
deBas – A Sinhala Interactive Voice Response

System

J.D. Nallathamby, K.K.R. Kariyawasam, H.D. Pullaperuma, D.C. Vithana, S. Jayasena

Department of Computer Science & Engineering,

 University of Moratuwa

Moratuwa, Sri Lanka.

Abstract— Although there are widely used Interactive Voice

Response (IVR) systems in many languages today, there is no

Sinhala language IVR system yet. This paper talks about an

approach taken in developing a complete Sinhala IVR system.

It talks about the research carried out in this area, the process

taken, the overall design and implementation aspects and the

future work that can be carried out in this area. deBas IVR is a

complete Sinhala IVR with automatic speech recognition

(ASR) and text-to-speech (TTS) synthesis modules that work in

compliance with Media Resource Control Protocol (MRCP). In

the ASR component, training the acoustic model is done with

SphinxTrain, and decoding with PocketSphinx, which are

based on Hidden Markov Models (HMM). In the TTS

component, AMoRA Sinhala TTS knowledge base is used,

which uses Festival speech synthesis engine and a female

diphonic voice, built using Festvox voice building tools.

Asterisk is used as the IVR gateway and dial-plan interpreter.

MRCPv2 protocol has been followed in developing the speech

resources, which uses Session Initiation Protocol (SIP) for

establishing controlled connections to external media

streaming devices and Real-time Transport Protocol (RTP) for

media delivery. The language model of the ASR component has

been restricted to digits from 0-9 that are commonly used in

IVR systems and the set of words used for our demo

application. The word-error-rate and the sentence-error-rate

of the ASR component are reported to be 31.4% and 54%

respectively, as observed in our experiments. In addition to

these, we also introduce a new intonation model that can be
applied to any existing Sinhala diphonic voices.

Keywords-Sinhala; Interactive Voice Response; Automatic

Speech Recognition; Text-To-Speech;Media Resource Control

Protocol; Hidden Markov Model; Word-Error-Rate; Sentence-

Error-Rate

I. INTRODUCTION

A. Background

Interactive Voice Response (IVR) is a technology that
allows a device or a system (e.g., a computer) to interact with
humans using voice. Dual Tone Multi Frequency (DTMF)
keypad inputs may be used in addition to or instead of
human voice input. For instance, an IVR system can allow
customers to interact with a company’s database, and service
their inquiries on its own. IVR systems can respond with
prerecorded or dynamically generated audio to further direct
users on how to proceed.

There are many benefits of IVR from a user (customer or
citizen) or an organization’s perspective, mainly in saving
time and money. For example organizations can save money
that would otherwise be spent on employing people. IVR
applications are found in places like banks where customers
call in for credit card inquiries, account balance information
queries, reporting frauds and complaints. The air-line
industry uses it for ticket reservations, and real-time flight
status inquiries. IVR systems can route calls and filter out the
important calls that need vital information from trained
specialists. The rest of the calls, that need not have special
attention, can be solved by the IVR system itself. This
benefits not only the organization, but also the customer with
a faster service for simpler queries. An IVR system's
effectiveness is rated by the percentage of callers who ask to
speak to a human operator. The lower the percentage, the
more successful the system is.

B. IVR in Sinhala Language

Although there are widely used IVR systems in many
languages today, there is no Sinhala language IVR system as
yet. Our objective is to build a Sinhala IVR system to satisfy
this timely need. In addition to this general need, the
Information & Communication Technology Agency (ICTA)
of Sri Lanka has a specific requirement for a Sinhala IVR
system in the Lanka Gate country portal[1,2] of the Lanka
Government Network to provide voice access for citizen
services. In this paper we describe the development of our
Sinhala IVR system.

C. Related Work

An IVR platform is the server and operating system
hardware and the software platforms on which the IVR
solutions run. Typically an IVR platform will consist of the
following components at minimum. Firstly, there is the call
server, which serves as a telephony gateway. It typically may
contain hardware such as telephony-gateway-cards, network
cards and sound cards. Secondly, there will be a dialogue
flow interpreter. Voice XML is W3C's standard XML format
for specifying interactive voice dialogues. Thirdly, there are
the speech engines.

