
Mooshabaya - Mashup Generator for XBaya
wis , Supun Malinga , Kathiravelu Pradeeban1, Denis Weerasiri1, Vishaka Nanayakkara1 

! and Srinath Perera2
Department of Computer Science and Engineering, University of Moratuwa, Sri Lanka.

“WS02 Inc.. Sri Lanka.

pipes [2], [3] is a popular service providing such 
facilities which basically enables the user to aggregate 
web feeds according to the particular individual tastes.

Mashups come in several variants according to their 
usage and purpose. They can be broadly categorized as 
server side mashups and client side mashups according to 
mashup runtime [4]. Client side mashups are basically 
designed to run inside the user’s web browser. On the 
other hand, a mashup can also be deployed in 
applications such as a web application server. Server side 
mashups have more freedom and capability than a 
browser based mashup application. This is due to the 
lesser security restrictions and absence or' cross domain 
communication issues which plague browser based 
implementations.

Another categorization can be made by looking at the 
dynamics of the mashup. especially on what is being 
aggregated in a particular mashup. It can be aggregating 
both data and presentation elements into one place or it 
can be implementing a service composition. If a mashup 
falls in to the first category it is called a data mashup. 
Second category mashups are called service mashups. In 
this paper we are mostly interested with server side 
service mashups.

The sequences of real w orld operations are generally 
depicted as a workflow which is an abstraction of the real 
scenario, to facilitate further assessment or processing of 
the given scenario. Workflows also enable capturing and 
developing human to machine interaction. Then these 
abstract workflow models can be converted into 
executable formats according to the requirements.

Traditionally executable workflows have been used in 
scientific and business domains to model and carry out 
repeatable processes, where in recent days the workflow 
is more researched for the use cases for the user oriented 
web, by analysing the similarities between the workflows 
and mashups.

This work is motivated by two goals, first we wanted 
to extend a visual composition tool initially done for 
workflows to be able to generate mashups as its 
execution medium, thus enabling users to visually 
compose mashups, and second, we wanted to explore the 
possibilities of bridging the workflow and mashup 
domains so that they can benefit from each other.

To understand the motivation for above two goals, let 
us consider the following use case. The use case is based 
on a large scale E-Science project called LEAD (Linked 
Environments for Atmospheric Discovery) (5], [6], and it 
has been the target use-case for Mooshabaya project.

Let us consider a meteorologist, who has access to 
weather data using the satellite feed, ground level 
equipment, and sensors and predicts the weather by

Abstract - Visual composition of workflows enables 
user to visually depict the workflow as a graph of activities 
in a process. Tools that support visual composition translate 
those visual models to traditional workflow languages such 
as BPEL and execute them thus freeing the end user the 
need of knowing workflow languages. Mashups on the other 
hand, provide a lightweight mechanism for ordinary 
centric service composition and creation, hence considered 
having an active role in the web 2.0 paradigm. In this 
paper, wc extend a visual workflow composition tool to 
support mashups, thus providing a comprehensive tooling 
platform for mashup development backed up by workflow 
style modelling capabilities, while expanding the reach of 
the workflow domain into web 2.0 resources with the 
potential of the mashups. Furthermore, our work opens up 
a new possibility of converging the mashup domain and 
workflow domain, thus capturing beneficial aspects from 
each domain.

end

user

Index Terms - Web 2.0, Web Services, mashups. 
workflows.

I. Introduction

Both workflows and mashups enable users to compose 
services and data together to create new composite 
content and services. Among them, workflows, which 
depict a real world scenario as a sequence of steps, has 
found major use-cases in industry as business workflows 
as well as in research community as scientific workflows 
used in e-Science. Mashups essentially empower a user- 
oriented web, by providing a light-weight medium for 
the users to contribute to the web with their own content, 
even without any knowledge on complex programming 
skills [1].

