
An Efficient Multicore Programming Toolkit for Java
G.A.C.P. Ganegoda, D.M.A. Samaranayake, L.S. Bandara and K.A.D.N.K. Wimalawame
Department of Computer Science and Engineering, University of Moratuwa, Sri Lanka

eclipse IDE{I0J. Toolkit is capable of converting the
sequential java project into a new project which optimised
based on the parallel patterns, using the meta information
passed by the user. In addition to this we nave proposed a
mechanism to achieve parallelism using the graphical
processing unit using the JCUDA [11] binding. With that our
toolkit can be used for both CPU and GPU parallelism.

In next sections of the paper is organized as follows.
Section II discusses the design of the JConqurr toolkit. Section
III discusses the annotation and directive approaches used in
task, data, divide and conquer, pipeline and GPU based
parallelism. Section IV discusses the performance of the
applications which are paralleled using the JConqurr toolkit.

Abstract— With the popularity of the multi-core architectures
there is a requirement for the toolsets which supports parallel
programming methodologies. In addition to that there is a need
for parallelization of existing applications according to the
underlying multi-core architectures. In this paper we discuss
about a toolkit JConqurr which provides a solution for the above
problems.
JConcurr is a multi-core programming toolkit for Java which is
capable of providing support for main parallel programming
patterns, which includes task, data, divide and conquer and
pipeline parallelism. Toolkit uses an annotation and directive
mechanism to convert the sequential application into a parallel
one. In addition to that we have proposed a novel mechanism to
achieve the parallelism using the graphical processing unit.

Keywords
Eclipse

multi-core, parallel programming, GPU, Java,
II. Design

In this section w e present the design of the JConcurr toolkit.
Figure 1 show s the high level architectural v.ew of the toolkit.
Eclipse is an IDE based on the plug-in base architecture [12].
Also the IDE includes plug-ins to support in developing java
development tools (JDT). We have considered the most of the
JDT components in designing of the toolkit. JDT Java Model
component used to navigate java elements in the project [13].
Eclipse AST API [14] used to manipulate sequential code and
to generate the code which enhanced with parallel patterns.
Eclipse Build API [15] used to build the new project in the
workspace.

At the first step developer has to use our annotation and
directive libraries to provide the meta information for the
relevant parallel pattern. Since Java annotations [16] does not
supports annotating statements inside the method we have
came across to use a static method library as the directive
mechanism. At the core of the toolkit we traverse through the
directory hierarchy of the project and create a project similar
to the existing one. Then toolkit goes through the each
compilation unit and analyse the annotations types used by the
developer. We use a filtering mechanism with the help of
Eclipse AST to filter the annotated methods. After that based
on the parallel pattern developer has specified is directed to
the relevant parallel handler as shown in the Figure 1. Each
handler manipulates the code according to the type of the
parallel pattern and generates the new methods which support
underline multi-core architecture. Finally project builder uses
those modified methods to generate the new compilation unit
and write them back to the relevant packages of the new'Iy
created project. At the end just a click of a button, developer

I. INTRODUCTION
In the advent of multi core processors, importance of

parallel computing is much significant in modem computing
era and the performance gain of the applications will mainly
depend on the maximum utilization across the cores existing
in the system. It is necessary that tools should exist to make
the full use of the capabilities offered by the parallel
computing. Even though current parallelizing compilers
supports only parallelization at loop level [1] it’s a hard task
to detect parallel patterns and do the conversion at the
compiler level.

Already there exists languages and libraries like OpenMP,
Cilk++,JCilk, TBB for C++ [2,3,4,5]language to support the
multi-core programming, but there is a lack in the tools for
Java language. We came a across libraries like JIBU. JOMP
and a extended language called XJava [6,7,8]. for Java
language. Within those there are only few libraries which are
capable of providing the data, task, divide and conquer,
pipeline parallelism patterns [9] in a one tool.

In this paper w'e discuss about a multi-core programming
toolkit for java language which uses an annotation and a novel
directive mechanism to provide meta information of the
source code. PAL [22] is one of the tools which use
annotations mechanism to achieve parallelism targeting
cluster networks of workstations and grids. PAL uses a
mechanism with the help of Java Jini Parallel Framework.
Even though we use annotations, compared to it we use a
different procedure. With the use of meta information we are
able to provide a source level parallelism instead of the
compiler level parallelism. Our toolkit comes as a plug-in for

*

41

can create a project similar to his current project which has
enhanced with the parallel patterns.

fiParallelTask.s
public void applyOperations(BufferedIraage input) {

Task!‘creates the grny image and n» fniTogram

Directives.startTasM);
Bufferedlmage gray = op.getGrayImage(input);
Planarlmage iml = Planarlmage.k'rapfle/)cte/-ec/Inage(gray)
(new Kain{)).generateHistogram(iml, "gray0);
Directives.endTask{);

