
On the Performance of Two Topologies for a

Distributed Broker Hierarchy of

Publish-Subscribe Middleware
Dilshan Amadoru1, Hasini Gunasinghe1, Chamini Hasanga1, Prabath Abeysekara1, Vishaka Nanayakkara'

and Srinath Perera"
'Department of Computer Science and Engineering, University of Moratuwa. Sri Lanka.

2WS02 Inc., Sri Lanka.

P2P manner, the system will not be able to handle the
growing number of interactions. A messaging broker who
provides mediation between publishers and subscribers can
be deployed as the messaging middleware which facilitates
publish-subscribe communication model, to solve the above
problem. Such a broker accepts subscriptions from
subscribers on behalf of publishers and stores them with it.
When a publication arrives, broker filters out the matching
subscriptions of interested subscribers and delivers the
publication to them.

Nevertheless, such a middleware being developed as a
single module has not been the ultimate solution. As the
message traffic becomes intense, a single module can fail
since it has a limitation of processing power. This is the core
issue that Wihidum--our research prototype, which is
composed of a hierarchical network of broker nodes and
which facilitates publish-subscribe communication model in
the context of web services in accordance with WS-
Eventing specification [1]—addresses as a distributed
middleware. The main challenge was to come up with
proper mechanisms of arranging the brokers according to a
particular topology and defining communication channels
among them in such a way that the distributed middleware
of broker network as a whole can provision increasing
number of messages. We observed that the hierarchy of
broker nodes shows different characteristics in performance
wise when arranged according to two different topologies.

Abstract— Distributing the right information at the right
time is an apparent need of the fast moving globe. Publish-
subscribe communication paradigm plays a major role in the
systems built to accomplish this need. It has been adopted in
variety of today’s business domains such as mobile
communication, database integration, road traffic visualization
etc. With large-scaled, distributed and heterogeneous nature of
these systems, there is a high demand for an efficient, scalable
and interoperable messaging middleware which is capable of
handling the increasing load of messages. As discussed in
earlier works, network of messaging brokers that
collaboratively act as a single entity provides a scalable
architecture for such publish-subscribe middleware. This
paper describes two algorithms named tree and cluster that we
designed which are used as two approaches for topology of the
broker network and evaluates the performance of the
distributed publish-subscribe middleware with respect to those
two topologies.

1. Introduction

Thousands of entities around the globe exchange massive
amount of information in every second. Distributing the
right information on right time at the right place is an
essential need that the technology tries to fulfill through the
fast growth of internet. Distributed and large scaled nature
of the systems has resulted in large number of interactions
between heterogeneous entities. When publishers of
information and the people who are interested in receiving
that information are distributed all over the world,
communication becomes inefficient and non-scalable if a
traditional tightly coupled, synchronized and P2P type of
communication mechanism is used. Therefore many
distributed applications have given increased attention to
publish-subscribe communication paradigm [2] that has
favorable features such as loose coupling and scalability in
small installation. Publish-subscribe communication model
offers full decoupling between communicating entities in
three dimensions named space, time and synchronization as
described by Patrick Th. Eugster et al. in “The Many Faces
of Publish Subscribe” [2].

Some of the practical use cases of publish-subscribe
systems arc news publication, database integration as in
Oracle 111], distributed streaming systems as in
NaradaBrokering 113) and message oriented middleware as
in Tibco Rendezvous 114]. In the case of a news publication
system, there are a large number of news publishers around
the globe and subscribers who subscribe to different news
topics. If these news publishers and subscribers interact in

The main contributions of this paper are as follows:
• We designed the two algorithms named “Tree" and

“Cluster” which were implemented to organize the
network of broker nodes in a hierarchical manner (Section
V). They define two different routing mechanisms among
broker nodes. When designing the two algorithms, we
have taken favorable features from existing algorithms
such as the work carried out by Shrideep Pallickara et al.
in Narada brokering [4], Dwi II. Widyantoro et al. in “An
Incremental Approach to Building a Cluster Hierarchy”
[6], ActiveMq [7] and IBM WebSphere MQ [9].

