
BISS A - A Scalable and Distributed Tuple Space
larit i ickramarachchi , Dulanjanie Sumanasena1, Pradeep R. Fernando1, Udayanga S. W.ckramasinghe1.

) Gihan Dias1, Srinath Perera2 and Sanjiva Weerawarana2
Department of Computer Science and Engineering, University of Moratuwa, Sri Lanka.

2WS02 Inc., Sri Lanka.

BISSA in this paper, in two folds. One fold is a browser
based tuple space implementation which provides a
communication and coordination middle-ware for browser
applications. It is intended to be used as a scalable solution
for a black board pattern based communication between w'eb
browser applications such as for Web Gadgets operating
inside a single page, gadgets located within tabs or even for
browser instances located in different geographic locations.
The Other fold is a peer to peer tuple space implementation
that can be used as a tuple space based communication
middleware for java applications.

The BISSA browser tuple space is based on JavaScript
and provides a Java script based API to access the Space.
The API enables applications to act as a standalone local
tuple space (residing within browser memory) or to
seamlessly integrate with the distributed peer to peer tuple
space outside its local context. The BISSA browser space is
also implemented as a shindig [3] feature so that it can be
used as an inter-gadget communication infrastructure.

BISSA peer to peer space is a DHT based tuple space
implementation for Java applications. It will provide a
distributed shared memory abstraction for applications,
hiding underlying communication complexities from the
application developer. Tuples added to the system will be
distributed among the nodes. Operations of the peer to peer
tuples space are implemented to tolerate the ad-hoc nature of
the peer to peer systems and support fault tolerance.

Abstract The idea of tuple spaces is based on the white
board design pattern & made its first appearance in the late
1980s. Tuple space provides content addressed associative
shared memory abstraction for the processors accessing it.
Tuple spaces can be used to time and space decoupled
communication between the processes.

In our work, we have implemented a distributed and scalable
tuple space middleware infrastructure called BISSA that can be
used for decoupled communication between applications. The
BISSA application scope span from browser based applications
to java applications. This capability is given by two major
implementations; a distributed hash table (DHT) based peer to
peer tuple space implementation and a web browser based
tuple space implementation.

In this paper we present and discuses our implementation
methodology, test results and possible applications of the
middleware.

Index Terms— tuples, Linda, gadgets, shared spaces, DHT

I. INTRODUCTION
After the introduction of the tuple space [1] model there
have been much research done on the domain of tuple
spaces. One main branch of this research is the attempt to
make a scalable model of tuple spaces. On the other hand,
research is going on to implement tuple spaces in different
environments. MobiSpace [2] is an example research that
has been done to implement tuple space in JavaME
environment. Our intention through this research is to
combine these two paradigms together to build a more
versatile tuple space model that can span across different
platforms such as browsers, standalone Java applications,
services, clouds, etc. while retaining the scalable features of
a tuple space in a distributed environment.

The tuple space design provides a convenient
programming model for
applications, compared to general message passing models.
In Message passing models, parties that communicate with
each other have to be alive at the same time. The advantage
of tuple space communication is that the parties that
communicate using the tuple space need not be connected at
the same time to engage in the communication, furthermore

coexist in the space/network without
knowing each other’s existence. These two factors sum up to
making tuple space model time and space decoupled, a
feature very few parallel/distributed processing architectures
posses.

While conforming to these features of a generic tuple
space model, we try to describe our implementation of

II. RELATED WORK

A. The Linda Model
In mathematics, a tuple is an ordered set of elements

which may or may not be of the same type. In computing, a
shared memory space depicts a logically shared memory that
is physically distributed. The Linda model, developed by
David Gelemter and Nicholas Carriero at Yale University'
describes the concept of a "tuple space", that is a shared
memory space that stores tuples. It demonstrates the concept
of decoupled communication between processes. According
to the Linda model, if two processes need to communicate
with each other they do not send messages or share a
variable. Instead, they create a new object, named a tuple
and place it in a common space, rather like a white board,
where an interested party may come by and extract or read
the message. The model describes four basic primitives that
enable the users of the space to operate on the tuples or the
space itself; eval, out, in and rd[4]. The “out’' operation is
used to add a tuple to the space and the “in” operation is

communication between

the processes can

7

Pasty's routing algorithm finds the numerically closest
node id using prefix based discovery. It can route a message
with a given id to its numerically closest node in under
(log2bn, ceiling) in normal operation (b is a configuration
parameter with typical value 4).

