
SEED Miner - A Scalable Data Mining Framework
J.A.A.D De Silva ,SA. Femandopulle,N.A.B.P. Wickramarathne ,O.P.M.C.A. Ariyarathne,

R.Chulaka Gunasekara and Amal Shehan Perera
Department of Computer Science and Engineering, University of Moraurwa, Sri Lanka.

Distribution mechanisms (Data Distribution and load
Distribution) [4. 5, 6, 7, 8,9] and using secondary storage
as an intermediate memory [10. 2] are two methods
widely used in achieving scalability. Though
manipulation in main memory is the best way to obtain a
significant performance gain, it limits the ability' to scale.
In our framework we utilize main memory for algorithm
execution, while using the hard disk for storing the data
set. The Vertical structure allows us to reduce the amount
of disk accesses, thus improving the performance of the
algorithms.

Since the algorithm optimization is done by the external
developer who designs it, we focused more on providing
an efficient method of representing, storing and
manipulating a huge dataset in the main memory and
provide the data into the algorithm for faster execution. In
achieving this particular objective, our research was
mainly focused on initially finding a data representation
mechanism and in fact more preferably a representation
mechanism where we could apply a compression scheme
to cater for large amount of data in the faster main
memory. In figuring out a suitable internal data
representation, we came across an emerging data
representation technique culled vertical data
representation. According to some of the earlier
research, it has been found out that there are considerable
advantages in vertical data representation over
conventional horizontal layouts for data mining [2, 11].

Abstract— Through this paper we consider how the
representation, access and organization of the data
drastically affect the performance of Data Mining
Techniques. The framework we propose utilizes vertical
data representation which is an emerging data
representation technique, combined with couple of
compression schemes to facilitate efficient data mining,
scaling over large datasets. The key aspect of using a
compression scheme in SEED Miner lies in its vertical data
representation (where a column-based data representation is
considered in contrast to the conventional horizontal row-
based representation) and we also provide the results of
empirical simulations to validate our analysis of WAH
compression applied on top of vertical data would provide
the scalability and efficiency of the applications and
algorithms embedded in SEED Miner.

can

I. Introduction

The proliferation of databases has created a great demand
for new, powerful tools for turning data into useful, task-
oriented knowledge, thus giving birth -to a separate field
called Data Mining. Data Mining can be defined as semi-
automatically finding useful patterns existing in large
databases [2]. Data mining inherently deals with large
databases usually of sizes starting from several gigabytes
to several terabytes. Though there have been many
standard algorithms to analyze data, with the escalating
amounts, maintaining efficiency has become quite a
challenge due to which many research have been carried
out on finding special structures, data representation
models which could preserve the efficiency of data
mining solutions.

Since Data Mining Solutions are applied to a large
variety of data sets, developing general solutions and
scaling up has become another major problem [2, 3].

Most of the existing data mining solutions are at two
extreme ends. Either they are optimized to a particular
data set or application domain with scalability' or
generalized to w'ork with multiple domains but without
scalability and high performance [19].

Mining large datasets efficiently is strictly coupled with
the efficient usage of system resources such as memory
a,td perhaps processing power, which becomes a
considerable challenge for algorithm developers. As a
result, a significant researching effort has put forward on
improving the efficiency of the mining algorithms. We,
through SEED Miner, consider how the representation,
access and organization of data can
performance. We, in our approach make use of vertical
data representation in overcoming the above mentioned
challenges and to provide a general Data Mining
framework.

Initially, in the case of data mining algorithms such as
Association Rule Mining, vertical representation gives us
a considerable advantage in computing the supports and
confidences of itemsets in a simpler and faster way, as it
involves carrying out bitwise operations like AND,OR
and NOT among vertical bit streams[ll). And also in
deducting association rules, it's about finding patterns in
the vertical data bit streams which can also be carried out
quite simply using bit stream intersections. But as in
contrast, in horizontal counterpart, it requires complex
hash-tree data structures and functions to perform the
same task which is more complex and will be
comparatively inefficient as well. (e.g. [1])

Data used for Data mining are inherently redundant.
After converting to the vertical bit sliced format, the
sequences of 0’$ and i’s provide means for compression,
which is the aspect we concentrate when applying
compression schemes to achieve a performance gain.
Later throughout this paper, vertical bit level compression
is discussed with experiments.