Annotation and Directive Library Sequential Codc-i- Annotation + Directives

/. FasK?:creates the negative1 Av-age ar-o .its histogram

Directives.startfas/cO;
Bufferedlmage negative = op.getNegativelmage(input)
Planarlraage xm2 = Planarlmage.wrapRenderedliaage(negative)
(new Main()).generateHistogram(im2, "negative");
Directives.endTask();

Task Parallelism
HanderAnnotation Filter

’

.
Loop Parallelism

Handler
;

JParallel Pattern Handler
it Task3:creates the mirror image and its histogram
Directives.startTask();
Bufferedlmage mirror = op.getHirror(input);
Planarlmage im3 = Planarlmage.wrapRenderedImage(n\irror)
(new MainO) .generateHistogram(im3, "mirror");
Directives.endTask();

Div.de and Conquer
Parallelism Handler

Pipeline Parallelism !
Handler

Project Builder ;
:

)
GPU Parallelism

Handler
Figure 2: Annotation and directive approach in Task parallelism.

t
In task parallelism we provide directives to define tasks

and to define the barriers. Tasks has to be surrounded with
“Directi ves.startTask();” and “Directives. endTaskQ;” as
shown in the Figure 2. To define a barrier developer can use
the “Directives.BarrierO” directive after the relevant set of
tasks.

Eclipse JDT Eclipse UI & Other
PhiginsEclipse AST Eclipse Java Build Eclipse Java Model

Figure 1: Architectural design of the JConqurr toolkit.

At the conversion process toolkit first filter the methods
which have “@ParallelTask” annotations. Then the filtered
methods are submitted to the task parallelism handler. In the

Our toolkit mainly link with the Eclipse AST API in code handler toolkit analyses the directives used inside the methods
processing. Directives are used to structure the parallel pattern and filter the tasks that need to be parallel. In filtering tasks
approaches. Using those structures we generalise the patterns inside the methods we do a dependency analysis to filter the

variables which are linked inside the tasks. Mechanism is little

III. Annotations and Directive approaches

so that it will make easy for the developers to achieve the
relevant parallel pattern. We assume that the developer has the bit similar with the approach used in Embla [23]. Then the
basic idea of the organization of tasks inside the source code, method is recreated by injecting relevant code segments to run
In below subsections we discuss about annotations and the tasks using the java executor framework. Barriers are

implemented using the cyclic barrier
java.concurrent.util API [17].

[20] ofdirective structures used in the toolkit.

A. Task Parallelism
Task parallelism happens when we can execute set of

independent tasks (set of code segments) on different
processors simultaneously. The performance gain of the task
parallelism depends on degree of coarse granularity [19]. apply for different set of data. Degree of the granularity is
Most effective way to handle the execution of those tasks can dependent on the data size. Integration of task parallelism and
be achieved by using a pool of long lived threads. Thread pool data parallelism is still an open area [19]. In our toolkit we
eliminate the overhead of creating and destroying threads [18]. provide the data and task parallelism as two separate options.
In Java a thread pool is called an executor service. It provides We mainly focus on the “for loop” parallelization,
the ability to submit task, the ability to wait for a set of The annotation and directive approach for “for loop”
submitted tasks to complete, and the ability to cancel parallelization is shown in the figure 3. We used
uncompleted tasks. [18] So considering these facts we use the “@parallelFor” annotation to filter the methods. Then using
executor framework [17] to reformat the sequential code at the foe “Directive. forLoop();” we can select the “for loops” which
conversion process. In the source conversion process
submit the created tasks to executor framework. Figure 2
shows the example of annotation and directive mechanism
used in to achieve task parallelism.

B. Data Parallelism
Data parallelism occurs when the same operation has to

requires the loop parallelism. In addition to that shared
variables and barriers can be defined using the
“Directive.shared(identifierName)” and Directivc.barrier();
directives. Toolkit is capable of parallelizing multiple
loops” inside a method.

we

“for

42

problems are solved one after the other, but in converted
source code we enable parallel execution of these sub
problems via assigning them to separate tasks and executing
those tasks simultaneously. The required functionalities are
provided by java.util.concurrent [23] package.

-.oPara,
public void fsatrixHuK) {

Directives.forLoopl);
for (int i = G; i < 1600; i**} {

for (int] = 6; j < 1609; j**) {
for (int k = G; k < 10GO; k++) {

arr3[ij[j] *= arri[i](kj * arr2[kj[jj;

.For

} public class sortTask extends FJTask {
int{] workspace;
int lowerBO!jrwJ;
int upperBound;

}
>

}

public sortTask*int[J workspace, irt lowerEound. int upperBo
this.workspace = workspace;
this.lowerBound = lowerBound;
this, upper Bound = upperBojrid;

Figure 3: Annotation and directive approach in Data parallelism.