• We compare and contrast the aforementioned two
approaches in terms of their performance with respect to
throughput and latency with the support of measures
obtained from performance testing.

This research paper is structured as follows. Section II
describes the related work in the area of publish-subscribe
model. Section III and IV together combine the solutions
presented by Wihidum.
performance evaluation carried out on Wihidum and
discusses the characteristic of Wihidum in performance wise

Section V describes the

51

the clients of publish-subscribewhere Systems cansystems

users to Pub'is uke with one broker unit, the broke,
hierarchy, ana J (hat all subscribers gel notified 0f
hierarchy maKes ^ subscriptions regardless of fr0m
events according been pubiished or from which
which node even subscribed. The broker hierarchy is formed
subscribers hav of broker nodes in a particular
by organizing ywihidum implementation comes with two
topology- Curre flexibility to switch between the tWo
topologies and ^ ^ requirements of the application
topologies base 0f algorithmic solutions of
domain^ Detail^are inclucled in the Section IV.

VI concludes thewith respect to two topologies. Section
paper eventually. The

II. RELATED WORK
has beenMultiple publish /subscribe middleware proposed in literature. Among them, NaradaBrokering (NB)

[13] is an event brokering system designed to run on a large
network of co-operating broker nodes. It supports
management of subscriptions based on SQL, Regular
Expressions and XPath queries. NB incorporates an
efficient, reliable and failure resilient routing and matching
algorithm based on a cluster topology [4] that guarantees the
delivery of information from producers to consumers.

Oracle Advanced Queuing provides database integrated
message management functionality and asynchronous
communication on top of oracle database using Oracle Net
Services. They support both point to point and publish-

be stored

node

IV. TOPOLOGIES

In a distributed broker network, the topology defines how
the brokers are connected, how communication between
them happens, and how the subscriptions and publications

routed in order to achieve efficiency in the entire
middleware. Wihidum implements two topologies “Cluster”
and “Tree”.

subscribe messaging facilities. Messages can
persistently, propagated between queues
machines and databases, and transmitted [11]. Due to the
support of the strong database backend, this comes with
favorable features such as persistency and reliability. But it
needs the usage of gateways when communicating with
other messaging middleware. In contrast, Wihidum uses
minimal number of database operations and it is
interoperable by itself.

TIBCO Rendezvous is another messaging solution for
data distribution applications due to its low latency and real
time high throughput [14]. TIBCO Rendezvous has
optimized a fully distributed daemon-based peer-to-peer
architecture which eliminates bottlenecks and single points
of failure. Messages in TIBCO Rendezvous are self
describing and platform-independent [15]. This feature is
also achieved in Wihidum because of the interoperability of
web services.

differenton

are

A. Cluster Topology
Cluster topology, organizes the broker network in a

hierarchical structure with three levels in the hierarchy, each
level having a unit controller. The main reference we used to
define the organization of clustered broker network is
NaradaBrokering project [13] whose clustering algorithm is
defined in [4].

IBM WebSphere MQ [10] is another messaging backbone
which facilitates the information flow across distributed
entities. While delivering information either synchronously
or asynchronously depending on the needs of the
application, it can also reduce the risk of data being lost
when applications, web services or networks fail. IBM
WebSphere Message Broker [9] is a fast and flexible
application integration tool, which can work closely with the
WebSphere MQ to deliver a comprehensive publish-
subscribe facility.

Apache Savan project [8] enables publish-subscribe
communication model for web services hosted in Axis2. It
implements the WS-Eventing specification and it is
developed as a module on top of Axis2. As a publish-
subscribe tool it provides subscription management, filtering
and persistence with an embedded sqlite database [3]. Being
a single module, Savan does not address performance
scalability on which Wihidum focuses in its solution.