Within the scope of our research regarding SEED
Miner, we do not provide the flavor of the parallelism but
we have a very strong belief that parallelism applied on

affect the

87

has been some algorithms designed using an unbalanced
binary tree to traverse through it until a leaf node is found
in order to retrieve a particular data item as well [17].
Although there are research carried out on last searching
of data items using encoded data stream, no method has
been proposed to compute basic operations AND, OR and
NOT , which is frequently using operations in data
mining, without decompressing the data stream.

William A. Maniatty and Mohammed J. Zaki specify
the requirements of a Data mining framework in [3].
Though Data Mining Phase ,only a single step in the total
KDD Process, since 80% of times is spent on data
integration , preprocessing and post-processing steps they
suggest that a Data Mining framework should also
support all the steps in KDD such as preprocessing
(discretizing , subset selection), post processing (rule
grouping, pruning summarization) caching , efficient
retrieval and meta level mining. Under the algorithm
evaluation capability of such a framework, i:hey mention
that reducing the number of database scans should be
another requirement of such a framework.

The work by Perrizo et al. in [19] describes the
structure and composition of a distributed vertical data
mining framework. In their framework Ptree, a block-
wise lossless compressed structure is used for vertical
data representation.

top of SEED Miner will provide more flexibility and
efficiency for the data mining applications and algorithms
embedded in SEED Miner.

The rest of the paper is organized as follows. In Section
two we present related work. Section three describes the
design and implementation, of the framework. And finally
we are showing scalability to through presenting some
data mining results.

II. Related Work

Numerous works have been carried out in coming up
with general purpose data mining techniques. VIPER
[12] is one such effort, which is a scalable Association
Rule Mining algorithm making no assumptions about the
underlying data base.

In VIPER data is stored as compressed bitstreams
called “snakes”, which provides efficiency in snake
generation, intersection, counting and storing [12]. When
a horizontal dataset is provided during the execution of
the algorithm, internally data is converted to the
corresponding vertical data representation called Vertical
Tid List (VTL). Golomb Encoding scheme [13] is used to
increase the redundancy and to gain a better compression
ratio, when storing generated frequent itemsets. During
the mining process these compressed frequent item sets
have to be decompressed over and over.

DiffSet is another vertical mining structure which is an
optimized data representation for Association Rule
mining. It is a representation that only keeps track of the
difference in the transactionlD’s(tids) of a candidate
pattern from its generating frequent patterns. It
significantly cuts down the size of memory required to
store intermediate results. The initial database stored in

III. Design and Implementation

Keeping with the basic requirement of the supporting a
number of different data sources and a number of
different algorithms, the first step was to decouple data
mining phase from data gathering phase. This was done
by introducing a common storage and creating separate
modules for data extraction and data mining. Logically,
the framework consists of three main layers as illustrated
in Fig. 1;

the diffset format, instead of the tidset, can also reduce the
total database size [21].

PTrec is another distributed compressed vertical data
mining ready data structure. Formally, PTrees are treelike
data structures that store relational data in column-wise,
bit-compressed format by splitting each attribute into bits
(i.e. representing each attribute value by its binary
equivalent)[14]. Once the PTree representation is there,
Data querying can be achieved through logical operations
—such as AND, OR and NOT—referred to as the PTree
algebra in the literature. [15][16]

Since we are using a vertical data representation in
framework, and the particular representation provides the
opportunity for compression as one of its advantages,
implemented two compression schemes on lop of the
corresponding vertical data. In
appropriate compression scheme,
numerous encoding schemes like Huffman Coding [17],
Golomb Coding [13], and Byte-aligned Bitmap Code
(BBC) [22]. Fig. 1 The high level architecture of the framework.