The idea of a mashup application brings the 
interactivity and the level of customization of the web 
information to a new level. The benefits are usually two 
fold. From the perspective of the web application 
developer, it presents him with 
aggregating content and functionality across various 
information sources. Ability to use dedicated 
functionalities from different providers without starting 
from scratch reduces the development eftort and enables 
richer user experience. From the perspective of the 
well thought out mashing up of data and functionalities 
lead to coherent presentation of related information in 
one place. Some mashup efforts allow the user to 
interactively customize his web experience. Instead of 
developer driven content aggregation, the user is 
provided with an intuitive tooling interface where he 
specify what data to aggregate and from where. Yahoo

user

scope formore

user.

can

59



User can model a data mashup on a UI canvas byanalysing the data. He processes these data by running 
them through many pre-processing, forecasting, and post 
processing steps, which can very easily be described as 
workflows. As the different conditions on the atmosphere 
rise, his requirements change, and often, he creates new 
workflows to analyse those conditions. Furthermore, he 
wants to execute the workflows and then monitor their 
progress.

Ideally he needs a much light weight model to create 
workflows for the scenario rapidly as the environment 
conditions change rapidly. He also likes to avoid the 
need to learn the XML technologies or the workflow 
languages such as BPEL, which takes a lot of time. In 
this process his interest in using the web based APIs in 
the solution space should also be noted. He also prefers 
to integrate real time data collected via web feeds and 
feeds from the other sources like National Weather 
Service RSS feeds into his system of workflows.

XBaya workflow composer, which is part of the 
LEAD project, as well as the other composers like Triana 
[7], CAT (Composition Analysis Tool) [8], [9], Tavema 
[10], [11], Kepler [12], and Pegasus [13], enables users 
to compose workflows and run them. In this work, we 
propose an extension to the same model, where users 
could compose workflows using one of the above visual 
composers, but provide them with an option to expose as 
Mashups and to run them in a mashup environment. 
Mashups can provide a lightweight new environment to 
run workflows while bringing in advantages of Web 2.0 
[14], like integration with RSS feeds and the ability to 
run in a browser.

Having these as the background, we propose 
Mooshabaya as a system that deploys the workflows as 
Mashups, instead of the traditional workflow languages. 
Here mashups are given a new face as a workflow 
language. This potentially merges the mashup domain 
into the workflow domain, while revealing the synergy 
of the domains.

This research paper is organized as follows. Section II 
describes the motivation of the project. Section III 
discusses the architecture of Mooshabaya. Section IV 
analyses the results, while section V talks about the 
related work. Section VI discusses the idea and the 
project, while section VII concludes the paper along with 
the possible future works.

II. Mashups and Workflows, Why?
Currently mashups and workflows mostly cater for 

divergent set of interests. Mashups are mainly used as a 
data aggregation technology and whereas workflows arc 
used for process automation. Here we discuss about the 
conventional workflow development and the mashups 
regarding their development style and the execution 
medium.

users.
dragging and dropping related data source nodes and 
then connect inputs and outputs of those nodes to come 
up with a data aggregation and a processing pipeline 
such as yahoo pipes. Presto and Serena are similar 
Mashup Composers which allow visual mashup 
composition through their graphical interface [16],user
[17].

Once the mashup is visually composed, the Tooling 
framework generates JavaScript to describe the 
workflows and associated JavaScript plumbings which is 
then executed in user's browser or a mashup server. The 
learning curve involved in this process is minimal 
compared to the other enterprise level workflow 
languages, so the users can get started with creating their 
own mashups instantly without any form of coding 
associated. As a consequence non tech savvy' users can 
easily come up with little applications that enhance their 
web experience.

If we consider workflows on the other side of the 
spectrum what we see most of the time is the direct 
opposite to the above development style. Development of 
a workflow of substantial value is a time consuming 
process even if the associated data processing nodes are 
present. This is in part due to inherent complexity 
associated with production grade workflows. To manage 
this complexity, a standard process involving modelling, 
prototyping, testing, implementation, deployment and 
monitoring is required. We cannot say this style of 
development can be abandoned in favour of do it 
yourself mashup style development because the inherent 
complexity of modelled processes makes it practically 
infeasible in most cases.

