OPTIMIZATION OF BUS DISPATCHING FROM ANY GIVEN TERMINAL

This thesis was submitted to the department of Civil Engineering of the University of Moratuwa in partial fulfillment of the requirement for the Degree of Master of Science.

Supervised by Professor Amal S. Kumarage

Department of Civil Engineering University of Moratuwa Sri Lanka

January 2005

DECLARTION

The work included in this thesis is part or whole, has not been submitted for any other academic qualification at any institution.

University of Moratuwa, Sri Lanka. J.D.A.I. Piyadasa www.lib.mrt.ac.lk

Prof. Amal S. Kumarage

(Supervisor)

Abstract

The problems of scheduling and schedule co-ordination have conflicting objectives related to user's cost, operator's cost, overloading and crew deployment hours. Passengers would like to have bus service where there is less waiting time. Operators on the other hand would like to have profit with lesser vehicle operating cost and a minimum number of buses. When the service of buses is considered, passengers would like to have less crowding in buses but operators would like to have higher load factors to increase revenues. The crew would like to have less working hours and there are legal requirements in crew working hours. The minimum economic cost is the main consideration in bus dispatching when considering as a country.

When there is a mechanism to find out an average headway for a route for a day considering above four factors and economic cost to the country while satisfying all parties involved, then regulators can apply that mechanism to decide average headways on a route.

University of Moratuwa, Sri Lanka.

Electronic Theses & Dissertations

As a mechanism of finding average headway for a route for a day, an improved dispatching process was introduced in this study to find out the average headway considering the financial costs, economic costs, overloading and crew deployment hours involved in bus dispatching.

Acknowledgement

First and foremost, I thank **Prof Amal S. Kumarage** for giving me the opportunity to come to the Transportation Engineering Division, University of Moratuwa and making my three years a challenging, memorable and exciting time. He was always there for me when ever I needed his guidance and advice in my studies and making decisions in my life.

Many thanks to **Mr. Ashoka Gunasekara** for his invaluable guidance, advice and the countless discussions.

I am very grateful for the **National Transport Commission**, Sri Lanka for funding this project and the **Western Province Transport Authority** to giving me opportunity to implement bus schedules prepared by this project in their routes.

I would like to thank Miss Pradeepa Jayaratna and Miss Rasika Samankumari for their help to complete this thesis.

Electronic Theses & Dissertation

www.lib.mrt.ac.lk

I thank my parents and sister for their unending encouragement and being the best teachers I have had. They have been there for me throughout the years, guided me and supported me with all the different(and sometimes strange) paths I had chosen.

Finally, I wish to thank **Avanthi** for her continual and unwavering support, understanding and love. It would have been very hard to reach this milestone with out her - thank you.

Table of Contents

Abstract	3
Acknowledgement	1
Table Of Contents	2
List Of Figures	3
List Of Tables	4
Annexes	5
List Symbols, Notations, Abbreviation & Acronyms	6
1 Introduction	8
1.1 Current Bus Dispatching Process In Sri Lanka	
1.2 Bus Dispatching Policy	
1.4 Outline Of The Thesis	10
2. Literature Review University of Moratuwa, Sri Lanka.	11
3. Methodology Of Study	14
3.1 Proposed Bus Dispatching Process	14
3.2 Bus Dispatching Criteria	16
3.3 Bus Dispatching On Economic Criterion Only	16
3.4 Bus Dispatching On Financial Criterion Only	21
3.5 Will This Lead To Better Scheduling?	
3.6 Dispatching Buses Based On Crew Deployment Hours	23
3.7 Dispatching Buses Based On Load Factor	25
3.8 Dispatching Buses Considering All Four Dimensions Of Dispatching	
4.0 Case Study And Discussion	
5.0 Conclusion	
Annex 1 Parameters For The Route 158 Piliyandala - Moratuwa	
Annex 2 Results Of Calculations For The Route 158	
References	39