There are few well known peer-to-peer applications that
have been built using the pastry routing overlay. Examples
[8] include PAST: a peer-to-peer archival storage, SCRIBE:

communication/event notification and SQUIRREL:
co-operative web caching.

used to extract the tuple from the space. The “eval”
operation is used by the initial process to generate the
processes that would be using the space for its operations
while the “rd” operation is used to read the tuple without
removing it from the space. This initial model has been
attractive mainly due to its simplicity, and due to the model’s
other strong features of orthogonally, and the spatial-and
temporal-decoupling of concurrent processes [5]. Since its
initial idea the model has undergone many improvements or
additions due to extensive research, with changes made to its
primary operations, such as blocking and non-blocking reads
and writes being added to its primitives. The Linda model
has been tried and tested in many languages including C,
FORTRAN, postscript and Scheme as base languages.

group

D. Hierarchical tuple spaces
One approach to a tuple space implementation is the

Hierarchical Tree Structure [9]. Generally the nodes in
Hierarchical tuple Spaces are categorised into two types,
namely Execution nodes and the Memory Nodes. Execution
nodes would be running distributed processes in them and
would be connected to parent memory nodes (arranged in a
tree like structure), which in turn would be contributing to
the distributed shared memory where tuples are stored or

B. DTuples
DTuples is a peer to peer tuple space implementation built

on top of distributed hash tables and based on the Linda
model [6]. It adopts a fail restore fault model to restore a
crashed node's state. DTuples' persistent tuple space consists
of two levels, the Common level and the Subject level [6].
Both these levels are subsets of the tuple space. The
Common level is accessible by all nodes, while the subject
level is accessible only to agents that are bound to it. This
will by default include the agent that created the subject and
any other agents that later bind to it. The lifetime of a
subject depends on the lifetime of the agents bound to it and
its expiration time. The expiration time is counted when all
agents bound to it leave the space. If such an agent returns to
the space within the expiration time it can retain the subject
and the tuples held in it. The implementation uses four
primitives, in, read, out and copy-collect, used to copy tuples
between the spaces.

DTuples uses Freepastry as its underlying overlay network
implementation and handles fault tolerance by replicating
the tuples and making all primitives transactional, employing
JOTM as its transaction manager. It matches its tuples using
the name of the tuple as its first argument. This name is used
to get the hash key. Therefore a tuple matching the same
template have the same name and is stored in the same nodes

replicated along.
The hierarchical tuple space employs a hybrid replication

scheme[9] for availability/fault Tolerance and a data
coherency protocol for concurrency control. Basic primitives
supported by this kind of a tuple space implementations are
OUT (writing tuples to space), READ(querying tuples from
space) and IN(removing tuples from space) . Whenever a
primitive is executed on a process, the respective tuple
would traverse up the node hierarchy, replicating that tuple
until a match (or root node) is found. If successful, the node
where correct match occurred would start propagating the
matching tuple down the tree to the execution node who
initiated the tuple query (ie:- IN/READ).

Improved extensions to this hierarchical scheme can be
seen with visibility scoped sub tree structures [9]. Here the
replication is done up to a certain depth (not upto root) of
the tree so that tuple space clusters are built having their own
tuple space memory. As a result execution nodes will be
limited to a specific portion of the whole distributed
environment and nodes outside the respective visibility
scope won’t be able to join in to the distributed application.
Although Hierarchical tuple spaces could reduce coupling
between

[6].

memory distribution strategy and application
programming certain limitations exist, including poor
scalability, static inflexibility of the deployment model and
processing overhead and complexity involved in
implementing visibility scoped tuple spaces.