But there is an aspect that workflow modelling 
domain can benefit from mashup development. That is 
the usage of an approach, where user can visually model 
a workflow using abstract service definitions and data 
sources, and offload the responsibility of subsequently 
generating required concrete executable artifacts and 
plumbings. Note here the difference from the 
conventional workflow modelling lies in the fact that 
when generating concrete executable artifacts user need 
not to know any specifics of the underlying executable 
language specifics.

For an instance consider the generation of an 
executable business process using BPEL [18]. The ideal 
scenario would be after modelling the workflow user 
being able to export to any type of an executable format 
without any workflow language specific settings. The 
modelling phase should only include the abstractions 
provided by the service WSDLs, and tooling framework 
should deal with the specifics of the language (both 
conceptual and source code level) when generating 
executable artifacts, so that user is offloaded of learning 
the specifics and syntaxes of the particular language. 
This lowers the learning 
workflows, and subsequently drives lower times to 
deployment. This language agnostic nature allows for 
greater flexibility in terms of deployment opt ions as well. 
Visual workflow composers such as XBaya, lead the 
language specific developer oriented workflow tools

A. Visual Composition of Workflows 
Current mashup offerings cater for end-user centric 

application development. Based on Web 2.0 technologies 
the basic premise of mashup applications is enabling user 
to customize his web experience in an intuitive and easy 
way [15]. Typically little knowledge about the 
underlying technology plumbing is assumed from the

associated withcurve

60



such as Eclipse BPEL designer [19], by providing easy 
options of workflow modelling.

Especially for business process related i 
promises a significant potential. In addition 
savings aforementioned, this also enables

connections and dependencies between workflow tasks 
and decision making.

use cases this 
to time

, . greater
collaboration during workflow modelling phase. Since
the modelling phase is largely neutral of any language 
specifics, the domain experts can actively participate in 
coming up with the abstract model of the workflow 
without being forced to learn a new language every time 
when the workflow language preference such as BPEL 
[19] or YAWL [20] changes. Even for scientific 
workflows this benefit can be significant.

HI. Mooshabaya Architecture 
As seen above, the mashup domain exposes the 

advantages of web 2.0, hence 'Mooshabaya', as a mashup 
generator for XBaya Graphical Workflow Composer, is 
expected to invest on the synergy of the merge of the 
domains.

Governance
Registry

B. Workflow Executiox

At present most of the workflow languages are XML 
based [21]. Workflow engines does the work of parsing, 
validating the XML syntaxes prior to deployment. 
Messaging is also basically done using XML based 
formats. With the current trend for web service based 
workflows, this is not surprising. With the backing up of 
matured WS-* stack [22], web service based workflows 
can utilize the security, quality of service and other 
features provided by modem web service stacks. This is 
vital in making workflows more robust and resilient to 
real world conditions and requirements.

On the other hand mashups are mainly based on 
JavaScripts which is the de-facto language behind the 
bulk of Web2.0 technologies. Even though JavaScript 
can play with XML messages, more efficient and less 
bandwidth consuming message formats such as JSON 
[23] has been introduced. What would this mean to 
workflow domain?

Mashup

Identity
Server K

^Mooshabaya ^
A

>U9
\
ws-

Messenger

Operations involving

The Registry 1 - Discov er; 2 - Fetch; 3 - Add

Identity Serv er, 4 - Fetch

Mashup Server; 5 - Deploy; 6 - Execute

WS-Messenger: 7 - Publish; S - Subscribe; 9 - Notify

Components:

a - Security Component; b - Registry Integration; c - User Interface; 
d - Mashup Generation; e - Monitoring; f - Mashup Deployment 
g - Service Deplover; h - Eventing Host Object

Fig. 1: Mooshabaya Architecture Diagram

The overall system consists of a Registry, Mashup 
Server, Identity Server, WS-Messenger and the 
Mooshabaya workflow composer. Fig. 1 shows the 
components of Mooshabaya depicting the major 
operations involving the components.

Corresponding web service definitions are required to 
compose workflows with necessary web service 
invocations. Registry Integration Module of Mooshabaya 
enables the user to fetch such service metadata stored in 
a remote Web Services Registry instance via the user 
interface of Mooshabaya, by handling the integration of 
the Registry into the system. User can compose 
workflows by dragging and dropping the related 
metadata files and the other service components into the 
Mooshabaya drawing canvas and configure the service 
components dropped into the canvas. The created 
workflow models can be saved locally as well as 
remotely on the Registry to be used later.