List of Figures

Figure 1 Proposed Bus Dispatching Process	14
Figure 2 Total Economic Cost For Passengers For A Route For A Day	18
Figure 3 Economic Cost To Operator For A Route For A Day	19
Figure 4 Economic Dispatch Of Buses	20
Figure 5 Dispatching Of Buses Based On Finacial Revenue To The Operator	22
Figure 6 Dispatching Of Buses Considering Crew Deployment Hours	24
Figure 7 Dispatching Of Buses Considering Load Factor	26
Figure 8 Map Of Route 158 Piliyandala - Moratuwa	28
Figure 9 Variation Of Economic Cost, Financial Cost And Revenue Of The Rou	te 158
	31
Figure 10 Variation Of Overload Factor Of The Route 158	31
Figure 11 Variation Of Crew Deployment Hours Of The Route 158	32

List of Tables

Table 1 Headway Design Constrains	. 27
Table 2 Details Of Route 158 Piliyandala – Moratuwa	. 28
Table 3 Headway Design Constraints For Route 158	. 32
Table 4 Performance Comparison Before And After Introducing New System For T	The
Route 158	. 33
Table 5 Design Parameters For The Route 158 Piliyandala – Moratuwa	. 37
Table 6 Calculation Results For The Route 158	. 38

Annexes

Annex 1 Parameters For The Route 158 Piliyandala –	
Moratuwa	
Annex 2 Results Of Calculation For The Route 158	

List Symbols, Notations, Abbreviation & Acronyms

ECP(W)	- Waiting Cost of Passengers per Month
h	– Headway(min.)
h _a	– Average Headway
ho	- Headway(min.), which Passengers Starts to Travel Standing
\mathbf{V}_{wt}	– Value of Waiting Time(Rs./hr)
D _{tw}	– Two Way Demand per Day
EDDpM	– Equivalent Demand Days per Month
ECP _{Total}	 Total Economic Cost of Passengers per Month
\mathbf{V}_{st}	– Value of Standing Time(Rs./hr)
ECO(F)	- Fixed Economic Cost of Operation per Month
N_{br}	– Number of Buses in Route
C _{fo}	– Fixed Operating Cost per Month
ECO(V)	- Variable Economic Cost of Operation per Month
RT _{km}	-Round Trip km per Day Oratuwa, Sri Lanka
Cv	- Variable Cost per km
RT _b	– per Bus Round Trips per Month
Co	– Overtime Cost per Hour per Bus
OND _m	– Optimum Number of Days per Bus per Month
ADO _m	 Average Days Operated per Month
MSNO _b	– Marginal Saving of Non Operation of a Bus per Day
ECO _{Total}	 – Total Economic Cost of Operation per Month
$f_{ m tec}$	- Function of Total Economic Cost to the Country
fecp	- Function of Total Economic Cost to the Passenger
feco	- Function of Total Economic Cost to the Operator
h _e	 Most Economic Headway as a Country
EC _{total}	- Total Economic Cost to the Country per Month
FRO	– Financial Revenue to Operator per Month
$\mathbf{F_r}$	– Resulting Fare
$\mathbf{E}_{\mathbf{d}}$	– Elasticity of Demand
CDH _{Total}	- Total Crew Deployment Hours per Day
ART _t	 Average Round Trip Time(in minutes)

T_d	– Length of Traffic Day
S _a	- Average Seat Capacity per Bus
$\mathbf{h_{f}}$	– Most Financial Headway for Operators
pBRTpM	– per Bus Round Trips per Month
h _{cd1}	- Headway of Lower Boundary of Crew Deployment Hours
h _{cd2}	- Headway of Upper Boundary of Crew Deployment Hours
SPpDAOF	- Supply Passengers per Day with Allowed Overload Factor
AOF	– Allowed Overload Factor
OF	– Overload Factor
h _{ol}	- Headway with Maximum Overload
h _{design}	– Designed Headway