C. FreePastry
Freepastry is a scalable, distributed routing overlay for

wide-area peer-to-peer applications [7]. It is implemented in
pure Java language and the source code is available under an
open source license. The network of Freepastry nodes is
called the pastry ring. Pastry assigns a 128 bits long unique
node id to each pastry node in the ring. The first node to join
a particular pastry ring starts or bootstrap a new ring &
nodes join the existing ring by referring to a current pastry
node in their bootstrap process. Pastry is a DHT
implementation. Hence, given a <MessageKey,message>
pair, it routes the given message to the node which has the
closest numerical id value to the message Key. Furthermore
each pastry node maintains a list of nodes that
numerically closest to the particular node. This set is
identified as the leaf [7] node set.

a

F. Web Gadgets
Web gadgets arenew html /JavaScript/CSS content that

operate within a single entity inside a web based application.
They are basically specified in an XML declaration
conforming to a specification standard, hence enabling it10
be reused among different web platforms/applications
without much of a problem. Being considered as
independent contexts (even if they reside in a single web
page) web gadgets can be utilised in a wide variety of
applications spanning from a simple widget or reusable

are

8

to full blown web applications integrating
multiple gadgets across Internet. The XML declarations of a
gadget are processed by a context known
container. It is a

components MobiSpace [2] is a middleware infrastructure that
provides a distributed tuple space abstraction for Java
Mobile Edition environments. Mobile programmers will be
able to use this model to achieve loosely coupled
communication using a standard programming model.

MobiSpace provides a primary - based replication where
all the mobile nodes will be connected to a central computer
where tuples are stored. And mobile nodes will be acting as
secondary servers and they will be storing a selected portion
of the space in the local space. The communication happens
using the GPRS service, or any other Internet service
available for mobile. MobiSpace also supports replication
among the peers where mobile devices have formed a peer
to peer network.

as a gadget
gadget container’s responsibility to render

gadget layouts and controls, process meta-data, user
preferences etc. and deploy lfeatures’[3] as specified by
declarative XML syntax of a gadget.

F. Shindig
Apache Shindig[3] is an OpenSocial [10] compliant

gadget Container , providing the infrastructure needed to
host and access XML based gadgets. Shindig comprises of a
JavaScript based gadget container which provides
gadget functionalities such as gadget communication, layout,
security etc., a gadget Rendering Server which outputs XML
based gadgets into JavaScript and HTML and an
OpenSocial container and Data server for OpenSocial based
gadget communication .

Shindig provides different capabilities to gadgets it
renders, through a mechanism called “Shindig Features”.
Shindig features are JavaScript libraries with some useful
functionality provided either to gadgets, containers or both
at the deployment time. Currently supported features [3] by
Shindig vary- from UI functionalities and content types
support (i.e.:-Flash) to supporting OpenSocial API’s.
Gadgets that need to use a specific feature should indicate
them within their respective gadget headers.

Shindig Pubsub, a feature intended to facilitate inter
gadget communication, provides a unified infrastructure
through publish-subscribe messaging paradigm for XML
based gadgets. This is similar to what we are going to
achieve through B1SSA browser tuple Space based
communication. Shindig primarily supports three primitives,
publish (), subscribe () and unsubscribe (). As mentioned
before analogous to publishers and subscribers paradigm.
“Shindig Pubsub” associates gadgets through a set of keys or
channels, which would be used in publishing and subscribing
to information that would be communicated between
gadgets, effectively acting as an inter-gadget communication
medium.