For executing the workflows, Mooshabaya Mashup 
Generator Module converts the composed workflows 
into Mashup scripts and then deploys them in a Mashup 
Server. In this mashup generation process, first it parses 
the retrieved object model and sequentially generates the

Using JavaScript based mashups as an execution 
medium for workflow compositions can be handy in this 
regard. These mashup based workflow compositions can 
easily consume JSON based RESTfiil [24] web services 
which are becoming popular in web 2.0 usage scenarios 
along side with traditional SOAP [25] based web 
services.

Other significant prospect that JavaScript based 
mashups bring to the workflow domain is the redefinition 
of traditional concept of a service within a workflow. 
There are several challenges when it comes to data 
acquisition, visualization, processing and management in 
workflows. In a conventional workflow, data sources are 
mainly RPC [26] or web service based. But in the 
domain of mashups the data sources available can be 
expanded to web feeds, web scraping, social network 
APIs and many more as can be amply seen by the burst 
of web 2.0 applications using mashups. These 
sources along with existing intemal/extemal data and 
web services can be leveraged in creating and injecting 
more effective business intelligence information to

accurate and

new

workflow decision points leading to more 
reactive workflows. Workflow' visualisation depends 
its underlying language like BPEL. Based on the features 
of the workflow implementation language, the 
visualisation differs. Workflow' visualisation is an 
important component in workflow systems. It depicts the 
information and data required to figure out the

on

61



2.20 GHz Intel Core Duo Processor, and Linux - Ubuntu 
10.04 Lucid Lynx Operating System was used as the 
testing environment. The web services used for testing 
were ensured to have the nodes with similar functionality 
to avoid biased results. For this we have used dummy 
workflows created using the chosen numbers of 
multiplier web service nodes.

The tests were targeted towards measuring the 
effectiveness and efficiency in using Mooshabaya in the 
production environment as the workflow composer and 
the mashup generator for the real world workflows.

The time taken to generate the workflow file, BPEL 
file, and the mashup file were measured against the 
number of nodes. Similarly the size of the workflow file, 
BPEL file and mashup files too were measured against 
the number of workflow nodes. The generated file size 
and the file generation time were plotted against the

nodes.

code segments required to compose the mashup. The 
methods of the module generate the relevant segments in 
the mashup scripts as listed below. 

writeHeaderQ - Service details and global
variables 
- Service stubswriteParametersO

writeSetupO - Input and Output binding 
types, and base service body.

writeHostObjectScriptBodyO
- Feeds, scrapers, files and 

other input sources related 
operations.

- Service InvocationswriteInvocations()
writeOutputsQ - Final service output of a 

mashup
Required configurations such as URL of WS-Messenger 
are provided at mashup generation time.

Mooshabaya Mashup Deployer Module handles the 
deployment of the generated mashup scripts, support 
client stubs and other required scripts, and the 
configurations into a remote Mashup Server specified by 
the user. At the same time, the relevant service metadata 
and the workflow files are added to the Service Registry. 
Deployment of mashups into the mashup server is 
handled by Mooshabaya Service Deployer module, 
integrated with the Mashup Server. Once the deployment 
is done, the workflow can be executed and monitored.

Generated mashups use JavaScript stubs to invoke 
web services, and other input sources such as feeds and 
scraper inputs are invoked using JavaScript Host Objects. 
Here host object refers to a type of JavaScript object that 
is created in server side. JavaScript host objects are 
defined in the runtime environment that the JavaScript is 
executed, such as a web browser or a specific JavaScript 
engine, rather than the JavaScript language.

During the code generation, mashups are instrumented 
with directives which would generate events that depict 
the workflow execution, and publish them to a message 
broker called the WS-Messenger [27] at run time. Using 
the publish - subscribe system, Mooshabaya Monitoring 
Module monitors the execution by subscribing to the 
generated events.