«

IS
Figure 1: Sample clustered broker network

an-anJedT Flfure * illustrates how ten broker nodes
units in the hi^rJrh UStCr topoloSy- Three levels of cluster
(SC) and cun* y are named as cluster (C), super clusterunit contor;7er/KUSter (SSC)- Each duster unit has a
the unit nam/J Ted by aPPendl'ng the term “controller” to
controller (SCn^T C,USter contro,,er (CC), super cluster
As in the r,o„?p 3ndksu,Pcr super cluster controller (SSCC).
cluster unit n ’ ,ker nodes 1 and 2 have formed the
s“Per cluster unifsa ACJUSter units Cl and C2 form <1*
SCI and SC2 fm-m tu A^a,n SL,ch two super cluster unit
SSCl. The above i 6 t0^ most cluster unit in the hierarchy'
lw° super-super cluster'^ br°ker nelwork is consisled °

are

,
III i

111. INTRODUCTION TO WIHIDUM

distributed publish-subscribe middleware
which is composed of a hierarchy of broker nodes. A single
broker node is a self contained entity in which the overall
functionality of a messaging broker (Section I) is logically
encapsulated. A broker node is implemented as a web
service [5] in accordance with WS-Eventing [l]. Hence,
Wihidum provides interoperability for the heterogeneous

Wihidum is a

Com^unicatiorr iC°!Tlmunicates onlv win *b,s topology, each broker
a,t 11 belongs to- mln; Vhe c,uster controller of the cluster
hanncls. This is ;n 'm,Zln^ thc number of communication

a'gonthm [4] where hC°ntrast to NaradaBrokering routing
0 ers within the CX,st multiple channels among tlC

Sarne duster, mainly to achieve fail

52 £

resiliency. Unit controllers communicate with their super
sub and peer (only in the case of SSCC) unit controllers and
with the broker nodes of their cluster units. In that way
controllers act as a gateway to the outside of a cluster unit in
the network. How subscriptions and publications
propagated upward and downward the hierarchy through the
defined communication channels, is shown in figure 1
explained below.

Subscription management and delivery of publications is
accomplished by the inter broker communication
routing mechanism. When a subscription is received
broker node, it is persisted there as came from the subscriber
and is forwarded to its super unit as a broker-subscription
with the topic of the original subscription. The super unit
persists the subscription and forwards to its super unit and
the chain goes on until it is received at a SSCC unit. The
SSCC unit then forwards it to its peer units which are also
SSCC units. At that point the propagation of the
subscription terminates. In the other scenario, where a
broker node has already subscribed to its super unit the
propagation of the subscription does not happen beyond that
node and that criterion minimizes the messages passed
between the broker nodes. When a publication is received at
a broker node on a certain topic, the subscriptions and
broker subscriptions saved with that particular broker node
are filtered on the topic and the publication is delivered to
the corresponding subscribers and broker-subscribers
respectively. Then the publication is propagated along the
path of super units just as with subscription routing as
described above except that publication will not be
forwarded to the peer SSCC units when it is reached at a
particular SSCC node unless the peer SSCC units have
already subscribed on that topic.

Failure recovery: If a primary unit controller fails, we
appoint secondary unit controller for all the sub units inside
one unit to prevent the communication path being disturbed.
Above type of a failover mechanism is used in Apache
ActiveMQ [7] project. Secondly, to prevent the loss of
stored subscriptions if any broker node fails, replication of
database and restoring it with a new node is proposed.

unit

are

and

and
at a

Figure 2: Example tree topology network

Communication: In tree topology each broker
communicates only with its parent and children, minimizing
the number of communication channels. A broker
consolidates all the subscriptions that are registered w ith it,
whether from subscribers directly or from other brokers.

Figure 3: Subscriptions routing in tree topology

Note that the arrow heads in Figure 3 indicates the
direction of message propagation and the numbers indicate
the steps involved in order. If a subscription already exists in
one of the broker nodes it won't propagate the message in
that path thereafter.

When an application publishes information, the broker
who receives the publication, forwards it to all its neighbor
nodes and external subscribers which have valid
subscriptions for it.

