
Music Search Engine Using Audio Input
Nimila Amarasinghe, Nuwan Senaratne, Dinesh Senaratne, Greshan Kinsly and Shehan Perera 

Department of Computer Science and Engineering, University of Moratuwa, Sri Lanka.

Abstract— Today we are living in a world where music has 
become a trend. The various preferences over songs have made 
the music world more complicated. This complexity has made the 
searching of songs more difficult. People have to remember 
metadata of songs in the case of searching a song using most of 
the current song search engines |1), [2]. But that is not an easy 
thing since there are billions of songs in different languages and 
people naturally cannot remember the lyrics of songs. People 
naturally used to remember the melody of songs rather than its 
words. So, there is a necessity of having a song searching method 
with the melody of songs. This research paper discusses the steps 
of a process of searching songs using melody. People can give the 
melody of a song as the input to this process and search for songs 
with similar melodies.

Keywords— Frequency Pattern Matching, Musical Notes 
Approximation, Music Search Engine, Melody Transcription, 
Acoustic fingerprinting

Mdod\ ^
TmscriptioB

Sotnd Wave 
RfforditgUser Inputs

Musical Notes 
Approximation

Melodx \ 
Compariijj i

Sorted List of 
Matched Soajs

Music Database
Original songs

Fig. 1. System overview
I. Introduction

II. Melody Transcription

Music is a universal language. Hence it has evolved 
simultaneously with the evolution of the human being. Due to 
the rapid developments that have taken place and are still 
taking place, music has become an industry in the modem 
world. The World Wide Web came up with different music 
search engines [1] to fulfill this vast demand to a certain 
extent. Most of those existing music search engines require 
metadata (Title, Name of the artist, lyrics. Track details etc.) 
of the songs as the searching queries [1], [2].

Naturally the human can remember the melody or the 
rhythm of a song rather than the Meta data of it. Most 
probably the users of those music search engines can't 
remember the metadata related to the songs that they want to 
search. Also there are people who prefer music and songs of 
other cultural and regional languages which they do not 
understand. Also some song listeners hear only a part of a 
song that they desire and they may not be able to find the song 
from the existing systems with those limited details they have. 
For such scenarios the music listeners face a lot of 
inconveniences. Hence the music listeners desire to have a 
proper music search engine which can take an audio input of 
singing or humming [2].

Properties of music have been considered to generate this 
method and more priority is given to the properties which 
make a great effect with a song [2], Frequency is such major 
property which can be used to identify a song when we hear.

Our system is addressing this area of music searching 
which provides compared song list for a given voice input. 
The overview of searching songs in our system is shown in the
Fig I-

When addressing the problem of preparing a music search 
engine using audio input, consideration must be given to the 
unique feature extraction [2], [3] from the music that reside in 
the database. The concepts of acoustic fingerprinting [2]-[5] 
can be use in that kind of scenarios.

In simple terms acoustic fingerprinting is extracting unique 
features from audio files which can be used to distinguish a 
particular audio [2], [4]. Those unique features can be 
extracted while preserving the major parameters of acoustic 
fingerprints such as Robustness, Reliability, Granularity, Size 
of the fingerprint and the Search time [4].

Out of the three main properties of the sound (Amplitude, 
Timbre Quality and Pitch) the Pitch (Frequency) is the unique 
feature to distinguish different audios. Hence our system 
performs some frequency analysis process in order to extract 
the fundamental frequency, as the first step of music 
information retrieval. This feature extraction process acts in 3 
steps, segmentation [3], [5j, [6], frequency extraction [5], [6] 
and converting to musical notation [6].

A. Segmentation
Our system takes audio input as WAV [7] file which has 

two channels (Stereo) and 16-bit samples in the rate of 44.1 
kHz [6]. In the first step the audio input is divided into 
segments. This division is similar to the conversion of the 
continuous audio signal into a digital signal which provides 
simplicity in frequency extraction [8]. (Obtaining the 
frequencies of each point in the continuous wave is infeasible.) 
The main factor in segmentation is the segment size [3], [6). 
The segment size should be preserved significant amount of 
spectral characteristics of the audio signal. Hence our system 
uses some milliseconds (approximately 90ms) as the segment 
size to reduce the disturbance for the continuous audio signal 
while keeping a standard pitch resolution of the adjacent 
segments. Then audio signal with the logical segments is

31



Assume, Time vs. Frequency graphs of two audio clips of 
same song sung by two different users.

User I

subjected to the frequency tracking process to obtain common 
frequency value for each segment.

B. Frequency> Extraction
The frequency extraction module performs a mathematical 

operation called transform; which shifts the input audio 
signals which in time domain to the frequency domain. In our 
system we use Fourier Transforms as the pitch extracting 
method of each segment in the input audio [3]-[6].