We have used the known existing tools as the base in 
developing the system. XBaya Graphical Workflow 
Composer from Indiana University is used as the core of 
the Mooshabaya workflow system. We have extended 
XBaya to export the workflows as mashups, and the 
mashups are deployed into WS02 Mashup Server [28]. 
WS02 Governance Registry is used as the registry of the 
system.

Currently mashups generated by Mooshabaya supports 
invoking web services secured with basic WS-Security 
scenario UsemameToken over HTTPS. Associated 
policy definitions are required to be in service WSDL in 
order for Mooshabaya to correctly recognize security 
requirements.

ofnumber

Fig. 2: Generated file size (kB) vs. Number of Nodes ;
As illustrated in Fig. 2, Generated File sizes showed a 
linear proportional relationship with the number of nodes 
in the workflow. Hence, for a given number of nodes, 
generated mashup file will have the minimum file size. 
This a significant advantage where the generated mashup 
or the BPEL script should be uploaded to a remote 
engine before execution. So the mashup deployment time 
is significantly less than BPEL deployment time, as the 
size of the generated mashup is pretty low. _____ _

File generation tlme(s) vs No. of Nodes
2000

VvUblt ,,
—♦— *Vorkflow 
• k M»lhup 9*n«r»«»00 I*"*1'

. OPEL _.

1500

I
1000I

<V

500

2000 4000 6000 00DO 10000IV. Results

“Mooshabaya”, the proposed solution 
implemented and tested for workflow creation and 
mashup generation for different number of web service 
nodes. A system with 2 GB memory, 320 GB hard disk,

No- of Nodes

Fig. 3: File Generation Time (s) vs. Number of Nodes

The time taken to generate the mashup scripts, BPEL 
script, and the workflow files, showed an exponential

was

62



increase against the number of nodes in the workflows, 
as depicted in Fig. 3. In this case, w'e can see the BPEL 
script generation time has a higher gradient than mashup 
script generation time. So after 10000 nodes, we can see 
the script generation time of a BPEL script is larger than 
the respective mashup script.

These tests show that the mashup and workflow 
generation time are quite reasonable to use Mooshabaya 
in real world workflow scenarios with considerable 
number of workflow nodes.

workflows by allowing them to accumulate data from 
data sources like RSS and Atom web feeds and web 
scraping which is made possible by using JavaScript 
mashups.

While expanding the reach of the workflow domain, 
the unique workflow approach simplifies the task of 
workflow/mashup composition by the comprehensive 
tooling platform. This workflow approach provides the 
potential to create mashup in an effective and interactive 
way, hence providing an option of creating mashups in 
end to end manner.

Mashup becomes a light weight medium for 
workflows, instead of the traditional workflow 
approaches which happened to be heavy weight. 
Deploying workflows as mashups also facilitates 
developing workflows rapidly based on mashups which 
can be useful in workflow prototyping and testing. 
Mashup solutions typically handle the actions Compose, 
Generate, and Deploy in the mashup life cycle, while 
Mooshabaya by using the workflow' approach to the 
mashups, handles Configure, Execute, and Monitor 
actions too. which is yet another major advantage of 
Mooshabaya.

Mashups can be of enterprise mashups. data mashups, 
and consumer mashups. Mashup tools are often 
categorized based on the categories they serve. While 
IBM Mashup, Serena, and Jackbe focus on all these three 
types. Yahoo Pipes focuses more on the data and 
consumer mashups [17]. Some mashup tools even 
narrow their focus down to the consumer mashups.

VII.
The research on the possible merge of the mashup and 

the workflow domains focused the potential advantages 
and the enhancements for both the domains, revealing 
further use cases for both. It should however be noted 
that the mashup generation w hich has been implemented 
on XBaya Workflow Composer from the OGCE 
Workflow Suite [35], can be extended in two ways, 
either from the mashup perspectives or from the 
workflow perspectives, which could be done using the 
current implementation of Mooshabaya as a base.