In the conversion process filtered methods annotated with
“@ParallelFor” are submitted to the data parallelism handler.
Based on the number of processors in the underline
architecture toolkit decides the number of splits that need to
do for the loop. Then the each splits of “for loop” organized as
tasks and submits them to the executor framework.

Divide and Conquer Parallelism
Divide and Conquer Algorithms can be identified as a

major area in which parallel processing can be applied. In
these algorithms a problem is recursively divided into sub
problems and executed. When the sub-problems are solved the
results of them are combined together to obtain the complete
solution to the original problem. [23] The sub-problems are
defined in such a way that they can be executed in parallel.
The basic requirement for these sub-problems to be executed
in parallel is that, a particular sub-problem needs to be
independent of the result of another sub-problem. In JConqurr.
we introduce a mechanism to enable parallel execution of
Divide and Conquer Algorithms. [9]

We use the java.util.concurrent package [24] in enabling
parallelism in JConqurr. This package provides efficient
implementations of utility classes commonly encountered in
parallel programming. [25]

}

public void run() {
sortTask taskl = null, task.2 = null;
if (lowerBound — uppe.r6cjnd)

return;
else {

int £3id = (lowerBound * uoperBound) / 2;
taskl = new sortTaskivcirkSpace, lowerBound, aid);
task2 = new scrtTasMworkspace. ®id * I, upcerBound)
terge/workSoace. lowerBound, aid ♦ 1, upperBound);

c.
)
if ({taskl != null) S£. (task2 *- null)) {

colnvokeltaskl, task2);
} else if (taskl != null)

invoke(taskl);
else if (task2 != null)

invoke(task2);
}

}
Figure 5: Usage of java.util.concurrent package for parallelizing merge

sort.
In conversion process a new inner class, extending class

FJTask (provided by java.util.concurrent) is added to the
corresponding class where divide and conquer algorithm is
found. The method having recursive calls to it-self is then
placed as the run method with recursive calls replaced with
new tasks generated correspondingly. In creating this class,
method local variables of the recursive method and the types
of variables which are passed as method arguments has to be
highly considered and defined. The source code segment in
Figure 5 shows the overview of the new class generated for
merge-sort algorithm.

Then the source code is analysed to identity the first
invocation of the recursive method and that invocation is
replaced with a generated new task correspondingly.

D. Pipeline Parallelism
Pipeline parallelism can be applied when a set processes

has to be applied on a set of data. To increase the efficiency,
the data set can be segmented and while one data segment has
completed the first process and enter to the second process,
another segment of data can enter to the first stage for the
execution of first process. In Pipeline processing, although the
time taken for processing a particular data set is not
minimized, an overall performance gain can be seen due to the
pipelined process. [9, 26] The Figure 6 illustrates the pipeline
process strategy.

SpivideAndConquer
public void irergeSortO {

int(l workspace = new int (noOfEletnents];
sort (workspace, 0, noOfEletnents - 1);

)
private void sort(int[} workspace, int lowerBound, int upper8our,d) {

if (lowerBound = upperBound)
return;

else {
int n\id = (lowerBound * upperBound) / 2;
sort(workspace, lowerBound, raid);
sort(workspace, mid + 1, upperBound);
raerge(workspace, lowerBound, mid + 1, upperBound);

}
}

private void merge(int(] workspace, int lowPtr, int highPtr, int upperBound)

Figure.4 Annotation and directive approach in Divide and Conquer
parallelism.

Basically we can identify existing divide and conquer
algorithms, by analysing the source code. If a particular
method is invoked multiple times from within itself on
independent subset arguments, those can be identified as
divided sub-problems. In sequential execution, these sub-

43

multiple output queues in a round robin fashion, so that
processing at stage (i) can be assigned to multiple threads. The
output of stage (i) will be written separately to individual
output queues. Stage (i+1) is considerate on retrieving data
from multiple input queues in the same order they were
assigned to multiple threads. Input/ Output processes has to be
carefully thought of to assure the input order of the dataset is
preserved.

Annotation and Directives in parallelizing pipeline
processes in JConqurr is designed as follows

• @ParallelPipeline: This annotation is used above
method in which pipeline process exists. The purpose
of this annotation is to ease the AST to filter the
required methods for the conversion process.

• Directive.pipe!ineStart(): In pipeline processes a
particular set of functions are applied to a set of data.
This results in a loop in the program, a while loop
most probably. To ease the extraction of the required
code segment for the conversion process, this
directive is used above the loop which contains the
pipeline process.