Asterisk [3] is a well-known open-source IVR platform.
Automatic speech recognition (ASR) and text-to-speech
(TTS) are important technologies in an IVR system. An ASR
unit is used for recognizing user input and a TTS unit is used
for producing voice output.

There has been a lot of work in ASR over the years in
other languages, but not much work can be found for Sinhala
ASR. The Kathana project [3] was a recent attempt to build a
Sinhala ASR system. It could recognize digits from 0 to 9
spoken in Sinhala. It uses the Julius ASR engine [4].

On the other hand, TTS systems in many languages have
been around for some time, and examples of Sinhala TTS
include the Festival-si [5] and AMoRA [6], both of which
are based on the Festival speech synthesis engine [7]. The
AMoRA TTS system however is more advanced than the
Festival-si TTS system, since it incorporates a phrase
breaking model that improves the naturalness of the voice.
However both voices lack variation in pitch and pace which
contributes towards reducing the naturalness of the voice.

We have considered using Kathana and AMoRA as
potential ASR and TTS engines in our IVR system, and also
to look into improving these approaches.

In integrating the speech engines to an IVR platform,
there are two popular methods: Media Resource Control
Protocol (MRCP) [8] and Application Programming
Interface (API). MRCP is a protocol that allows
interoperability between multiple media resources. It allows
diverse elements such as speech engines, text to speech
engines, signal generators, signal detectors, fax resources,
platforms, and PBX systems to communicate. The resource
that is providing the service is known as the MRCP Server
and the resource that is requesting the service is known as
the MRCP Client [9].

There are two versions of MRCP: version 1 and version
2. Version 1 uses the Real-Time Streaming Protocol (RTSP)
and version 2 uses the Session Initiated Protocol (SIP) to
help establish control connections to external media
streaming devices. In addition, MRCP uses media delivery
mechanisms like Real Time Protocol (RTP) [9].

An API is a vendor and application specific method of
communication with a resource. The creator of the resource
would publish a set of methods which the service requesting
application could use to directly invoke the service [9].

II. METHODOLOGY

A. Introduction

As stated above, either the MRCP approach or the API
approach can be used to integrate speech engines to an IVR
system.

When choosing between the two approaches, there are
few tradeoffs to consider. A major benefit of MRCP would
be one consistent interface for all speech components. If we
happen to change the speech server or client the other
components need not to be changed, improving portability.
Also MRCP uses a standard method of communicating
across networks. Therefore the IVR system can be
distributed on different physical hardware.

On the other hand, the API approach has its advantages
as well. Firstly, we could have more functionality than when
following the MRCP approach, in which we are restricting
ourselves only to the functionality agreed upon; any

additional functionality provided by a specific speech vendor
for example, cannot be used. Secondly, adding and removing
functionality will also be easy and quick. Thirdly, generally
standards do not tend to care much about backward
compatibility; for example, MRCPv1 and MRCPv2 are
completely different protocols, not compatible with each
other. With an API, we could ensure not to break things
when vendors change or upgrade. Fourthly, with MRCP, it
can take a considerable amount of work and time to get one
up and running from scratch [8].

B. Our Approach and the Components

The above factors were considered and we selected the
MRCP method as our approach. In deciding which method
of integration was best for us, the MRCP method or API
method, we had to factor out all the pros and cons of the two
methods and went with MRCP. The overall architecture of
our system is shown in figure 1.

One main requirement here was ‘flexibility’ which we
would have if we follow a protocol. We need to be able to
switch from one speech system provider/vendor to another,
with the least switching time. In addition, we found that
building an MRCP-compliant speech server wasn’t that hard
as we were able to find an open source cross platform project
called UniMRCP [10]. It provides many things required for
the implementation and deployment of both an MRCP client
and an MRCP server as well as the architecture to plug in
any speech server of our choice, by implementing a set of
methods (See figure 2).

Our project involves number of components that are
distributed and communicate with each other (Fig. 1). Early
in the project, having identified these components, we
searched for existing solutions that implement these
components, fully or partly, and evaluated them for
suitability and identified those that need further
development. Some had multiple versions of products, while
some were reputed as the best. Table 1 shows the final list of
components we decided to have for our IVR system and the
products we chose to use as the basis for the components.