At the same time, this wouldn’t mean converting high 
value business processes to mashups would be the 
ultimate solution. It will not be the case since JavaScript 
based mashup APIs are currently not powerful enough to 
capture all the non functional requirements that a typical 
SOAP web service based implementations can offer. 
Proper JavaScript implementations are required to be 
present to cope with these aspects. Already there are 
certain implementations which provide some of these 
aspects. WSRequest JavaScript implementation that can 
invoke some secure services is such an implementation.

Rather, what is more prudent is to use mashup based 
implementations in data intensive workflows where data 
aggregation also plays an important role and where 
service level requirements such as security and QoS are 
not that important. Using this approach the aggregated 
data can be seamlessly pipelined in to the workflow' data 
processing nodes.

Though we have chosen XBaya as our workflow 
composer, the other workflow composers which have

V. RELATED WORK
As discussed before, advantage of converging the 

mashup domain w'ith the workflow domain" are 
enormous. Many researches have been done on both the 
domains to explore new possibilities and 
Though the design and implementation of Mooshabaya 
as a mashup generator for XBaya workflow composer 
which merge the workflow and mashup domains is a 
fresh idea, there have been many researches and related 
work going parallel to this project and there 
researches that do have some similar aspects to 
research.

A process of developing and deploying a workflow 
management system for heritage data mashups is 
discussed in [29], where they have implemented the 
concept for a limited test environment for a particular 
workflow model within their heritage system. The 
implementation for the general workflows and a model 
that can be run with the final mashup system were 
proposed, yet not implemented.

The approach presented by Tobias Nestler et al. [30] 
follows the idea of integration at the presentation layer 
enhanced by user interface (UI) related service 
annotations, while [31] concentrates on the generation 
and composition of service front-ends. Thus both are 
proposing service composition at the presentation layer, 
targeting user-centric composition of the services.

Yahoo Pipes is an online service that allows remixing 
feed types and creates mashups, with a Pipes Editor 
which allows creating Pipes visually. This feature is 
resembled in Mooshabaya, which allows feeds, as well as 
scrapers and files to be added as nodes in the workflow 
editing area or the canvas of XBaya.

VI. DISCUSSION
As the motive of web 2.0 paradigm, web services as 

well as the web is becoming customer oriented, and light 
weight. Traditional approach of SO A expects the 
developers master technologies such as BPEL and Jython 
Scripts [32], hence service composition based on web 2.0 
mashups which are easy to use is proposed [33] 
alternative towards bringing the web into the centre of 
the development.

Researches with the goal of merging the mashup 
domain with the workflow domain are carried out. An 
analysis and a comparison of Grid workflows and web 
2.0 mashups has been carried out in [34], which talks 
about the potential and similarities of the topics, giving a 
hint about the possible scenario that uses both the two. 
Converging workflow domain and the mashup domain 
also extends the reach of data sources of conventional

use cases.

are some
our

Conclusion and future work

as an

63



1

International Conference on Network-Based Information Systems 
(NbiS 2009). UIPUI, Indianapolis, USA, August 19-21,2009.
[181 Tony Andrews et al., Business Process Execution Language for 
Web Services, Version 1.1. [Online], Available:
http://download.boulder.ibm.com/ibmdl/pub/software/dw/spccs/ws-

bpel/ws-bpel.pdf
[19] X. Fu, T Bultan, and J. Su. "Analysis of Interacting BPEL Web 
Services," in Proceedings of WWW'04, pages 621 —630. USA, 2004. 
ACM Press.
[20] W M P van der Aalst and A H M ter Hofstede, “YAWL yet 
another workflow language ”
[21] Workflow Management Coalition, XML-Based Workflow and 
Process Management Standards: XPDL, Wf-XML [Online], Available:
http://xml.coverpages.org/wf-xmI.html
[22] Sanjiva Weerawarana, Francisco Curbcra, Frank Leymann, Tony 
Storey, and Donald F. Ferguson, “Web Services Platform Architecture: 
SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Rehable 
Messaging, and More.”
[23] Nurzhan Nurseitov, Michael Paulson, Randall Reynolds, and 
Clemente Izurieta, Comparison of JSON and XML Data Interchange 
Formats: A Case Study, Department of Computer Science, Montana 
State University - Bozeman, Montana, 59715, USA [Online], 
Available: http://www,cs.montana. edu/izuricta/pubs/caine2009.pdf
[24] Michael zur Muehlen, Jeffrey V. Nickerson, and Keith D. 
Swenson, “Developing Web Services Choreography Standards - The 
Case of REST vs. SOAP.”
[25] Matthew Duftler, Rania Khalaf, William Nagy, Ninnal Mukhi, 
and Sanjiva Weerawarana, Unraveling the Web Services Web: An 
Introduction to SOAP, WSDL, and UDDI, Francisco Curbera, IBM T.J. 
Watson Research Center. [Online]. Available: 
http://www.site.uottawa.ca/~ttran/teaching/csi5389/papers/Unraveling 
%20the%20Web%20Services%20Web.pdf
[26] Andrew D. Birrell , Bruce Jay Nelson, Implementing remote 
procedure calls, ACM Transactions on Computer Systems (TOCS), v.2