Huffman compression schema is another methodology Data Feeding Layer:
that can be used to compress vertical bit slices. The This layer focuses on gathering data from different
importance of this schema is that we can achieve high sources and converting them to the format supported by
compression ratio since the symbols are assigned thf internal storage. Data extraction module implements
according to a probability distribution. But the t*1's layer,
compression scheme is a variable length coding scheme
where it is rather cumbersome to identify and

our

we

our quest for an
we came across

Data Storage:
separate

each encoded bit word when it comes to decoding. There
88

Manages the vertical data structure and provides
to access elements in the dataset. Data Extraction Module
and Compression Module implement this layer.

Algorithm Layer:
Provides basic component algorithms for manipulating

the vertical data source. These component algorithms
be used by for developing actual data mining algorithms
(such as Apriori.) The Algorithm Module implements this
layer. Preprocessing Module is a module built on top of
this layer.

A. Data Ex fraction Module
Data Extraction module is acting as the interface to

external raw datasets and responsible for taking in
whatever the selected amount of data supplied by the
external
conventional SQL database, a text file, a CSV file or
different type of data file where user defined field and line
separators can be specified. New types of data sources can
be attached to the framework by extending this module.

Once the data is extracted into the system, the vertical
data representation of those horizontal raw data will be
carried out by the module. When it comes to integer type
of data, direct bit representation of them will be taken
using the dynamic bitset provided by boost [20] and then
partition the data into vertical representation. In case of
floating point type of data, a particular precision will be
decided internally by inspecting the statistics of the raw
data and then convert the floating point values into integer
type by multiplying it by the precision and then they will
be treated same as the above mentioned procedure and
here an additional metadata entry will be there to keep
track of the precision value. Partitioning categorical data
is being done by assigning integer index value to each
categorical data, while the index is prepared by scanning
through the raw data once and finding out the unique data
items and assigning those unique items to a vector and
then sort it and the corresponding index of the vector will
be considered as the index value assigned to each
categorical data while partitioning. Once an integer set is
obtained where indexes are replaced for categorical data
values, it then will be treated as a conventional integer
type of data and here an additional metadata entry will be
there to keep track of the unique data items. In values
w hich are in the format of Date, we convert the dale value
to an integer in the form of YYYYMMDD and treat it as
an integer ty pe value.

We also in our framework provide the facility to save
whatever the extracted and partitioned data into the
secondary storage as an XML file, and load the data from
that external XML file later, which may be useful at a
later time when the same dataset is to mined for a
different purpose. This facility is provided due to the fact
that the extracting external data from conventional
database or a text or CSV file and then vertically
partitioning them going through each value will be a time
consuming activity and hence in order to save the time
and space, it will be an unnecessary effort to carry out the
same thing tw ice.

means

source. The external source can be a

can

The raw data extracted from external data sources are
stored column wise. The raw data is then analyzed and
encoded to their corresponding vertical representation.
While doing so, we keep track of some important Meta
information depending on the type of data retrieved from
the external data source. According to the structure of our
framework, the highest level entity will keep track of the
data sources available and encoded. Each data source will
keep track of the attribute wise information such as
cardinality of the dataset, occurrence of null values, labels
for categorical attributes. Apart from basic Meta
information it maintains the list attributes and in those
Attributes framework keeps track of the details of the
actual values that are retrieved. The Meta information
stored in an Attribute entity depends on the type of the
data each attribute holds (which will be described further
in later). In the same time, an attribute contains a list of
vertical bitstreams which are the vertical representation of
the horizontal raw data. A bit stream entity' which is the
basic entity will keep track of the actual vertical bit
stream and also some important Meta information like
bitstreamID, bitStreamAIIocationName, etc... The
structure is illustrated in the Fig.2.

0 11 0l
00 001
111 1
l01 0 1
11 0 10
000 0 0

0 0 B. Data Preprocessing Module
Data Preprocessing is done prior and alter the data

mining is carried out, once we have the wrapped data
source which will be created during data extraction or
data loading via the saved data in XML. Data processing
is available as three flavors in our framework; NULL
Elimination, converting continuous data into discrete data
and splitting numerical data into ranges as a categorical
data attributes. There can be different types of other
preprocessing filters available in other frameworks and
applications, which can also be implemented in the same
way in our framework as well.

1 1
0 0
1 1
1 0

1
0

f'8 2. A high level representation of data organization within the
framework

In a design point of view', our framework execution is
categorized into four predominant components.