Advantages: The main advantage of the tree topology is
its simplicity in structure unlike the more complicated
cluster topology. This topology is preferred with small scale
applications which prefer ease of management over high
performance.

C. Load Balancing (for both tree and cluster)
The broker hierarchy needs a load balancer for two

purposes. First, for the broker hierarchy to be viewed as one
single messaging broker form outside, there should be a
globally available common reference point to which the
users can connect. Second, there should be a proper
mechanism to distribute the requests coming to the
middleware, uniformly across all broker nodes. In order to
fulfill those two purposes Wihidum has an admin module
w'hich implements a simple load balancing algorithm similar
to DNS round robbing [12]. Publishers and subscribers first
send a request to it and receive a subset of addresses of
existing broker nodes to which the events and subscriptions
should be sent afterwards.

Advantages: Cluster topology avoids single point of
failure unlike in tree topology which has only one root node
which gets the entire load of the tree. It also balances the
load at each level of clustering in the hierarchy. There is
also a mechanism to recover the failure of a unit controller.
Although the hierarchy is not simple as in tree topology
which is described in section IV B, this topology' is more
desirable in a large scale distributed middleware.

B. Tree Topology>
The Tree topology which organizes the brokers in to a

logical tree like structure is easy to implement and manage.
It uses minimum number of communication channels
between brokers.

Organization: The main reference for defining the tree
topology is the IBM WebSphere MQ [10] broker network,
figure 2 shows an example of eight brokers laid out
according to tree topology.

53

1

increase the subscription throughput of two topologies in the
long run.

In further analysis we can observe that broker network
anged in cluster topology shows a higher throughput than

that of tree topology. This is due to the two different basic
routing mechanisms used in two topologies. In the case of
cluster topology, a subscription is routed only along its
super units which can be at most 4 nodes along the path
even in a complete network of three levels of clustering,
where as in tree topology, there is a high possibility that a
newly arrived subscription is routed to all the nodes in the
broker network along the neighbor nodes. We can also see
that throughput does not get doubled when going from one
broker to two brokers because the message routing overhead
is involved as the number brokers are increased.

B. Publication Throughput
Practically, the number of publication messages received

at a publish-subscribe middleware like Wihidum, will
outnumber the subscription messages. Hence, publications
throughput is of major importance, when considering the
performance of Wihidum.

V. PERFORMANCE ANALYSIS

Performance of the distributed middleware is mainly
evaluated in two dimensions which are: throughput and
response time.

We measured throughputs and response times by
increasing the number of broker nodes in both cluster and
tree topology and analyzed the characteristics shown with
respect to the aforementioned two parameters. We carried
out a performance testing in the Advanced Computing Lab
of Department of Computer Science and Engineering,
University of Moratuvva. Each computer had Pentium(R) 4
processor, 2.8 G Hz, having 512 MB and running Windows
XP. In order to provide sufficient CPU workload in the
computers which hosted the broker services we used number
of computers hosting subscriber services, listener services
and publisher services. To provide workload for one broker
service, in subscription throughput measurement, we used
eight machines each of which hosted a subscriber service
which sent 10,000 subscriptions and in publication
throughput measurement we used eight machines each of
which hosted a publisher service which sent 2000
publications.

A. Subscription Throughput
Graph 1 shows the throughput observed while varying the

number of broker nodes from 1 -5 in both cluster topology
and tree topology separately. The plot shows the number of
messages processed overtime with in a selected period of
100 seconds where the message processing has been
stabilized.

arr

Average Publications Throughput vs Number of
Brokers

H Cluster u Tree
■° 180co

160<u
c/3

c3 140
£• 120
g 100
<D
u 80o
a. 60Average Subscriptions Throughput

vs Number of Brokers c 40.2
3 20H Cluster t^Tree■g .2300 0sg 3

III
CuS. 250 1 2 3

Number of Brokers
Graph 2: Publication throughput variation with

number of broker nodes in middleware under cluster
and tree topologies

Graph 2 shows the publications throughput observed
while varying the number of broker nodes from 1-3 in both
cluster topology and tree topology separately. The plot
shows the number of publications processed overtime with
in a selected period of 100 seconds where the message
processing has been stabilized. The publication throughput
increases at an average rate of 70% for both the topologies
when a new broker is added to the middleware.