Available:

their own specializations, also may follow the concept of 
using mashups to deploy the workflows. Monitoring the 
mashup execution as workflow monitoring and providing 
the end-to-end handling of the mashup life cycle are the 
specific achievements of Mooshabaya, as a mashup 
generator for a graphical workflow composer.

References
[ 1 ] Yu, J., Benatallah, B., Casati, F„ Daniel, F. (2008). 
"Understanding Mashup Development," IEEE Internet Computing, 
12(5), 44-52.
[2] J. Fagan. Mashing up Multiple Web Feeds Using Yahoo! Pipes. 
Computers in Libraries, 27(10):8, 2007.
[3] Mark Pruett, “Yahoo! Pipes,” First edition.
[4] Frederik De Kcukelacrc , Sumeer Bhola , Michael Steiner , 
Suresh Chari , Sachiko Yoshihama, SMash: secure component model 
for cross-domain mashups on unmodified browsers, Proceeding of the 
17th international conference on World Wide Web, April 21-25, 2008. 
Beijing, China.
[5] Droegemeier, K. K., et al. Linked Environments for Atmospheric 
Discovery (LEAD): A Cyberinfrastructure for Mesoscale Meteorology 
Research and Education, in 20th Conference on Interactive Information 
Processing Systems for Meteorology, Oceanography, and Hydrology. 
2004. Seattle, WA.
[6] Kelvin K. Droegemeier, V. Chandrasekar, Richard Clark, Dennis 
Gannon, et al, Linked Environments for Atmospheric Discovery 
(LEAD): Architecture, Technology, Technology Roadmap and 
Deployment 
http://ams.confcx.com/ams/pdfpapers/86256.pdf
[7] Shalil Majithia, Matthew Shields, Ian Taylor, and lan Wang. 
“Triana: A Graphical Web Service Composition and Execution 
Toolkit.” In IEEE International Conference on Web Services 
(ICWS’04), 2004.
[8] J. Kim, Y. Gil, and M. Spraragen, “A Knowledge-Based 
Approach to Interactive Workflow Composition.” To appear in 
Workshop on Planning and Scheduling for Grid and Web Services ” at 
International Conference on Automated Planning and Scheduling 
(ICAPS-2004), 2004.
[9] Jihie Kim, Marc Spraragen and Yolanda Gil, “An Intelligent 
Assistant for Interactive Workflow Composition,” University of 
Southern California/Information Sciences Institute, Marina del Rey, 
CA 90292 USA.

Available:Strategy'. [Online].

February
http://citeseerx.ist.psu.edu/viewdoc/download?doi=l 0.1.1 81 2486&rep 
=repl&type=pdf
[27] Yi Huang, Aleksander Slominski, Chathura Herath, Dennis 
Gannon, "WS-Messenger: A Web Services-Based Messaging System 
for Service-Oriented Grid Computing," ccgrid, pp. 166-173, Sixth IEEE 
International Symposium on Cluster Computing and the Grid 
(CCGRID'06), 2006.
[28] Jonathan Marsh. Mashup: Noun or Verb? [Online] Available: 
https://www.wso2.org/repos/wso2/people/jonathan/Mashup%20Noun% 
20or%20Verb.pdf
[29] A. Al-Barakati, W. Zhang, M. Z. Patoli, M. Gkion, N. Beloff, P. 
Newbury and M. White, “An Integrated Workflow Management 
Solution for Heritage Information Mashups,” Department of 
Informatics, University Sussex, Brighton, United Kingdom, BN1 9QJ.
[30] Tobias Ncstler, Marius Feldmann, Andre Preuymer, and 
Alexander Schill, Service Composition at the Presentation Layer using