89

Though originally this contained 1 million
instances, this was randomly multiplied to generate a 5
million dataset. For observing the relationship with time
vs. confidence for Apriori, soybean dataset (25] was used
(This was also multiplied to create a 5-miilion dataset).
For testing accuracy of Naive Bayes, intrusion dataset
was used [26].
When testing data mining algorithms, they were first
tested for their accuracy. When implementing the data
mining algorithms the code provided by Weka [27] was
used. When testing the accuracy same dataset was mined
by both Weka and SEEDMiner and the results were
compared.

B. Experimental Setup
All the tests were performed on an Intel Core Duo,
1.83GHz speed, with 1 GB of main memory. When
measuring time all the algorithms were executed 5 times
and the average was taken.

C. Experiment Results and analysis
Before going deeply into the algorithm analysis we first
describe a horizontal model to execute the same
algorithm. This will provide a basis for a detailed analysis
of algorithm execution times and the related complexities
comparatively. Let’s assume that data is first arranged in
to a relational model, where a dataset can be expressed in
terms of attributes and Tuples. Many models could be
proposed to represent this data using an Object oriented
approach, but for simplicity let’s consider a two
dimensional matrix, capable of holding any data type. In
this representation each attribute could be accessed by
providing the row id and the column id.
Let’s consider an algorithm for taking the sum of a
particular numeric attribute.

used.C. Data Compression Module
If the complete data set can be loaded in to the memory at
once, mining can be performed much efficiently since the
disk accesses can be reduced to a greater extent.
Compression module enables compression of original
data and generation of compressed bitstreams of
intermediate results. Even though compression makes it
possible to store large amounts of data, if it is required to
decompress during execution, then it’ll incur a
considerable overhead during the execution phase. Since
all the high level operations can be reduced to a set of
basic operations such as bit stream intersection, (AND)
bit stream union (OR), it would be sufficient to find an
encoding scheme, capable of performing these operations
while compressed. We have included such a scheme,
described in [18]. Theoretically this scheme compresses
only a subset of the all possible bitstreams. Hence the
framework will determine if space can be saved by
compressing the data source.

D. Algorithm Module
This module provides efficient implementations for a

set of recurrently used algorithms such as attribute sum,
range count, etc... In data mining, a lot of time is spent on
taking count of certain patterns occurring in a dataset.
Though implementing such operations are straightforward
in a horizontal model, in vertical model it may appear bit
awkward, which may lead the developers to create
inefficient algorithms. Due to this, we have implemented
the heavily used algorithms as described in [19] . When
performing a complexity analysis it can be seen that the
vertical implementation has the same complexity as its
horizontal counterpart, but executing in an efficient
manner.

IV. Experimental Results

This section discusses how common operations such as
attribute sum, pattern count and range count are
performed using vertical structures and how compression
contributes in reducing corresponding execution times.
First we present the detailed analysis of some component
algorithms along with their complexities. By analyzing
algorithm complexities we argue that by using a vertical
model for data representation the algorithm complexity
doesn’t change. Then we move into a probabilistic
analysis to reason out why vertical model performs better
than the horizontal model.

Algorithm: Attribute Sum (data_set [] [] , att__no)
for i =0 until data_set.length

sum - sum + data_set(il[att_no];
end for

return sum;

Since the array access and addition are constant time
operations, the running time of the algorithm is only
dependant on the number of rows of the data set. Hence it
can be expressed as O(n).

Now let’s consider the equivalent vertical model. Each
attribute can be expressed by several bit streams. If the
particular attribute is a numeric value then the maximum
value for that field can be obtained by a single pass
through the dataset, and the relevant number of bits
needed to represent that could be determined. Since all the
other numbers can be represented using this many of bits
this will be the optimal number of bit streams needed for
representing that attribute. The bit streams are held in an
array which keeps the bit stream for the relevant bit
position. This array is enclosed by another array which
represents an attribute.

The bit stream corresponding to the first bit position of
the third attribute could be obtained by data__sct[3|(0].