Figure 1: MRCP-based Overall System Architecture of
IVR System

Figure 2: UniMRCP Plug-in Architecture

Table 1: Main Components in our IVR System

We chose Pocketsphinx [11] as our ASR engine because

there is a plug-in for UniMRCP, with an implemented basic
set of MRCP requests, responses and events. Our initial tests
with the engine were very promising and Section 3 shows
the word error rates (WER) in our tests. Also Pocketsphinx,
like UniMRCP, is written in C language, which makes it
much smaller, faster and portable compared to other large
ASR engines.

The choice of the TTS engine was straight forward since
the AMoRA project had already used the Festival speech
synthesis engine. Here we had to implement a new plug-in
for Festival to connect with UniMRCP.

For our IVR platform, Asterisk was a straightforward
choice as there was already a UniMRCP client by the name
of ‘Asterisk connector bridge’ [12]. Also the extensive
features in Asterisk made it an obvious choice. Finally, as we
needed an open source SIP phone for our testing
environment, we selected Ekiga [13]. Our development and
deployment were carried out completely in a Linux
environment, and it ensured compatibility among all the
components.

C. Connecting the Components

The first step of our implementation was to connect the
available components. The Asterisk connector bridge
provides two methods, MRCPRecog() for recognition and
MRCPSynth() for synthesis. Both methods take as
arguments a mandatory field and some optional fields. The
mandatory field for MRCPRecog() would be the ASR
grammar in Java Speech Grammar Format (JSGF) [14]. The
mandatory field for the MRCPSynth() function would be the
text to be converted to speech. The optional parameters
specify the header content of the MRCP message [9]. These
functions can be directly invoked from the dial-plan of
Asterisk. In order for the communication to work we have to
make sure the IP/ports for receiving and transmitting data are
correctly configured for each protocol. Between the Asterisk
client and the UniMRCP server, we need to configure ports
for SIP (since we decided to use MRCPv2) and RTP. We

also needed to specify, the ASR grammar format, and TTS
text format in the UniMRCP configuration.

In order to connect a call from Ekiga to Asterisk we
needed to create a SIP account in Ekiga and explicitly give
permission to the particular node to connect with Asterisk. In
addition, to be able to run Ekiga and Asterisk on the same
local machine, we changed the listening SIP port of Ekiga to
another port, because by default Ekiga and Asterisk will be
listening on the same port, 5060 [15].

Next we wrote dial plans in Asterisk using
MRCPRecog() and MRCPSynth() in addition to the standard
set of dial plan applications provided by Asterisk[16].
Another task we accomplished was parsing the recognition
result from data carried in the MRCP message body of the
RECOGNITION-COMPLETE event in Natural Language
Semantics Markup Language (NLSML) format [9]. Asterisk
does not provide a default method to parse the result.
Therefore using the Asterisk Gateway Interface (AGI) we
invoke a PERL script upon receiving the result and parse the
NLSML format and get the recognized grammar from it
[17].

Another improvement we did on the UniMRCP server
was to implement the speech-complete-timeout (SCT)
specified in the MRCP protocol, but not implemented in the
present version of UniMRCP [9]. What this means is that
UniMRCP no longer stops recognition as soon as it detects
voice inactivity, but continues recognition until the SCT
completes, thus we are now able to detect multiple words.
This parameter can be specified in the MRCPRecog()
method; if not, default value will be used.

D. Sinhala Automatic Speech Recognition (ASR)

According to the literature on ASR there are 3 models
that are necessary to do speech recognition; an acoustic
model (AM), a language model (LM) and a phonetic
dictionary (Dic). The AM will be created by taking audio
recordings of speech and their transcriptions, and 'compiling'
them into statistical representations of the sounds that make
up each word ('training'). The LM will contain the
probabilities of sequence of words. The LM is necessary for
compiling the AM. The Dic contains a mapping from words
to phones. The representation of the words and their
corresponding phones are important data for accurate
decoding. During the decoding stage the LM may be
replaced by a grammar. A grammar is a much smaller file
containing sets of predefined combinations of words.
Grammars are most useful in IVR type applications. The
training for our model was done using SphinxTrain; a tool
provided by CMUSphinx for training AMs. SphinxTrain
creates a statistical model for the data prepared based on
Hidden Markov Models (HMM). The LM is generated by a
web based tool known as LMTool; again provided by
CMUSphinx for building uncomplicated small LMs. In
addition, the LMTool also generates a Dic, which we may
use or replace with our own Dic.