[Online].
http://mashart.org/composableweb2009/papcr7.pdf
[31] Tobias Nestler, Lars Danneckcr, and Andreas Pursche, User- 
centric Composition of Service Front-ends at the Presentation Layer, 
SAP Research Center Dresden, Germany. [Online]. Available:
http://ceur-ws.org/Vol-540/ugs2009_submission_2.pdf
2002 SamUClc ,,cdroni and Noel Rappin, “Jython Essentials,” March

Liu, X., Hui, Y., Sun, W., Liang, H. "Towards service 
composition based on mashup," in Proceedings of the IEEE.

p.39-59, 1984 [Online].n.l,

[10] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. Pocock, P.
Li, and T. Oinn, “Taverna: a tool for building and running workflows 
of services.,” Nucleic Acids Research, vol. 34, iss. Web Server issue, 
pp. 729-732, 2006.
[11] Srinath Perera, Dennis Gannon, “Enabling Web Service 
Extensions for Scientific Workflows.” Computer Science Department, 
Indiana University, Bloomington IN 47405.
[12] Bertram Ludascher, Ilkay Altintas, Chad Berkley, Dan Higgins, 
Efrat Jaeger, Matthew Jones, Edward A. Lee, Jing Tao, and Yang Zhao, 
Scientific Workflow Management and the Kepler System, September 
2004; revised March 2005. [Online]. Available: 
http://citcseerx.ist.psu.edu/vicwdoc/download?doi=l 0.1,1.59.6066&rep 
=repl&typc=pdf
[13] E. Deelman, J. Blythe, Y. Gil, C. Kcsselman. G. Mehta, S. Patil, 
M.-H. Su, K. Vahi, and M. Livny, “Pegasus: Mapping Scientific 
Workflows onto the Grid,” Lecture Notes in Computer Science 
3165:11-20, Jan 2004.
[14] O’Reilly, Tim. What Is Web 2.0: Design Patterns and Business 
Models for the Next Generation of Software, March 2007. [Online].

http://mpra.ub.uni-

Web Service Available:Annotations.

Available:
mucnchen.dc/4578/l/MPRAjpaper_4578.pdf
[15] John Crupi and Chris Warner, Enterprise Mashups Part 1 
Bringing SOA to the People, Published: May 16, 2008 (SOA Magazine

...................... 2008).
http://www.soamag.eom/l 18/0508-1 ,php
[16] A. Koschmider, V. Torres, and V. Pelechano. Elucidating the 
mashup hype: Definition, challenges, methodical guide and tools for 
mashups. In Proceedings of the 2nd Workshop on Mashups, Enterprise 
Mashups and Lightweight Composition on the Web at WWW2009, 
Madrid,Spain, April 2009.
[17] Anjomshoaa A, Bader G, and A Min Tjoa. (2009) Exploiting 
Mashup Architecture in Business Use Cases. In Procs of the 2009

Issue XVIII: May [Online]. Available:

64

http://download.boulder.ibm.com/ibmdl/pub/software/dw/spccs/ws-
http://xml.coverpages.org/wf-xmI.html
http://www,cs.montana
http://www.site.uottawa.ca/~ttran/teaching/csi5389/papers/Unraveling
http://ams.confcx.com/ams/pdfpapers/86256.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=l
https://www.wso2.org/repos/wso2/people/jonathan/Mashup%20Noun%25
http://mashart.org/composableweb2009/papcr7.pdf
http://ceur-ws.org/Vol-540/ugs2009_submission_2.pdf
http://citcseerx.ist.psu.edu/vicwdoc/download?doi=l
http://mpra.ub.uni-
http://www.soamag.eom/l