Frequency

450 -------- - Before
round to 
note

440 r\ 
430 - 
420 !-

i

410 r 
400 4- 
390

A\wi90ms«*
i — « After 

Round
toTime-F relative
Note1 3 5 7 9 11

l

l User 2

Frequency
450

——-Before 
round to 
note

Frequency 440

430

420

410 — -After 
Roundf. f2 fj f4 fs

400 r-* to
390 4-7—r Time relative

Note
Time

1 3 5 7 9 11Fig. 2. Melody Transcription

Fig. 3 Effect of rounding the frequency values to nearest musical notes

As in Fig. 3 although the patterns of the same song sung by 
two different users are differed from each other, the patterns 
that obtained by rounding to nearest musical notes is exactly 
the same. Likewise this process reduces the randomness of the 
user inputs and makes them more unique.

As illustrated in the Fig. 2 all information in each segment 
passes through the pitch tracker and it obtains a common 
frequency for each frame [6]. Those pitch values are stored in 
a system specific vector which has time as the independent 
factor while pitch values as the dependant factor. Frequency 
extraction process can also be named as the melody 
transcription engine because we are actually distilling the 
melody of the audio clip as frequency vector [6], [8]. It is 
possible to use this result vector as a basic acoustic fingerprint 
due to the existence of all parameters which prefer to be 
occurring in a robust audio fingerprint. Due to several 
practical issues in general user inputs this frequency vector engine which take audio inputs, there are three main concerns
cannot be used directly in the comparison process. Hence this 1° consider by the designer of the system. 1 hose are the pitch
basic audio fingerprint subjects to further processing to issue (Differences in pitch values between the user input and
improve its uniqueness to distinguish itself among other the relevant original song), the tempo issue (Randomness of
audios. the tempo in the different parts of the user input) and existence

of musical instrumental parts in the original song, 
methods of overcoming those problems are discussed within 

The result frequency vector of the frequency extraction the description of the searching algorithm of this paper, 
process is further processed by rounding the frequency values The songs database is formed by passing all the original 
of it to nearest musical note’s frequencies. Generally the exact songs through the audio fingerprint extraction process and
comparisons between the original songs and the user queries storing only the musical notes approximated frequency vector
are infeasible due to existence of random errors in the user along with the other details of the song. A lso when a user
hummed clips. Hence this process is followed in order to provides an input it is also following the same process before
change the random pitch values in practical frequency vectors getting into melody comparison engine,
to nearest standard values. Following real world example 
illustrates how the random errors in user inputs handled within 
this phase of acoustic fingerprint extraction process.

III. Melody Comparison

Generally when someone is going to prepare a music search

The
C. Rounding to Musical Notes

A. Melody Comparison Engine
In this phase all the fingerprints of the original songs fetch 

to the main memory and compare with the user input one at a

32



time. Actually the comparison follows a method called This process continues until either user input frequency 
frequency pattern matching in order to find the melodic vector ends or non- comparison point occurs. The process 
similarity between the songs. Finding the exact place of the moves to the next iteration which starts comoarison from the 
original song where the user starts singing is another second segment of the user query, if the previous activity 
important factor to be considered. In order to find this exact 
place our system use sliding window mechanism of user query' system allows sliding through not only the original song but 
along with the original song.

Another important action is performed to extract the vocal 
frequency range from frequency vectors of both the original voice of the user query' w'hich occurring due to not start 
songs and the user queries before focusing on the comparison singing just after the recorder starts recording). After ending 
between them. We use the range 90Hz - 800Hz. This the slide through the user input the comparison process moves 
extraction do not totally eliminate musical instrumental parts to general sliding window which slides on the original song, 
rather reduces the effects of it as well as the effect of

ended by ending the user query vector. This new iteration

also the user query as well which helps to overcome the initial 
error of the user query (Initial parts that have low level of

If the pitch variance doesn't belong to the defined regions 
background noise of both, while preserving the original time the comparison engine shifts the normal comparison to a

special king of mechanism which handles the tempo deference 
Suppose we have two frequency vectors, one for hummed between the user query and the original song. Tempo issue 

song and other one for original song. Our objective is to handling mechanism keeps an assumption on the tempo 
compare the hummed song with each of the original songs in differences, 
the database [6] and get some accuracy value according to the
comparison strength. If the comparison gives higher accuracy, limit of double the speed or half the speed of original song, 
it means the hummed part and original song part matches well.
So, according to the accuracy, we can sort the result song list assumption. If the tempo of the hummed sample is lesser than 
such that the songs that have heights score in the top of the the original one, the comparison is done as in the section 1 in

Fig 5. The comparison follows the other way as section 2, if 
In the first step the initial frequency segment of the user the tempo of the user query is more than the original one. 

query compares with the first segment of the original song and 
calculates a frequency ratio. This frequency ratio is calculated 
to find the frequency difference between the frequency 
regions of the original song and the user query' (A song can be 
sung in different musical octaves). An expected value is 
computed using this frequency ratio and the frequency value 
of the second segment of the user query. Then the calculated 
expected value compares with the second segment of the 
original song. Most probably in real world examples (Fig 4) 
those expected values are different from the original value. So 
the algorithm calculates another parameter called pitch 
variance, by getting frequency ratios between the expected 
value and the corresponding original song value.

spans of them.