A. Experiment Description
Most of the component algorithms were designed for
manipulating numerical attributes. To test these
algorithms, a dataset having cardinality of 10000000
used. When carrying out the tests for numerical
algorithms, accuracy was tested by performing the
operation in the horizontal model and comparing the
answers. The STL implementations were used when
performing horizontal operations.

was

same

For testing the data mining algorithms, standard datasets
provided in UCI repository were used [23]. For
performing the scalability test Pokerhand dataset [24] was

90

D. Comparison of attribute Sum
By taking the count of each vertical bit stream, the sum of

numerical attribute can be easily calculated.

Since both the algorithms fall into the same complexity
class, one may conclude that no performance gain can be
obtained by using a vertical model. However, as
illustrated by Fig.3. the test results show 3 significant
difference in the two executions.

Here Naive algorithm refers to the algorithm developed
on the horizontal model. Even though it scales with the
data set, still it takes a considerable time when compared
to the vertical algorithm. When observing the graph we
can see that even the times recorded for the horizontal
algorithm is larger than they are not asymptotically larger
than the horizontal model.

Let's consider the effect of compression over algorithm
executions.

a

Attribute Sum(data_set[][],att_no)
// obtaining the number of
representing the attribute
max_bits data_set [att__no] . cardinality

for i =0 until max_bits -1
sum

data_set fatt_no][i].count();
end for

bits used for

sun 2‘

return sum;

Here count() operation returns the number of true bits in
the bit stream. When analyzing this algorithm it is evident
that the outer loop is independent of the number of rows.
It’ll run log2(tnax_vaIue[att_no]) number of times. When
considering a 32 bit integer the maximum times the outer
loop will run will be 32. Since the count operation is not a
constant time operation we should take its complexity as
well.

120
_ 100
cn __

I

1
The simplest implementation of the count operation

would be as follows.
:

Algorithm:Count()
for i=0 until num_of_bits

if(bitstream[i] =1)
sum++;

end if; No of Rows..end for;
return sum; Without Compression Hlf— With Compression?

Usually more efficient implementations are used for
taking the count of a bitmap, such as separating the
bitmap to a number of bytes and using each byte as an
index to a lookup table, which contains the count for each
byte [28]. Though the algorithm complexity remains the
same, execution of the latter implementation is much
faster. Since we are comparing complexities let's refer to
the algorithm proposed above. Since the complexity of
count proves to be O(n), the attribute sum also yields a
complexity of O(n) .

Figure 4: Effect of compression on the algorithm Attribute Sum

By observing the Fig. 4 it is evident that compression
works on reducing the overall execution time of attribute
sum. Even though the numbers used are random, when
they are aligned closely certain bit positions may create
long recurring segments of pure ones or zeros making
them easily compressible. When performing basic
operations as count, since the bit streams are compressed
the corresponding inner loops will execute less times than
n/8. This feature will help in reducing the overall
execution time. On the vertical model algorithm exhibit a
linear scale up.

E. Comparison of Range Querying
Range queries are heavily used in classifiers such as

C4.5 and NaTve Bayes for calculating probability and
creating data partitions according the information gains.
For most of the occurrences, obtaining the number of
instances satisfying a particular query may be equally
important as obtaining the places they are occurring.
Since vertical model is capable of giving an existence
bitmap of the results satisfying a particular condition,
when creating the equivalent horizontal model we had to
consider about a mechanism to track down the
occurrences of those result. Therefore in a horizontal
model, the algorithm for taking range queries is as
follows;

3000
^ 2500

2000 f-
<x> 1500
J 1000 1

500 •

00000
00000
0 0 2 2 £00000
00000 o o o o o

U"> O P-* CO O O

0 ;
!0000

0000
0000

o :oo i00000 00000 00000
in m ^

No of Rows

Without
Compression
Naive Algorithm

* ‘8 3. Attribute Sum over a large Dataset

91

90000
80000
70000

*ST 60000 :
£ 50000 •
g 40000
p 30000

20000
10000

Algorithm:
Gr eat© r__Than (limit, data_set[] [] ,att__no)

for i 4-0 until data_set.length-1
if data_set[i][att_no)>

existence_map[i] 4- 1
end if

limit

end for
return existence_map; A rr tA0

Since the array access, assignment and the greater than
comparison (>) can be treated as constant time operations,
the running time of the algorithm is only dependant on the
number of rows of the data set. Hence it can be expressed
as O(n).