• Directive.pipelineStage({ input}, {output}): This
directive is used to separately identify the pipeline
stages. Within the loop, the code segment in between

directive and the (i+l)11’ directive is considered as
the process at ith stage. The last pipeline stage
includes the processes from last directive to the end
of the loop.

This directive generally takes two arguments,
namely, the input and output for a particular stage.
Depending on the application and the process in a
given stage, multiple inputs and/or outputs are also
possible. In such a scenario they need to be defined
as a set. In a nutshell, the input refers to what a
process has to dequeue from the input queue and the
output refers to what has to be enqueued to the output
queue.

• Directive.pipelineSplitStage({input},
number of split paths): This directive is used to
specify the stage containing a split mechanism,
which indirectly says that the load at this stage is
high. The inputs and the outputs will be specified in
the usual way and additionally, the number of split
paths will be specified. The number of threads
running at the particular stage will be equal to the
number of split paths specified.

• Directive.pipelineEnd(): This directive is used to
mark the end of the pipeline process. If there is a
particular set of functions to be done at the end of the
process, such as closing the input files, they can be
specified as a block following the above directive.

A sequential programme, marked according to the above
specification is ready to be converted into the parallelly
executable code via JConqurr.

Proctss 1

Piocets ?.

Process 3

Process 4

Time

Figure 6: Pipeline Process Strategy

JConqurr provides efficient processing by delegating
each pipeline stage to a separate thread of execution. [2] Data
flow among the processes is handled with the use of Java
bounded blocking queues.

Currently two flavors of pipeline processes are
facilitated in JConqurr. They are regular pipeline processes
and Split-join processes. [28]

a

1) Regular Pipeline Process: This approach can be used
when the load on each stage is almost equal so that the set of
processes on a particular dataset can be performed
sequentially. This is the most generic method of pipeline
parallelism. The converted pipeline process follows a
producer consumer strategy where each stage works as a
consumer for the previous stage and a producer for the next
stage. Stage (i) consumes the data produced or processed by
stage (i-1) and produces the data for the stage (i+1) by
performing the expected functions at that stage.

2) Split-Join Pipeline Processes: Being another flavor
of pipeline processes, this approach is used when the load on a
particular stage is considerably high so that the flow of
processes may block due to the excessive load on that stage.
To overcome this situation, the execution of the process
corresponding to that stage itself will be assigned to several
threads, so that the excessive load will be divided among them
in a round robin fashion. [3]

{output},
Stage 0-1) SUg* (I) Stage (J-rl)

rrwe»m(H)

Thread {>*1} I------»Thread (>-l)
Thread |IJJ

Thread (4)

Figure 7: Illustration of Split-Join Pipeline Process Strategy

In JConqurr, this is developed as an extended process
of regular pipeline process where, the basic functionality
differs only for intermediate input/output processes. The user
is facilitated to specify the number of split paths depending on
the load of the respective pipeline stage.

Depending on the directives specified, the tool needs
to recognize the split stage (stage (i)). Then after the data set
is processed by the stage (i-1), the output has to be written to

44

The figure illustrates a three staged pipeline process along bounded blocking queues. This ensures that the sequence of
with the corresponding annotations and directives, where the input data set is maintained via avoiding null returns and
pipeline parallelism can be applied. unsuccessful insertions. Further using bounced queues helps

to manage possible memory overflows as well.

E. GPU Parallelism
GPU parallelism is pretty much suitable when we have to

compute a large number of small calculations. Multiplication
of a matrix of a high order would be a good example.

Today, the programmable Graphic Processor Unit or
GPU has evolved into a highly parallel, multithreaded, many-
core processor with higher computational power and also
higher memory bandwidth. GPU is specialized for computing
intensive and highly parallel computations, exactly what is
needed in graphics rendering and this is also the very property
that we are using in our toolkit.

In the conversion process the toolkit first filters the
methods which have “@GPU” annotations. Then the filtered
methods are submined to the GPU handler via
“CompilationUnitFilterU Inside the handler the toolkit
analyses the method which is annotated and filters any “for”
loops which can be parallelised.

? Para 11 el Pi pel me
method<){

Directive.pipellneStart(j;
while(more input data){

Directivo.pipelineStage(input,
x = functionOne(input);
Directive.pipelineStage(x, y);
y » functionTwo(x);
Directive.pipelineStage(y, z);
z = functionThree(y);

x);

)
Directive.pipelineEnd();

>
f igure 8' Annotation and Directive Usage in Pipeline Processes

In the conversion process the three pipeline stages
will be handled by three threads correspondingly. The
dataflow among the threads is handled with the use of queues
where a thread will dequeue the data enqueued by the
previous thread or the input file. The dequeued data will be
subjected to the process at the current stage and will be
written to another output queue to be dequeued by the thread
corresponding to the next pipeline stage. Queues are shared
among the threads to enable a thread to dequeue the data
enqueued by another thread.

public void aatrixMultiplyO {
Directives.gpuforLoop{);
for (in? i = 9; i < height; l—} {

for (in? j = 9; j < width; }*-) {
CUlfjl=e;
for (iRt k = 0; k < size; {

CUim += MiUkj * B[kHj);
Internal Process

First the AST filters the methods marked with the
annotation @parallel pipeline. Then it searches for the loops
which are marked with the directive Directive.pipelineStart().
After filtering the corresponding loop with the pipeline stages
identified, the converted source code will be generated which
is ready for the parallel execution.