Assumption: Tempo of a query cannot be exceeded the

All the comparisons in this phase consider the above

result list.

(A) — User Input
(B) - Original songSection 1

](A)
K i 1-1-3 (B)

Section 2
1(A)

7
J (B)

261 293 329 349 392 User Input
Fig. 5 Tempo issue handling process l

The same method which use in the direct comparison, is 
also using in this step too (Only the comparing segments are 
different). For example suppose the second comparison of the 
first iteration found a tempo issue and also it found a 
comparison point when following the method as in section 1 
in Fig 5. The tempo issue is considered for that comparison 
only. In the next comparison of the same iteration the 
algorithm follows the normal direct comparison rather than 
the mechanism in the section 2. So it’s just skip the first 
segment of the original song as illustrated in the Fig 6.

146Expected
value

Frequency
ratios

Pitch Variance - 1.06
0.5

130 138 155 174 1% 185 207 220 207 185

Original song
Fig. 4 Process in the melody comparison engine

The pitch variance value 1.06 in Fig 4 is a constant for 
frequency ratio of adjacent musical notes. We use this 
property to overcome the pitch differences between user 
queries and the original songs. If the pitch variance value of 
the comparison lies within the defined threshold boundaries a 
score value is adding to the score of the current iteration, by 
the score function with the consideration of comparison pitch 
variance value. Also this comparison is considered as a 
matching point.

33



studies were conducted to test the accuracy of the results and 
the performances (search time) of the system.

A. Accuracy Test

For this test we used a database which consists of 200 
original songs from different artists, different music types 
(Classical, Pop etc.) and different languages. Also as the user 
inputs, we collected 200 different user queries of sung or 
hummed from 8 different users.

Some factors were observed during the testing and 
tabulated them in a standard way. The factors that were 
considered can be listed as follows.

• Name of the user
• User query title
• Indication whether the user query is aligned or not to 

the exact place.
• Obtained score value
• Place of required song in the search result
• Score of the first song of the search results(if required 

song is not the first song)
• Score of the 2nd song(if required song is in the first 

place)
• Matching duration of the user query in milliseconds.
• Matching duration of user query in milliseconds for the 

first song (if required song is not at the first place)

User Input

■>

T Originiil Song
Skipped
Segment

Tempo
Issue
occurred
Segment

Fig. 6 Tempo issue handling process II 
Fig 6 represents how the 3rd, 4 th and the 5,h comparison of 

the first iteration occur. Those comparisons done as same as 
the direct comparison happens and the tempo issue handling 
processes calls only if this progression found another non- 
comparison segment in either user query or the original song.

Suppose the 4th comparison of the Fig 6 found another 
tempo issue and also found a comparing point while following 
the procedure in section 1 of Fig 5. In this scenario the 1st 
segment of the user query is compares with both the 2nd and 
3r<rsegment of the original song. This situation is considering 
as occurring of mismatch point. Our comparison algorithm 
keeps a threshold value for number of consecutive mismatch 
points (5 mismatch points) to prevent propagating the 
comparison of one segment in either frequency vector with a 
lot of segments in other vector. If the progress of the iteration percentage values for correct alignments (If the user query is 
exceeds the above threshold value it skips the segment of been aligned to the correct place of the required original song, it is 
compared with five other segments and starts comparison considering as a correct alignment) as well as the number of

times the required song came to the top 10 of the output song 
After single iteration in the melody comparison engine, the list. Our observations are tabulated in the following graph, 

score values that obtains from the score function for each

This test was mainly focused on obtaining an average

from the next segment.

comparison point adds together to get the collective score 
value for that position of the sliding window mechanism. 
Then it provides to the accuracy value calculation which 
computes accuracy value with the consideration of the data 
collected within the melody comparison engine. Following 
sections describe about the tracking parameters and the 
accuracy ftinction.

TABLE I
Results of the Accuracy Test

Number of 
songs in the

Number of 
required songs 
that came to 
the top 10

Number of 
correct 

alignmentstest

200 148 112B. Tracking parameters

• Number of compared points (X) (Total number of 
comparison for a particular iteration)

• Consecutive mismatch points
• Pitch Ratios
• Total number of matching points in the user query (Y)
• Collective score (S) in each iteration.