Now let’s consider the counterpart of the greater than
algorithm that we’ve implemented in our framework
using the vertical model. The algorithm has been adopted
from the works mentioned in [29].
Algorithm:
Greater__Than (limit,data_set[] [] ,att_no)

// bitstream(O) assigns a bitstream
totally consisting of zeros

result 4- bitstream(O)
/* encode functions gives the binary
representation of limit using that many
of bits used to represent the attribute
considered.

Without Compression Naive Algorithm

Fig. 5. Range Querying over large dataset using vertical, vertical with
compression and horizontal models

Although the running times of both models are the
same, we can observe from Fig. 5 that a significant
performance gain can be obtained, even without applying
compression, using the vertical model.

Let’s consider how the compression affects the
performance of the algorithm. As the graph in figure 6
clearly indicates, we can achieve a considerable amount
of performance gain when applying compression on
vertically modeled dataset. Even though the numbers used
are random, when they are aligned closely certain bit
positions may create long recurring segments of pure ones
or zeros making them easily compressible. When
performing basic bitwise operations as AND and OR,
since the bit streams are compressed the corresponding bit
slices that are used to carry out Intersection and Union
operation are fewer than that of uncompressed version.
This feature will help in reducing the overall execution
time.

V

v 4- encode (limit,
data_set(att_no].cardinality);

for i 4-0 until v.length - 1
if(vj = 1)

14- i+1;
end if

end for
if i < v.length

result 4- data_set{att_no][i] ;
end if;
for i4-i+l until v.length - 1

if Vi = 0
result 4- result |

data_set[att_no][i];
else

3500

3000result 4- result &
data_set(att_no)[i];

end if 2500
end for;
return result;

*5/T
E 2000 f
| 1500 -I---

When analyzing this algorithm, it is evident that the
running time is dominated by the running time of bitmap
intersection (AND) and bitmap union (OR) operations in
the last for loop where the resultant bitmap is generated.
Since both of those operations takes running time of
0(n)vrt can consider that the above algorithm for
calculating the Greater_Than procedure has a running
timeo fO(n).

1000

500

Fig. 6. Comparison of Range querying over a large dataset.

Execution ot particular operation entirely depends on
the efficiency of the bitmap count. Though the complexity
of this operation is 0(n)t since hamming weights are used
for taking the count [28], the actual number ot

92

aSSf

instructions executed are a fraction of n (which is the
cardinality of the dataset), which gives a better
performance than the horizontal model.

F. Experimental results for
Algorithms

By performing tests for both vertical and horizontal
models proved that vertical model is good for certain
numerical algorithms. But in order to prove that the
framework can be used to design efficient data mining
algorithms, we performed another series of tests by
implementing some widely used algorithms both in
vertical and horizontal models.

Our first candidate was the NaTve Bayes Classifier.
This is a classification algorithm using the naive
assumption that events are independent of each other [30],
When implementing data mining algorithms we simply
adopted the implementations provided by Weka [27].
Weka followed a horizontal model. Since we have only
changed the pattern counting methods
implementing the algorithm on the vertical model, we
could isolate the effect of vertical computations. Since
Weka is a Java application before performing the tests, we
had to implement the same algorithm in C++.

Since the dataset can increase in row wise and also
column wise, we had to test the algorithm for both of
those cases. Figure 7 shows the scalability test when
number of rows is increased, and Figure 8 shows the
scalability test when increasing the number of attributes.

By observing the graphs we can see that for both cases,
vertical model simply outperforms the horizontal model.
In the horizontal model, the running time directly depends
on the number of attributes. Due to that we can see that
when the numbers of attributes are increased, the
corresponding scale up in the horizontal model is worse
than that of the previous case (when number of rowrs is
increased). Though the horizontal model does have a
linear scale up, it is much worse than the vertical model.