-
>

}
)

Figure 9: Annotation approach in GPU parallelism

NVIDIA has introduced CUDA [28], a general purpose
parallel computing architecture with a newr parallel
programming model. In this architecture we can instruct to
execute our programmes in GPU using this extended C
language. C for CUDA extends C by allowing the
programmer to define C functions, called “kernels’'. And
when you call such a function it is executed N times in
parallel by N different CUDA threads [28].

So our identified method is recreated as a CUDA file
which is an extended version of C language, and that is saved
in a separate file at the time of the conversion with the file
extension “.cu”. This file is created by injecting relevant code
segments to the method and according to the CUDA syntax. A
sample CUDA file is shown in the figure 10.

But to execute this code segment in GPU it must be
compiled using an “nvcc” [28]. “nvcc” is a compiler driver
that simplifies the process of compiling C for CUDA code.
Then the compiled code is saved in another separate file
which is a binary file and is saved with the file extension
called cubin’’. This compilation process, and saving it to a
separate file is also done during the conversion and it is done
using a command. Such command line argument is showed in
the Figure 11.

Handling threads
The number of threads created is equal to the number of

pipeline stages specified in the process. When specifying a
particular stage the user will specify the inputs and outputs to
that particular stage. The specified inputs and outputs are the
properties of the thread corresponding to that stage; hence the
constructor of the thread will depend on the passed arguments
of the directive.

The run method will contain the loop in which the
code segment for a particular stage goes in. The terminal
condition of the loop in a particular thread depends on the
place of the process to which the thread corresponds. For the
thread corresponding to the first stage of the pipeline process,
the terminal condition would be the same as in the sequential
source code. For the other threads, the loop would continue
until the input queue for that stage becomes empty.

Data Flow
The data How among the threads is handled with the use

of queues. For the convenience and reliability we use Java

45

Time (s)
9lohal__ roitl sas$> leKernel{float** A. float'" B, int size, IVmI'** Cj

(onst imivjnotJ tni tidx = thrtadldx.x;

for (iot j»S; j<5iz«; jf+)

Cltidx][3] ^ 0;
for ant k=v; k<size; k*+)

f

(
CftidXlfj] ♦* AftldXjfk} ♦ BtUljl; Co((

“^Ou^core
'■ Qusdcor,

>
}
_syncthread5{);

)

Figure I0: A sample CUDA file which is created using the annotated method.

Sizen

‘’<rrvcc coapiler path(nvcc.exe)>” -arch sn_10 -ccbin
"Microsoft visual studio bln path>” -xcompiler "/ehsc
/W3 /nologo /02 /Zi /mt" -maxrregcount«32 -cubin -0
“<f11 ePatn>\<cub1 nZFi 1 eNatao"
"<fi 1 ePath>\<cuFl 1 eNatne>"

Figure 11: A sample command used to compile the CUDA file into a CUBIN

Figure 12: Performance Monitoring in Task Parallelism in a 2.5 GHz
Quad core processor machine with a 4GB RAM.

B. Performance of Data Parallelism
In here we have tested the Eigen value calculation

application with the use of data parallel annotation and
directive schemes. In here also performance gain increased
with the granularity of the data parallelism. Considerable
performance has monitored in the quad core processor.

file.

After the conversion, the CUBIN file should be loaded
using the JCuda driver bindings [11]. JCuda is a Java bindings
for the CUDA runtime and driver API. With JCuda it is
possible to interact with the CUDA runtime and driver API
from Java programs, as it is a common platform for several
JCuda libraries. [11]

Using these libraries we can control how to execute a
kernel (CUDA function) from the loaded module, initialize
the driver, load the CUBIN file and obtain a pointer to the
kernel function, allocate memory on the device and copy the
host data to the device, set up the parameters for the function
call, call the function, copy back the device memory to the
host and clean up the memory, etc. So after the calculation
inside GPU is done, the result is copied back to our Java
project and carried forward. Using this method we are able to
occupy large number of cores in the GPU and get results
calculated simultaneously with increased performance.