An important step during the training process is the
creation of audio files. Audacity [18] helps to see the
waveform we record and thus can clearly identify the

Component Software Product

ASR engine Pocketsphinx

TTS engine Festival (AMoRA)

IVR platform Asterisk

presence of background noise and its amplitude relative to
our voice.

In training the AM we needed to do multiple rounds of
training to get the best results. It is critical to test the quality
of the trained database in order to select best parameters and
understand how the IVR application performs and optimizes
performance. To do that, a test decoding step is needed. This
step is also provided by CMUSphinx. The test gives us a
word error rate (WER) and a sentence error rate (SER).

𝑊𝐸𝑅 = (𝑆 + 0.5𝐷 + 0.5𝐼)/𝑁
Where,

S is the number of substitutions,

D is the number of the deletions,

I is the number of the insertions,

N is the number of words in the reference.

Our first model to train PocketSphinx was trained with

400 voice prompts which are taken from 4 different persons
100 each. For the LM we used the word representation and
phoneme representation used by Kathana. We carried out
tests by reducing the number of training prompts (100X3,
100X2, 100X1). We were expecting the WER for models
with lesser trainers to be high but apparently it was vice-
versa.

Then we started changing the LM and repeated the tests.
This time for the same word representation of Kathana we
used the phonemes produced by LMTool. Next we tried a
word representation which we got from referring to the Sri
Lanka Standards (SLS) [18]. The problem with the phoneme
representations generated by the LMTool is that they are
based on the English pronunciations of the Sinhala words. So
therefore we used the SLS word representation and derived a
phone set for the Sinhala words in our dictionary using the
39 standard phonemes defined by CMUSphinx in the CMU
Pronouncing Dictionary [19]. Each step gave us declining
WER values.

Finally we generated an AM trained with 1400 (4
persons, 350 each) prompts. We tested the models with 50
test prompts taken from one of the 4 persons who trained the
model. The test results we got for each change we did are
tabulated in section 3.

E. Sinhala Text-To-Speech (TTS) Synthesis

To add Sinhala TTS functionality to our IVR, we needed
to plug in Festival engine to UniMRCP. We used the BSD
socket interface provided by Festival, where the Festival
engine works as the server, and we wrote the client program
to access it. Basically the server offers a new command
interpreter for each client that attaches to it.

Festival phrase break CART (Classification And
Regression Tree) uses categorized word bases to predict
phrase breaks in a given input text [20]. For the Sinhala
language, AMoRA has used function words, punctuation
marks, adjectives, pre verbs, and participles etc. as part-of-
speech (POS) tags for allocating phrase breaks. We have

expanded the POS tags; thereby increasing the span of the
phrase breaking process.

The common problem in any TTS system is its
artificialness of the synthesized voice; however the
techniques of phrasing model, intonation model and duration
model can help to bring it closer to the natural voice.

We have introduced a new intonation model. Intonation
is generally of two types, accent positioning and F0
generation [21]. Here we have developed the model from F0
generation.

We have considered 400 Sinhala sentences in developing
the intonation model. The steps for creating an intonation
model are as follows:

 Designing of database

 Synthesizing prompts (for labeling)

 Recording of prompts

 Phonetically labeling of prompts

 Extract pitch marks and F0 contour

 Build utterance structures

 Extract features for prediction & build feature
description files

 Build regression model to predict F0 at start, middle and
end of syllable

 Construct scheme file with F0 model that can be
incorporated to AMoRA system

III. RESULTS AND DISCUSSION

Table 2: Recognition Accuracy Rates of Pocketsphinx

Model (word representation -

phonetic representation)

SER WER

4 person 100X4 (Kathana) 92.0% 77.4%

3 person 100X3 (Kathana) 80.0% 58.4%

2 person 100X2 (Kathana) 80.0% 56.2%

1 person different user (Kathana) 90.0% 94.9%

1 person same user (Kathana) 74.0% 45.3%

4 person(100x4) (Kathana -

LMTool)