Since it is a known fact that vertical model performs
well for Apriori[l 1.2]. we tested the vertical model with
another approach. In [10], another flavor of Apriori
algorithm is presented which uses a tree structure called
Trie. Though the data is accessed horizontally, since the
internal data structure is independent from the horizontal
model , we thought of selecting this for our experiments.
The results are illustrated in Fig.9;

Data Mining

60000
when

50000
I 40000

E 30000
OI

£ 20000
: p

10000

30000
25000

1 20000
"Z 15000
j| 10000

5000

i

—♦•Without CompressionWith Compression
Trie Based Apriori

Fig. 9. Total Execution Time in Apriori
Here when measuring time we had to consider the time

taken for compression as well. Since a significant time is
spent in compressing data, the compressed version tends
to be slower than the uncompressed one. When observing
the graph we can see that the Trie based approach [10], is
good for small datasets. But when the cardinality is
increasing, the vertical implementations simply
outperform the Trie based approach.

%
0 !

10000002000000300000040000005000000
No of Rows

Without Compression

Weka Implementation

•"-A-" With Compression

Fig- 7. Performance Comparison of Naive Bayes Classifier with
WEKA's implementation (increasing# of columns) V. Conclusion

In this paper we presented requirements, design, and
implementation of a scalable data mining framework. As
the first step in making computations efficient, we have
chosen a vertical representation model which is proven to
be efficient for computationally intensive algorithms. We
have implemented the framework in a manner that it can
be used in the complete cycle of K.DD process. By
analyzing algorithm complexities we have proven that the
vertical algorithms have the same complexity as the
horizontal algorithms. Further we have shown the
efficiency of the framework by using experimental
results. Therefore, this framework can be introduced as a
useful piece of work for data mining since it addresses the
two main problems scalability and efficiency.

12000 r
10000
8000
6000

1 4000 -i
1 2000 • •<

'!• 1
;

r* HB—r—P 0
25205 10 15

No ofColumns
Weka Implementation

—•—With Compression
Without Compression

93
Fig. 8. Performance Comparison of Naive Bayes Classifier with

vElKA's implementation (increasing U ofcolumns)

http://www.boost.org/doc/libs/l_43_0/libs/dynamic_bitset/dynamic
_bitset.html (Accessed July 30,2010|.

(21] M. J. Zaki and K Gouda, “Fast vertical mining using diffsets”
Technical Report 01-1, Rensselaer Polytechnic Institute, USA,
2001.

(22] G. Antoshenkov, Byte-aligned bitmap compression, Technical
report, Oracle Corp., 1994. U S. Patent number 5,363,098.

(23] A Frank and A Asuncion, “UC1 Machine Learning Repository,”
UCI Machine Learning Repository, 2020 Available at:
http://archive.ics.uci.edu/ml/[Accessed July 15, 2010]

(24| Poker Hand Data Set. UCI Machine Learning Repository. Available
at: http://archive.ics.uci.edu/ml/datascts/Poker+Hand (Accessed
July 15,2010|.

(251 Soybean (Large) Data Set , UCI Machine Learning Repository.
Available
http://archive.ics.uci.edu/mI/datascts/Soybean+(La.rge) (Accessed
July 15,2010|.

(26(KDD Cup 1999 Data. The UCI KDD Archive. Available at:
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99 html
(Accessed July 15, 2010].

(27] Weka Repository https://svn.scms.waikato.ac.nz/svn/weka/
(Accessed July 15,2010|.

(28] Peter Wegner, “A technique for counting ones in a binary
computer,” Communications of the ACM. vol 3, May. I960, p.
322.

[29] Chee-Yong Chan and Yannis E. loannidis, “Bitmap index design
and evaluation,” ACM SIGMOD Record, vol. 27, Jun. 1998, pp.
355-366.

[30] H. Zhang, “The optimality of naive Bayes”, Proceedings of the 17 th
International FLAIRS conference (FLAIRS2004), AAAI
Press(2004).

References

[1] Agrawel R. and Srikant R., September 1994, Fast Algorithms for
mining association rules. In Proc. of 20ih Inti Conf Very Large
Databases (VLDB), Santiago, Chile.

[2] Jiawei Han, Micheline Kamber , “Introduction”, in Data Mining:
Concepts and Techniques,2nd ed., San Francisco: Morgan
Kaufmann Publishers, 2006, pp. 1-38.