IV. Performance

We have tested our toolkit in converting projects and
applications into parallel enhanced projects. Projects are tested
in both sun JDK 1.6 and OpneJDK 1.6 environments. In
below sections we discuss the performance of each parallel
pattern using the most standard applications. Applications are
tested on dual core and quad core machines.

Performance of Task Parallelism
Below graph shows the performance analysis of converted

matrix multiplication project vs. the sequential matrix
multiplication project. In here developer has used the task
parallel annotation and directives approach. The graph clearly
shows the exponential growth performance gain with the
incensement of the coarse granularity. We were able to
achieve considerable performance gain in quad core processor.
During the testing both JDK versions showed us similar
behaviour.

Time(s)

—SingleCore

-as- 0u3l Core

- c Quad Core

Figure 13: Performance Monitoring in Data Parallelism in a2.5 GHz
Quad core processor machine with a 4GB RAM.

C. Divide and conquer
The graph in figure 14 depicts the results of performance

testing of sequential and parallel execution of merge sort
algorithm. When the graph is analysed it is seen that the
performance of the parallelism enabled source code exceeds
that of the sequential code only after a certain limit. This
limitation occurs because when the data to be processed is low,
the overhead caused by the threads exceeds the achievable
gain of performance. But when the data to be processed is
high the gain of performance in parallel execution is
considerably high.

A.

46

Time (ms) T«v*(.T«Sj

1400 ■ 51000 •

1200

1000 J

l-t'B-uen&ii StecuOw■ «■300

—*— S-tquerttaI CaecvSioc. -* • = »<*i-eT ccr«600 .:: :—B- Z*e cutter

i-m'- et itezutar -n Gv*0-ctve400

200

0 S fie(n)
S'JVIt!)0 500000 1000000 1300000 2000000 2SOOOOO 5000000

Figure 14: Performance Monitoring in Divide & Conquer Parallelism in
Merge Sort.

Figure 15 depicts the performance analysis of quick sort
in sequential execution and in parallel execution in dual core
and quad core machines. The performance has improved with
increasing size of the problem and the number of processors.
At considerably small problem sizes, quick sort also
demonstrates the behaviour of the sequential programme
being faster than the parallel programme.

Figure 16: Performance monitoring in pipeline parallelism - File Processing

According to the representation of Figure 16. it can be
clearly seen that the performance of the parallelly executable
code is a way beyond than that of the sequential code. Further
the increasing gap in between the two plots illustrates the
increasing performance gain with the increasing number of
data to be processed.

The Figure 17 depicts the results obtained for a similar
file processing application with unbalanced load. The
calculations are designed in such a way that, the load at a
given stage is a multiple of the toad at other stages. When the
regular pipeline process is applied on the given application,
the performance gain is limited because of the bottleneck at
the stage with higher load. When the split-join process is
applied this bottleneck is avoided and hence results in an
excellent performance gain.

Time(ms)

Time (ms)

12000] -

10000

8000 T
—»— Sccuenjul E'CCu'iCn6000 j

-G— I’sraiicl execution .r> Cuil-ccre
4000 •; 100000

s^-il Execution <n Quad-core 90000
2000 r

80000

70000o 4----- Size(o)
— 'iequentwl execution

Figure 15: Performance Monitoring in Divide & Conquer Parallelism in
Quick Sort

60000

soooo --•5— PafcKet Execution with
split-lorn40000

Pacstte* Execution as a
Rej{-J!a» Pipeline

30000

20000

10000
D. Performance of Pipeline Parallelism
In this section we discuss the performance analysis for the

test results for pipeline parallelism. The process was tested
with using two applications mainly; a file processing
application and a data compression application.

Number of Elements0

o *>000

Figure 17: Performance Comparison of Regular Pipeline and Split-join - File
Processing

But most of the real world examples fail to fulfil the
eligibility requirements for the pipeline process to be applied.
Since the thread behaviours are dependent on the decisions of
the JVM, the performance gain is not guaranteed. But any
application with considerably higher load at each stage is
eligible for the conversion process.

I) File Processing: This is a hypothetical application
where a programme reads a text input and applies a set of
heavy numerical calculations for the data read. For the testing
purposes, the calculations were designed in a way that each
stage carries equal loads. The following graph depicts the time
taken for processing different sizes of data sets.