90.0% 67.9%

4 person (100x4) (SLS -

LMTool)

86.0% 56.9%

4 person 350X4(SLS-LMTool) 66.0% 31.4%

3 person 350X3(SLS-LMTool) 68.0% 35.8%

2 person 350x2 (SLS-LMTool) 60% 32.1%

1 person different user (SLS-

LMTool)

94.0% 92.0%

1 person same user (SLS-

LMTool)

74.0% 56.2%

4 person 350X4 (SLS-CMU Dic) 54.0% 31.4%

From the above results we conclude that the best WER is
obtained for the acoustic model trained by members in our
group with a set of 350 prompts each.

The TTS part of the project is an improvement of the
existing project; the best evaluation method would be
comparing the improved system with existing system.
Therefore we have used Mean Opinion Score (MOS) method
to evaluate naturalness of the generated new voice compared
to the existing voice.

MOS is a subjective test. MOS test has been used in
telephony networks to identify human user views regarding
the network [22]. MOS test provides a numerical indication
about the system. This test uses five integers (1-5), where 1
is represent lowest quality and 5 is represent best quality.
The grading criteria given to listeners are shown in table 3.
This test was carried out for existing TTS systems
(AMORA-TTS and UCSC-TTS) and the improved TTS
system. The new improved TTS consists of 2 intonation
models that we created by selecting a subset each of 250
sentences from the set of 400 sentences. Model A consists of
sentences with question marks and full stops, whereas model
B consists of only sentences with question marks.

The UCSC voice lacks a phrasing model, so to make a
fair comparison we incorporated the phrasing model of
project AMoRA to UCSC voice as well.

Table 3: Mean Opinion Score Test (MOS)

MOS Quality

5 Excellent

4 Good

3 Fair

2 Poor

1 Bad

Following criteria was followed in collecting the test
data.

 50 listeners were selected. All listeners were native
speakers of Sinhala.

 Each listener was unaware as to which system they are
listening.

 Each listener listen to 10 sentences and they were asked
to select the MOS value.

 10 sentences were selected on random form 400
sentences.

Based on the test we got the results shown in figure 3.

Figure 3: UniMRCP Plug-in Architecture

According to the MOS test results we found that the male
voice was much better than the female voice with the new
intonation model, specifically with model A.

IV. CONCLUSION AND FUTURE WORKS

At this point of time the objectives of deBas have been
realized and deBas can be used as a practical IVR system in
the Sinhala language and as an area of research in general
IVR. To the best of our knowledge this is the first ever
Sinhala IVR research product to be developed following the
MRCP protocol. It comes completely with a basic set of
functions that can be used to deploy any scale of IVR
applications in Sinhala language. The effective word-error-
rate and sentence-error-rate of the speech recognition module
is observed as 31.4% and 54% respectively.

There are some areas open for research in deBas. Future
research and development can be based on three areas which
are the MRCP protocol, PocketSphinx ASR and Festival
TTS.

Some of the request header parameters of the MRCP
protocol have not yet been implemented in our solution. E.g.
in the RECOGNIZE method header of the ASR module, we
find parameters such as confidence threshold, speech-
incomplete-timeout, speed-vs-accuracy etc. Certainly these
can be implemented, but since they depend on the ASR
engine and the TTS engine, you cannot develop those in
isolation without considering the features of the ASR and the
TTS module. The ASR and TTS module limitations will also
have an effect in this development.

The PocketSphinx ASR is still in its early stages. There is
still active development being carried out, and as and when
features are added, deBas can be improved by incorporating
those features. In addition, work can also be carried out in
areas to improve accuracy levels of the system. Noise
cancellation techniques are widely studied today. These
techniques can be incorporated to the PocketSphinx ASR
module. Another area for research is the development of a
phonetic dictionary for Sinhala.

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Female (UoM) Male (UCSC)

Existing

Model A

Model B

In the TTS module also, there is future work that can be
carried out. Development of accent and boundary tone
module, implementing domain specific F0 and duration
models for multiple domains, enhancement of phrase
breaking algorithm by introducing more phrasing rules and
implementation of intonation and duration models using
other approaches mentioned in the literature survey (e.g.
Intonation models using ToBI etc.) are some of the areas
where significant work can be carried out.