[3] William A. Maniatty and Mohammed J Zaki, “Systems Support
for Scalable Data Mining,” SIGKDD Explorations, vol. 2, Dec.
2000, pp. 56 - 65.

[4] R.Agrawal and J.Shafer. Parallel mining of association rules. IEEE
Trans, on Knowlledgc and Data Engg.,8(6):962-969, Dec. 1996

[5] D. Cheung, J.Han, V.Ng, A.Fu and Y.Fu. A fast distributed
algorithm for mining association rules. In 4th Inti. Conf. Parallel
and Distributed Info. Systems, Dec. 1996.

[6] M. Joshi, G. Karypis, and V. Kumar. ScalparC: A scalable and
Parallel classfication algorithm for mining large datasets. In Inti.
Parallel Processing Symposium, 1998.

[7] J.Shafer, R. Agrawal, and M.Mehta. Sprint: A scalable parallel
classifier for data mining. In 22nd VLDB Conference, Mar. 1996.

[8] I.S. Dhillon and D.S Modha. A data clustering algorithm on
distributed memory machines. large-Scale parallel Data Minng,
vim, 1759 of LNCS/LNAI. Springer-Verlag, Heidelberg, Germany,
2000.

[9] H.N.S. Goil and A. Choudhary. MAFIA: Efficient and scalable
subspace clustering for very large datasets, Technical Report 9906-
010, Center for Parallel and Distributed Computing, Northwestern
University, jun 1999

[10] Ferenc Bodon, “A trie-based APRIORI implementation for mining
frequent item sequences,” Proceedings of the 1st international
workshop on open source data mining: frequent pattern mining
implementations, Chicago, Illinois: ACM New York, NY, USA,
2005, pp. 56-65.

[11] C. Binnig, S. Hildenbrand, and F. Farber, “Dictionary-based order-
preserving string compression for main memory column stores,”
Proceedings of the 35th SIGMOD international conference on
Management of data, Providence, Rhode Island, USA: ACM New
York, NY, USA, 2009, pp. 283-296.

[12] Shenoy P., Bhalotia G., Harista J.R., Bawa M., Sudarshan S. and
Shah D. Turbo-charging Vertical Mining of Large Databases.

[13J Golomb S.W., July 1966, Run Length Encoding, IEEE Trans on
information 'Iheory, vol. 12: pp. 399-401

[14] Masum Serazi, Amal Perera, Qiang Ding, VasilyMalakhov, Imad
Rahal, Fei Pan, Dongmci Ren, Weihua Wu, and William Perrizo.
DataMIME™. SIGMOD 2004, Paris, France.

[15] Ding. Q, Khan, Roy, and Perrizo W., 2002, The P-tree algebra.
Proceedings of the ACM SAC, Symposium on Applied Computing
(Madrid, Spain)

[16] Han J., Pei J. and Yin Y„ 2000, Mining Frequent Patterns without
Candidate Generation. Proceedings of the ACM SIGMOD,
International Conference on Management of Data (Dallas, Texas).

[17] Hashcmian, October 1995, Memory Efficient and High-speed
Search Huffman Coding, IEEE Transactions On Communications,
Vol. 43, No. 10: pp 2576 -2581

[18] Chan. C. Y. and loannidis. Y. E.. “An efficient bitmap encoding
scheme for selection querics’Mn Delis. A., Faloutsos. C., and
Ghandeharizadeh. S., editors, SIGMOD 1999, Proceedings ACM
SIGMOD International Conference on Management of Data, June
1-3, 1999, Philadelphia,Pennsylvania, USA. ACM Press.

[19] Serazi M., Perera A., Abidin T., Hamer G., and Perrizo W., “An
API for Transparent Distributed Vertical Data Mining.”

[20J dynamic_bitset<Block, Allocator^ Boost C++ Libraries, Available

at

at:

94

m

http://www.boost.org/doc/libs/l_43_0/libs/dynamic_bitset/dynamic
http://archive.ics.uci.edu/ml/%5bAccessed
http://archive.ics.uci.edu/ml/datascts/Poker+Hand
http://archive.ics.uci.edu/mI/datascts/Soybean+(La.rge
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99
https://svn.scms.waikato.ac.nz/svn/weka/