47

2) Data Compression: This is another example where NVIDIA GeForce 9 Series one which is the ninth generati0n
we compress a file using java.util.zip. The time taken for of NVIDIA's GeForce series of graphics processing unjts
compressing different sizes of files is measured over time. The More specifically the 9800GX2 model utilizes two separate
graph in figure 18 depicts the results obtained. 256-bit memory busses, one foi each GPU and its respective

512MB of memory, which equates to an overall of 1QB 0f
memory on the card [28]. In this program a matrix of some
high order was multiplied by another matrix. There what we
gained was, when the order of the matrix is too small, the time
taken by the GPU is higher than the time taken to calculate in
the CPU sequentially. When running on GPU, we have to g0
through some over heads like the Java bindings, memory
allocation for the variables in the device (GPU), copying the
values to the device, copying back the results, clearing the
memory etc. So what we observe was that for small order
matrices the above mentioned overhead heaver. But when the
order of the matrix is increased at a certain level it gave a
performance gain. So when the calculation is bigger it has
overcome that overhead. The results were analysed in the
following graph.

Thm(»)

— S'tqueM sa!

—~~ CtecxA-on

file Slit fMB)

350

Figure! 8: Performance monitoring in pipeline parallelism - Data
Compression v. Conclusion And Future work

We have discussed about a toolkit which can heavily
The data compression example demonstrates an support multi-core programming in Java. In addition to that

unexpected behaviour with respect to other parallel we have discussed about a novel technique to achieve
applications. When the size of the file to be compressed parallelism using the CUDA based graphical processing units,
exceeds a certain limit, the performance of the parallel Tool kit is open for several future enhancements,
programme degrades. The reason for this can be interpreted as
the unbalanced load among the stages of the pipeline. The future enhancement so that without the use of annotations and
process consists of two steps namely, reading the input file directive we can automatically fulfill the parallel optimization,
and writing in to the zip output stream. When the file size to This may provide an opportunity to convert the legacy
be compressed is extremely large, the load on the read process application to optimized parallel applications,
becomes negligible compared to the write process. Therefore
the parallel programme fails to exceed the overhead of the techniques will need to be integrated into JConqurr to provide

support to automatic parallelization. Mainly dependency
analyzer can be used in a way to identify the sequential code
segments which can be parallel. With the use of these features,
the complexity of the annotation and directive mechanism can
be avoided which would benefit the pipeline processes greatly.

Improvements will need to be introduced in order to
reduce the overhead of communication and t hread scheduling.
Currently the applications of pipeline and split join processes
are limited, due to these facts. To get the maximum use of the
conversion process, better communication mechanisms will
have to be thought of.

Considering the GPU based parallelism we look forward
to have a mapping between mathematical functions of Java
and CUDA. Another area to be improved is to utilize both
CPU and the GPU to achieve parallelism so that while one
computation happens in the GPU, CPU can carry out the other
independent tasks. But tool kit provides huge flexibility to the
developer. It opens the gate to developer to think correctly and
utilize the code segments so that he can achieve parallelism in
different manner. For example it’s possible to call the GPU
based parallel method through a CPU thread. In terms of these
facts JConqurr can consider as a more flexible toolkit for
multi-core programming.

Automatic parallelization is one area we look forward in

Further a dependency analysis tool and load balancing

thread execution and communication.

E. Performance of GPU based Parallelism

—*—Parallel Execution(GPU)
Sequential Execution

Order of Matrix

Figure 19: Performance Monitoring in GPU based Parallelism

In this section we discuss the performance analysis for a
program which was run in the GPU. The GPU used was an

48

References [23} Radii Rugina, Martin Lmard. “Automatic Paralle'ization of Divide and
Conquer Algorithms," in Proc. 7* ACM SIC?LAS symposium on
Principles and practice of parallel programming, pp 72-83, 1999.

[24] ‘'Overview of package util concurrent Release 1.3 4.’’ (Online]
Available:
hnpi//g.oswcgoedu/dl/classes/EDU,oswcgo/cs/dl'utiL/cancurrertf/intro.
html. [Accessed 20/10/2009],

[25} Doug Lea. “A Java Fork/Join Framework,” in Proc of the ACM 2000
conference on Java Grande, pp.36-43, 2000.

[26] Michael I. Gordon, William Thies. Saman Amarasinghe, “Exploiting
Course-Grained Task, Data and Pipeline Parallelism in Stream
Programs.” in Proc of the 2006 ASP LOS Conference, pp 151-162.
2006.

[27] Bill Thies, Michal Karczmarek, Saman Amarasinghe. “SircaMJT A
language for Streaming Applications.” International Conference on
Compiler Construction. Grenoble. France. Apr, 2tX)2.

[28] “NVIDIA CUDA™ Programming Guide”. [Online]. Available:
http://developer download nvidia.com/compute/cuda3_0.toolkit/docs/
NVIDIA_CUDA_ProgrammingGuide.pdf. [Accessed 30/04/2010].

[1] Mamsh Gupta, Sayak Mukhopadhyay, Navin Sinha, Automatic
Parallelization of Recursive Procedures," International Journal of
Parallel Programming, v.28 n.6, p.537-562, Dec 2000.