REFERENCES

[1] Sri Lanka Country Portal [Online]. Available: http://www.srilanka.lk
[Accessed: 15-Jun-2011]

[2] Lanka Gate Developer Portal [Online]. Available:
http://developer.icta.lk/ [Accessed: 15-Jun-2011]

[3] Kathana Sinhala Speech Recognition [Online]. Available:

http://kathana.net23.net/index.html [Accessed: 15-Jun-2011]

[4] Open-Source Large Vocabulary CSR Engine Julius [Online].
Available: http://julius.sourceforge.jp/en_index.php [Accessed: 15-

Jun-2011]

[5] Festival-si [Online]. Available:
http://www.ucsc.cmb.ac.lk/ltrl/?page=panl10n_p1&lang=en#tts

[Accessed: 15-Jun-2011]

[6] New Prosodic Phrasing Model for Sinhala Language, W.M.C.
Bandara, W.M.S. Lakmal, T.D. Liyanagama and S.V. Bulathsinghala,

Prof. Gihan Dias, Dr. Sanath Jayasena

[7] The Festival Speech Synthesis System [Online]. Available:
http://www.cstr.ed.ac.uk/projects/festival/ [Accessed: 15-Jun-2011]

[8] API or MRCP Integration: Choosing a Development Path for Speech
Recognition Solutions [Online]. Available:

http://www.lumenvox.com/resources/whitepapers/apiMRCPIntegratio
n.aspx [Accessed: 15-Jun-2011]

[9] A Media Resource Control Protocol (MRCP) Developed by Cisco,

Nuance, and Speechworks [Online]. Available:
http://www.ietf.org/rfc/rfc4463.txt [Accessed: 15-Jun-2011]

[10] UniMRCP: Open Source MRCP Project [Online]. Available:

http://www.unimrcp.org/ [Accessed: 15-Jun-2011]

[11] Pocketsphinx: Automatic Speech Recognition Engine [Online].
Available: http://cmusphinx.sourceforge.net/2010/03/pocketsphinx-0-

6-release/ [Accessed: 15-Jun-2011]

[12] Asterisk connector bridge [Online]. Available:
http://code.google.com/p/unimrcp/wiki/asteriskUniMRCP [Accessed:

15-Jun-2011]

[13] Ekiga softphone [Online]. Available: http://ekiga.org/ [Accessed: 15-
Jun-2011]

[14] Java Speech Grammar Format [Online]. Available:
http://java.sun.com/products/java-media/speech/forDevelopers/JSGF/

[Accessed: 15-Jun-2011]

[15] Ekiga as an Asterisk client [Online]. Available:
http://wiki.ekiga.org/index.php/Ekiga_as_an_Asterisk_client

[Accessed: 15-Jun-2011]

[16] Asterisk Dialplan Applications [Online]. Available:
https://wiki.asterisk.org/wiki/display/AST/Dialplan+Applications

[Accessed: 15-Jun-2011]

[17] [17]AGI Commands [Online]. Available:
https://wiki.asterisk.org/wiki/display/AST/AGI+Commands

[Accessed: 15-Jun-2011]

[18] Sri Lanka Standard Sinhala Character Code for Information
Interchange, SLS 1134 : 2004 [Online]. Available:

http://www.locallanguages.lk/files/Sri_Lanka_Standard_Sinhala_Cha
racter_Code_for_Information_Interchange_SLS_1134_-_2004.pdf

[Accessed: 15-Jun-2011]

[19] CMU Pronouncing Dictionary [Online]. Available:
http://www.speech.cs.cmu.edu/cgi-bin/cmudict#phones [Accessed:

15-Jun-2011]

[20] Building Prosodic Models [Online]. Available:

http://festvox.org/bsv/c1637.html#AEN1639 [Accessed: 15-Jun-
2011]

[21] F0 Generation [Online]. Available: http://festvox.org/bsv/x1803.html
[Accessed: 15-Jun-2011]

[22] Assessing Text-to-Speech System Quality, White Paper by

SpeechWorks Solutions Division, ScanSoft Inc, 2004.