Unlike the subscription throughput, the publication
throughput is higher in the tree topology compared to the
cluster topology. This is due to the algorithmic designs of
the two topologies as described in Section IV. In the tree
topology the routing of publications only happens in paths
where there are interested subscriptions exist. But in the
cluster topology irrespective of the available subscriptions,
all the publications are routed upwards in the hierarchy, only
through the controller nodes up to the SSCC units. In other
words, for a particular publication arrived at a broker node
in a clustered broker network which has all three levels of
clustering, there will be a maximum of three brokcr-to-

-i-200

ĝ 150
c

.2 A100E.•c s? V-c
C/3

50

• ro H
21 3 4 5

Number of Brokers

Graph 1: Variation of subscriptions throughput with the
number of broker nodes in the middleware with regard
to cluster topology and tree topology

From graph 1 we can witness that both the topologies gain
the ability of handling more subscription requests as the
increment of the deployed broker nodes which is due to
utilizing increasing number of processors in distributed
manner. According to the routing algorithms of both the
topologies, if a particular broker has received a subscription
or a broker-subscription on a certain topic before, it has
already established its routing paths for that topic and hence
there will be no routing cost involved on future
subscriptions on the same topic. This criterion also helps to

54

broker message routing channels across the controller nodes
of the broker hierarchy in addition to the delivery of
publication along the existing subscribed paths.

Average latency in Wihidum middleware's
perspective vs Number of Brokers

H Cluster u*Tree
? 600 — -

C. Response Time

Response time of Subscription: Subscriptions :
time or in other words: latency is measured in
perspectives named latency in subscriber’s perspective and
latency in broker network’s perspective.

Latency in subscriber’s perspective is measured as the
average time between arrival of a subscription at a broker
node and sending of subscription response to the particular
subscriber. Following graph shows the measured latency in
subscriber’s perspective with broker networks up to three
brokers in the hierarchy with respect to both the topologies.

response
two

Number of Brokers

Graph 4: Variation of average subscription latency in
Wihidum middleware’s perspective with the number of
broker nodes with regard to two topologies

Average latency in subscriber's perspective
vs Number of Brokers

H Cluster UTree

The measured latency values shown in the graph includes
the routing cost and the cost of processing the subscription
and broker-subscriptions at each node along the routing
path. Since the routing cost is affected by the prevailing
network conditions, latency values can have a large range of
variation. Further, we can observe that cluster topology
shows a higher latency than tree topology with 3-brokers
which is due to the organization of brokers in two topologies
and the difference in complexity of routing Since routing
cost increases with the number of levels in the broker
hierarchy, here we increased the number of levels in the
cluster topology by one with the addition of each broker
node which resulted in 3 levels in cluster topology where as
there are only 2 levels in tree topology w ith a network of 3
brokers. Routing algorithm of cluster topology is more
complex w here role of the unit controller (see Section IV) is
checked before executing the relevant routing mechanism at
each broker in contrast to tree topology where a simple
routing mechanism is performed for all the brokers in the
topology.

Response time of Publications: Publication process is a
one way process at the publishers end. That is, whenever a
publisher publishes: it is an event notification where
publisher doesn't get a response with respect to his
publications. Hence, in a publisher's perspective response
time of publications is irrelevant. Nevertheless, architecture
of publication process of Wihidum has ensured an
uninterrupted publication inflow by enqueuing the
publications and by further concurrent processing of them.
Therefore, the only response time measure relevant to
publication messages arc the time taken to entirely finish the
processing, routing and delivering a particular publication
over the broker network. The publication response time was
obtained by averaging the calculated response times for
number of publications arrived at the middleware in a
certain time period when the publication process is
stabilized.