[2] Barbara Chapman and Lei Huang. “Enhancing OpenMP and Its
Implementation for Programming Multicore Systems ” Invited Paper
Proc PARCO, 2001: pp. 3-18.

[3] R. D. Blumofc, C. F. Joerg, B C. Kuszmaul. C. E Leiscrson, K. H.
Randall, and Y. Zhou, “CILK: An efficient multithreaded runtime
system, in Proc 5th ACM S/GPLAN Symp. on Principles and
Practices of Parallel Programming, pages 207-216. Jul 1995.

[4] J. S. Danaher, “The JCilk-l Runtime System”, Master s thesis. Mas
sachusetts Institute of Technology Department of Electrical Engineer
ing and Computer Science, Jun 2005.

J5] James Reinders, Intel Threading Building Blocks: Outfitting C^~ for
Multi-core Processor Parallelism, Ia ed, O'Reilly, Jul 2007.

[6] AXON7 MULTICORE SOLUTIONS While paper O Axon 7 — Mar
2008.

[7] Mark Bull, Scott Telford “Programming Models for Parallel Java
Applications,” Edinburgh Parallel Computing Centre, Edinburgh, EH9
3JZ,2000

[8] Franko Otto, Victor Pankratius, Waller F.Tichy. “High-level Multicore
Programming with XJava”, 31'1 ACM/IEEE International Conference
on Software Engineering (ICSE 2009). New Ideas and Emerging
Results. May 2009.

[9] Timothy G. Mattson, Beverly A. Sanders, Berna L. Massingill,
Patterns for Parallel Programming, Addison-Wesley Professional,
Sept 2004.

[10] Yonghong Yan, Max Grossman and Vivek Sarkar “JCUDA: A
Programmer-Friendly Interface for Accelerating Java Programs with
CUDA,” Europar 2009.

[11] “Eclipse.org home”. [Online] Available: http://www.eclipse.org/.
[Accessed: 30/04/2010].

[12] “Notes on the Eclipse Plug-in Architecture". Azad Bolour and Bolour
Computing.
http://www.eclipse.org/articlcs/Article-Plug-in-
architccture/pluginarchitecture.html [Accessed: 30/04/2010].

[13] "Eclipse Java development tools (JDT)” [Online]. Available:
http://www.eclipse.org/jdt/'. [Accessed: 30/04/2010],

[14] Lulian Nemtiu, Jeffrey S. Foster and Michael Hicks. “Understanding
Source Code Evolution Using Abstract Syntax Tree Matching,” In
Proc. International Workshop on Mining Software Repositories (MSR),
pages 1-5, Saint Louis, Missouri, USA, May 2005.

Component”.
http://www.cclipse.org/jdt/core/index.php. [Accessed 30/04/2010].

[16] Tongxin Bai, XingShen, Chenliang Zhang,William N.Scherer.Chen
Ding and Michael L.Scott. “A Key-based Adaptive Transactional
Memory Executor.” Computer Science Department. University of
Rochester, Computer Science Department, The College of William and
Mary, Computer Science Department, Rice University, Tech.Rep 2007.

[17] "JDK 5.0 Developer’s Guide: “Annotations” Sun Microsystems”.
Available:

http://java.sun.eom/j2se/l.5.0/docs/guide/language/annotations.html.
[Accessed: 30/04/2010].

[18] Maurice Hcrlihy and Nir Shavit. The Art of Multiprocessor
Programming. Morgan Kaufmann. 2008.

[19] Carwyn Ball and Mark Bull. “Barrier Synchronization in Java”
Tech.Rep High-End Computing programme (UKIEO, 2003.

[20] Ursula Fissgus, Thomas Rauber, Gudula Rungcr. “A Framework for
Generating Task Parallel Programs,” In Proc 7th Symposium on the
Frontiers of Massively Parallel Computation - Frontiers, pp.72-
80,1999.

[21] M.Danelutto, M.Pasi. M.Vanncschi. P.Dazzi, D.Laforenza and L.Presti
“PAL: Exploiting java annotations for parallelism.” in European
Research on Grid Systems, pp 83-96. Springer US 2007.

[22] K.-F. Faxon et al., “Embla - data dependence profiling for parallel
programming.” in Complex, Intelligent and Software Intensive
Systems, 2008.

[Online], Available:

[15] “JDT Core [Online]. Available.

[Online],

49

http://developer
http://www.eclipse.org/
http://www.eclipse.org/articlcs/Article-Plug-in-architccture/pluginarchitecture.html
http://www.eclipse.org/articlcs/Article-Plug-in-architccture/pluginarchitecture.html
http://www.eclipse.org/jdt/'
http://www.cclipse.org/jdt/core/index.php
http://java.sun.eom/j2se/l.5.0/docs/guide/language/annotations.html

