradient of rising phase

2. Average gradient of falling phase

3. Ratio between time of sustaining phase and the whole
note duration period.

4. Ratios between areas under the waveform

5. Sum of moments of amplitudes about mid-point

6. Spectrum spikes count (in literature and by

experiments we could find a connection between

number of spikes in the spectrum and the music

instrument)

Figure 9: Power Spectrum for a note for a music sample

In Java “Encog” is a built library to facilitate neural network

based trainings and classifications.

F. Generation of MIDI files

Following is a brief discussion on how MIDI data is organized

and manipulated in Java.

1) MIDI Sequence

All information of a Standard MIDI file is referred to a

sequence. A sequence contains one or more tracks. Sequences

can be read from MIDI files or can be programmed from
scratch. Also, a sequence can be directly written as a MIDI file

to the system [14].

2) MIDI Tracks

Midi tracks contain the notes that are played by a single

instrument. Software sequencer or a hardware sequencer can

read the sequence and trigger the notes contained in each track

at the correct time. Note On command starts a note, and Note

Off command ends that note. A track can contain other events

that do not correspond to notes but meta events. Track is a

collection of MidiEvents [14].

3) MIDI Events

Midi event is a set of note information (Short Message) along

with the time value to trigger the information. A short message

contains note value (based on frequency), MIDI command

(Note On, Note Off etc.), channel number to insert the event,

and the velocity the note should be played. Except for short

messages there can be SystemMessages and MetaMessages.

In Miyaesi, we input the approximated frequencies found at

one of earlier stage, and the instrument information obtained

from the previous stage into MIDI file generator component
and got the MIDI file as the output, arranging the MIDI event

appropriately. In memory MIDI file is represented by the

sequence [14].

G. Generation of Music Sheet

In Miyaesi we used Java library called ABC4J to compose the

music sheet from the notes being decoded. The input was a

string representing the notes (according to its API) and as the

output it generates a notation sheet which can be saved as an

image or can be printed [15].

H. Facilitate editing notes and playback

This is necessary for an automatic music transcription system

because transcription is not 100% accurate. The user of the

system should be able to observe and correct any mismatch.

This can be easily done by coming up with a GUI to allow

editing and reorganizing the MIDI messages and events.

Figure 10: Miyaesi notation sheet

Playing a MIDI can be done directly using Java by playing out

the sequence. If WAVE file is to be played it should be done

by clips and buffers.

Figure 11: playing MIDI with notes displaying in Miyaesis

VII. RESULTS AND FUTURE RESEARCH

DIRECTIONS

We performed two tests on the system. First one was to

analyze WAV files having a tune with C D E F notes played
sequentially with same time duration. Second one was to

analyze WAV samples having one semibreve, 2 minims and

four crochets from each instrument.

According to the results we obtained music instruments like

piano, guitar and flute can be identified using above

mentioned algorithms. Violin has too much amplitude

variations caused by vibration of the instrument, making the

onset detection to have false positives. This fact also makes

same note values to appear several times rather than one.

Another common fact that makes simple frequency decoding

with a STFFT incorrect is that the harmonics present in
instrument sound. It makes notes in higher or below octaves.

Apart from the above short comings system works great

delivering a notes sheet and a midi file generated out of a

WAV file given.

The algorithm Miyaesi uses to find onset is composed of

generic mathematics but its adaptation for AMT is novel.

Combination of results from frequency decoding algorithm

and onset detection algorithm has a large impact for the
results. This shows that without going to complex analysis

methods like Convolutive Space coding AMT can be achieved

with acceptable accuracy.

Following figure gives a detailed analysis on correctness of

instrument classification which is carried out with the system

after it has been trained for 25 different synthetic music tracks

from different instruments for different songs with different

key signatures.

Figure 12: Correctness of instrument classification

This research paves way to many future research directions. A

promising algorithm to filter out the base frequency out of a

harmonic mixture will increase the accuracy of detecting

correct notes. Smoothing of raw wave form to a low detailed

form preserving important detail is needed in order to

automate the music transcription. Further than that instrument

classification can be enhanced using simple “rules” in music

and paying attention to music patterns with a high granularity.

Also during note detection incident details, pattern

information is useful.

CONCLUSION

By nature the amplitude variation and the frequency variation

of a music file has complex variations. Frequency variation

can be fairly approximated by FFTs. For automatic music

transcription analysis of amplitude variation can be done by

applying Gaussian normalization to raw data. Accurate time
matching is also required during above two analysis steps.

Miyaesi Onset Detection Algorithm is a simple but robust

algorithm to identify note boundaries compared to existing

algorithms. For instrument classification Neural Network

approach with statistical information withdrawn out of music

recording gives good results if the design and the training of

network are done with care. If the noise is presented with

music data, above analysis framework would not work in the

expected way. Further, for polyphonic music decoding much

more complex analysis methods must be used because it needs

to identify correlation between data related to the context.

REFERENCES

[1] Patricio de la Cuadra, Aaron Master_ and Craig Sapp,“Efficient Pitch
Detection Techniques for Interactive Music”, publications of Center for

Computer Research in Music and Acoustics, Stanford University

[2] “Pitch detection algorithm” [Online] Available:

http://en.wikipedia.org/wiki/Pitch_detection_algorithm [Accessed:
March 21, 2011]

[3] Simon Dixon, “Onset detection revisited”, In Proceedings of the

9thInternational Conference on Digital Audio Effects (DAFx-06),
Montreal, Canada, 2006.

[4] Tong Zhang , “Instrument Classification in Polyphonic Music Based on

Timbre Analysis” , Proceedings of Hewlett-Packard Laboratories

[5] “Tempo, Wikipedia” [Online] Available:
http://en.wikipedia.org/wiki/Tempo [Accessed: February 12, 2011]

[6] “The Truth About Vocal Eliminators” [Online] Available:

http://www.ethanwiner.com/novocals.html [Accessed: February 23,
2011]

[7] M. Casey and A. Westner, "Separation of Mixed Audio Sources by

Independent SubspaceAnalysis", in Proceedings of the International
Computer Music Conference, ICMA, Berlin,August, 2000.

[8] P.S. Lampropoulou, A.S. Lampropoulos and G.A. Tsihrintzis, “Musical
Genre Classification of Audio Data Using Source Seperation

Techniques”, Department of Informatics, University of Piraeus.

[9] David Lu!!, “Automatic Music Transcription Using Genetic Algorithms

and Electronic Synthesis ”, April 25, 2006.

[10] Nancy Bertin, Roland Badeau, Ga¨el Richard, “Blind Signal

Decomposition for Automatic Transcription of Polyphonic Music: NMF
and K-SVD on the Benchmark”, Signaland Image Processing

Department, GET-Telecom Paris.

[11] Richod Lions,“Windowing functions improve FFT results” [Online]
Available: http://www.tmworld.com/article/322450-

Windowing_Functions_Improve_FFT_Results_Part_I.php. [Accessed:
May 2, 2011]

[12] Wenxin Jiang, Alicja Wieczorkowska, and Zbigniew W. Ras, “Music

Instrument Estimation in Polyphonic Sound Based on Short-Term
Spectrum Match”, publication in University of North Carolina,

Department of Computer Science, Charlotte,2007.

[13] “Java Sound API”[Online] Available: http://java.sun.com/products/java-
media/sound/reference/api/index.html [Accessed: May 3, 2011]

[14] “Understanding and Using Java MIDI Audio” [Online] Available:

http://www.ibm.com/developerworks/library/it/it-0801art38/ [Accessed:
February 10, 2011]

[15] “ABC4J” [Online] Available: http://code.google.com/p/abc4j/

[Accessed: February