^ 20
B

S
3 10 t
&
>< o -

Number of Brokers
Graph 3: Variation of average latency in subscriber’s
perspective with the number of broker nodes in two
topologies

From the graph, we can observe that irrespective of the
growth of the number of broker nodes, both topologies
present latency values which lay in a small range, between
9-17 ms, to subscribers. This is achieved through the
asynchronous routing mechanism used in the middleware.
When a subscription is arrived at a broker node, it is
persisted and routing is handed over to an asynchronous
process and the response is sent to the subscriber. In this
way, routing latency (see Graph 4) is not involved in the
latency that middleware presents to the subscribers. With
regard to this performance measure, there is no difference

same sequence of
is sent

between the two topologies; since the
steps is performed until a subscription response
irrespective of the underlying routing algorithm. This is a
favorable feature of Wihidum which makes it suitable to be
used as a large scale distributed middleware that presents

irrespective of the number otleast latency to the users
broker nodes in the network.

Latency in broker network’s perspective is measured as
the average time between arrival of a subscription at a
broker node and its completion of processing, at the top
most broker in the hierarchy in the case of cluster topology
and at the last broker node in the routing path in tree
topology. Following graph shows the measured latency in
Wihidum’s perspective with broker networks up to three
brokers in both topologies.

throughput of the middleware increases significantly. This is
achieved by distributing the load among the broker nodes
and making them communicate in an efficient manner
according to the two routing algorithms. Comparing and
analyzing the obtained throughput results and the theoretical
aspects of two topologies, we can conclude that tree
topology is suitable to be used in medium scale middleware
due to its higher publication throughput and cluster topology
is suitable to be used in large scale or rapidly growing
distributed middleware due to its avoidance of single point
of failure.

This application independent middleware can be deployed
in variety of domains. Since the broker nodes which
compose the middleware are developed as web services,
interoperability is provided for large scale systems of which
clients can come from heterogeneous platforms. Another
interesting thing with this solution is that middleware can be
gradually grown larger by adding more broker nodes as the
load increases by minimizing resource wastage at the initial
stage and providing scalability as the requirement arises. In
that aspect this middleware can also be deployed and made
available as a cloud service.

Future work includes improving the formation of broker
network by taking the locality of the broker in to
consideration, improving the load balancing algorithm
which currently implements a round robin mechanism and
extending the filtering criteria to support advanced features
such as content filtering. Wihidum also provides the
flexibility from the design level to add more topology
algorithms for the broker network. Hence more topologies
could be implemented on Wihidum and they could be
analyzed and compared in performance wise in the future.

Response Time of Publications vs
Number of Brokers

H Cluster uTree
^ 1000
E,

1« 500 rcos-o
PC 0 r

1
Number of Brokers

Graph 5: Response times of publications under tree and
cluster topologies of Wihidum broker network

Graph 5 shows the publications response time observed
while varying the number of broker nodes from 1 -3 in both
cluster topology and tree topology separately. Response
time of publications depends on number of stored
subscriptions and the number of brokers in the hierarchy.
When the number of subscriptions is higher for a given
publication, the response time also increases because of the
relatively higher workload. The time to route the publication
message adds up with the increasing number of brokers.
Hence, in general case, the plot shows a gradually increasing
value for the publication response time for a growing broker
network under both topologies.

Despite of the higher publications throughput results of
tree topology than the cluster topology, we can witness that
the cluster topology shows a better response time for
publications in graph 5. In the tree topology, publications
are always routed across the subscribed paths over the
network. In case of cluster topology it can be a combination
of simple upward routing in the hierarchy and routing across
a subscribed path downwards the hierarchy. Routing across
subscribed paths includes the cost of filtering of stored
subscriptions based on the topic of the publication, which is
not present in the normal upward routing. This difference
was visible in the better performance of clustered broker
network in graph 5.

Furthermore, we can identify that both the broker
topologies have controllable measures to get better
publications response times as the network grows by
minimizing the number of communication channels.
According to the algorithms described in Section IV, tree
topology can increase the limit for the number of children of
a particular broker node whereas the cluster topology
increase the number of broker units per cluster unit in order
to reduce the number of communication channels that
particular message should pass across the network.