C. Accuracy Function

• Accuracy Level = (S/X )* (Y/Length of the user query)

Finally a maximum value is selected among all the 
iterations accuracy values of each particular user query- 
original song pair. The result song list is prompting to the 
users in the descending order of this accuracy value.

According to the observations, 148 user queries out of 200 
were aligned to the exact place of the required original song. 
The percentage level for correct alignments is 74%. Also the 
required original song was retrieved along with the first 10 
songs of the result list for 112 user queries out of 200. Hence 
the calculated percentage for this result is 56%. Those values 
may vary with the users and the environment which they are 
recording songs etc.

B. Performance Test

The performance test was also conducted with the same 
database that used in the accuracy test. In here we have 
prepared several user queries of same song which have 
different lengths. The results obtained from this test are 
tabulated in the table 1.

IV. Results

initially most of the testing was focused on calibrating the 
search algorithm parameters. After the calibration some case

34



TABLE II
Results of the Performance Test This graph has a minimum. So as shown in the above graph 

we can see the maximum accuracy has come for user queries 
around 9-10 seconds. Hence the user has to provide the user 
queries which have the length about 10 seconds to get the 
maximum accuracy of the comparison algorithm.

Length of the 
user query 
(Seconds)

Place of the 
required song 
in the result 

song list

Time taking to 
provide results 

(Seconds)

4 32 20.60
V. Conclusion

8 2 30.14
In this approach we use the method called frequency patter- 

-n matching using musical notes approximation. Actually this 
is a melody comparison method which can be used to compare 
two audio clips and calculate an accuracy value for the 
melodic similarity between them. Hence this approach can be 
used in developing song searching method which takes audio 
files as the input queries. Also this method can be used in any 
other scenario where the comparison of melody of the music 
involving.

12 3 39.44

16 4 51.02

20 4 63.83

The searching time for a given audio input is increased with 
the length of the input. That was one of the major observations 
of this test. Also the place of the required song decreased at 
first and then it increased with the length of the input. The 
following graphs illustrate how those factors getting changed 
w i th the length of the user input.

References

[1] Alexandres Nanopoulos. Dimitries Rafail:dis, Maria M. Ruxanda, and 
Yannis Manolopoulos. "Music Search Engines. Specifications and 
challenges." Information Processing and Management, vol. 45. pp. 392- 
396, 2009

[2] Rainer Typke, "Music Retrieval based on Melodic Similarity," Ph.D. 
dissertation, Utrecht University, Utrecht, Netherlands. 2007.

[3] Arunan Ramalingam and Sridhar (Sri) Krishnan. ‘‘Gaussian Mixture 
Modeling of Short-Time Fourier Transform Features for Audio 
Fingerprinting." IEEE Transactions on Information Forensics and 
Security, vol. 1, no. 4, pp. 457-463, December 2006.

[4] Jaap Haitsma and Ton Kalker. "A Highly Robust Audio Fingerprinting 
System.” Journal of Sew Music Research, vol. 32. pp. 211-221. June 
2003.

[5] Yu Liu, Hwan Sik Yun. and Nam Soo K.im. "Audio Fingerprinting Based 
on Multiple Hashing in DCT Domain," IEEE Signal Processing Letters. 
vol. 16. no. 6, pp. 525-528, June 2009.

[6] Lloyd A. Smith, Rodger J. McNab, and Ian H. Witten, “Music Information 
Retrieval Using Audio Input,” [Online]. Available: 
http://eprints.kfupm.edu.sa /52629/1/52629. pdf. [Accessed: October 10. 
2009]

[7] P.Kabal, “Audio File Format Specification," June 19. 2006.[Online] 
Available: http://\vw\v-mmsp.ece.mcgill.ca/Documents/AudioFormats/W 
AVEAVAVE.html [Accessed: October 18,2009]

[8] Bryan Pardo, Colin Meek, and William Birmingham, “Comparing Aural
Music Information Retrieval Systems," [Online]. Available.
http://www.niusic-ir.org/evalualion/ wpl/wpl _pardo.pdf [Accessed:
October 25, 2009]

Length of the input user query in seconds
I

Fig. 7 Search time graph

By above graph we can understand that the searching time 
of the system has some sort of linear relationship with the 
length of the user query.

35

0 30 
*2 25 •

I”:
i»
1 l

250

Length of the Input user query in seconds

Fig. 8 Graph of the places of required song

35

http://eprints.kfupm.edu.sa
http:///vw/v-mmsp.ece.mcgill.ca/Documents/AudioFormats/W
http://www.niusic-ir.org/evalualion/