References

[1] Davis D., Malhotra A., Warr K. and Chou W.
Web Service Eventing (WS-Eventing), September 24,
2009. Retrieved March 02, 2010, from W3C:
http://www.w3.org/TR/2009/WD-ws-eventing-
20090924/.
Eugster, P.T., Felber, P.A., Guerraoui R. and
Kermarrec, A.M. The Many Faces of Publish
Subscribe, in ACM Computing Surveys, (June 2003),
114-131.
Kumarage D. Web Services Eventing with Apache
Savan/C. Retrieved June 5, 2009, from WS02 Inc.:
http://wso2.Org/library/3149#Filtering.
Pallickara S. and Fox G. On the Matching of Events in
Distributed Brokering Systems, in International
Conference on Information Technology: Coding and
Computing (ITCC'04), (2004), IEEE Computer
Society.
Wecrawarana S., Leymann F., Curbera F., Storey T.
and Ferguson D.F. Web Services Platform
Architecture. 2005.

[2]

[3]

[4]can

a

[5]
VI. CONCLUSION

The In this paper we present two algorithms for
topologies in a distributed broker network. We discussed,
compared and contrasted in detail different theoretical and
practical aspects of the two topologies.

According to the results we obtained from the
performance testing we conducted on Wihidum with respect
to two topologies, we could observe that as the number of
broker nodes grows, both publication and subscription

two [6] Widyantoro D.H., Iocrgcr T.R. and Yen J. An
Incremental Approach to Building a Cluster Hierarchy.

Data Mining,in IEEE International Conference
(2002).
Apache ActiveMq, 2004-2008. Retrieved October 2,
2009, from The Apache Software Foundation.
http://activemq.apache.org/.
Apache Savan/C. Retrieved May 30, 2009, from The

on

[7]

[8]

.............. -
56 k

http://www.w3.org/TR/2009/WD-ws-eventing-20090924/
http://www.w3.org/TR/2009/WD-ws-eventing-20090924/
http://wso2.Org/library/3149%23Filtering
http://activemq.apache.org/

Apache Software Foundation:
http://ws.apache.Org/savan/c/.
IBM-WebSphere Message Broker. Retrieved March
25, 2010, from IBM: http://www-
01 .ibm.com/software/integration/wbimessagebroker/.
IBM-WebSphere MQ. Retrieved March 29, 2010, from
IBM: http://www-
01 .ibm.com/software/integration/wmq/.
Introduction to Oracle Advanced Queuing. Retrieved
March 29, 2010, from Oracle Corporation:
http://download.oracle.eom/docs/cd/B 10501 _01 appde
v.920/a96587/qintro.htm
Simple Failover-DNS Round Robin Load balancing,
2004-2010. Retrieved Feb 27,2010. from JH Software:
http://www.simplefailover.com/scenario3.aspx.
The NaradaBrokering Project @ Indiana University.
Retrieved June 30, 2009, from Pervasive Technology
Labs at Indiana University:
http:/7www. naradabrokering.org/deployments/index.ht

[9J

[10]

[Ml

[12]

[13]

ml.
TIBCO Rendezvous. Retrieved: March 29,2010, from
TIB CO Software Inc.:
http://www.tibco.com/software/messaging/rendezvous/
default.jsp.
TIBCO Rendezvous datasheet, 2008. Retrieved April
01, 2010, from TIBCO Software Inc.:
http^/www.tibco.com/multimedia'ds-
rendezvous_tcm8-826.pdf.

[14]

[15]

http://ws.apache.Org/savan/c/
http://www-01
http://www-01
http://www-
http://download.oracle.eom/docs/cd/B
http://www.simplefailover.com/scenario3.aspx
http://www.tibco.com/software/messaging/rendezvous/
http://www.tibco.com/multimedia'ds-rendezvous_tcm8-826.pdf
http://www.tibco.com/multimedia'ds-rendezvous_tcm8-826.pdf