Whenever a gadget publishes information with in a
specific event, all the subscribed gadgets relevant to that
specific channel are notified and the event information is
passed down. Gadgets can also unsubscribe at any point in
time so that they are cut-off from information coming
through the respective channel.

core

H. PAST
PAST is a large scale peer to peer persistent storage utility

[8] that uses pastry' as its routing overlay. Each stored file in
PAST has a unique id attached to it. Applications can store a
file within the peer-to-peer network by giving an id & the
file to be stored. Upon receiving the file. PAST routes the
file as a pastry message. Once the file received by the
appropriate pastry/PAST node it gets saved & replicated
among the pastry leaf-set of that particular rode. PAST can
withstand high chum due its effective replication
management system. PAST also supports the caching
functionality' for most recently used files. Each PAST node
will have a uniform number of files if the id distribution of
the files are uniform, thus ensuring dynamic content balance
over the peer-to-peer storage.

Further descriptions & evaluations of PAST can be found
in [8][12]

111. THE BISSA PEER TO PEER SPACE

A. Approach
BISSA global space is a peer to peer distributed tuple

space. It uses Freepastry[7], a distributed hash table based
routing overlay to route the content based on their hash
values. The global space consists of nodes connected in a
peer to peer fashion and contributes to the space.
Applications which use the BISSA middleware will be
connected to this peer to peer network and it will get an
abstraction of a local tuple space, while in reality the tuples
get stored in a distributed maimer within the peer to peer
network. In our implementation we used PAST [8], a DHT
based archival storage and extended it for our specific needs.

Tuples are stored in the peer to peer network as PAST
contents. To support tuple space operation we introduce a
data structure called Index. Indexes are used to locate tuples
for the tuple space lookups. Index structure is. also stored in
the space as PAST contents. Both tuples and indexes are
replicated in the network accoutring to a user defined
replication factor to achieve fault tolerance.

G. Tuple Space in Mobile Environments
introduced the

implementation of tuple Spaces in different environments
has been a popular area of research. Work has been done on
implementing tuple Spaces on Mobile Environments. Project
LIME (Linda in a Mobile Environments) [11] focuses on
implementing a Linda-like tuple Space in mobile
environments. It handles the complexities that comes with
the resource constrains and the ad-hoc nature in the mobile
environments and provides a simple interface to the

After the tuple Space concept was

programmers.

9

it only permits update on a same index hash id one at a time.
This guarantees the fact that there can be parallel updates on
different indexes in a same node but it does not allow to
update the same index in parallel.

Using this implementation we have achieved the mutual
parallel updates while

B. Primitives Supported
J) Write Operation

BISSA offers an operation "write" to insert a tuple in to
the space. Underlying actions such as distributing and
replicating data will be invisible to the user.

As an overview we can describe the write operation in two
phases,

1. Write tuple as a DHT element with an associated hash
calculated for it.

2. Update the Index files that are distributed in the system.

exclusion property
unnecessarily constraining the access.

In our current implementation we support primitive types
and Java object as tuple elements. Also we provide a way to

specify non wild card elements with the tuple

on not

user to
insertion so that space that will be used for indexing will be
saved and also the Message traffic will be less, improving
the system performance.

Ir i,. l-r * ld a ctwno l\»>*

0K234..
0x456. .
0x345... to. lor *r~'l c'.i'T«o 1 world>

0x453...
0x234 . 2) Read Operation

Read operation returns the tuples that match the template
given as a parameter.

Ex : <hello,world> and <hello,tuple> will be returned if
gives the template <hello,nulI>

(Given the fact that <hello,world> and <hello,tuple> are
in the Space)

Operation of the read operation is the simplest one. In
that, first the system will generate the hash for the tuple
template. And then it will lookup for the index structure
associated with it. So that index will have all hash ids for the
real tuples matches the template. Then System will get the
real tuples using that hash ids and return to the user.

In our implementation we support two versions of the read
operation,

1. A blocking read where users call the read is blocked till
all the tuples are received.

2. Non blocking Asynchronous read there tuples received
will be given to the user at the time they received. So that
users will be not waiting till all the results available. They
can register a call back handler with the operation and
results will be given to that handler.

A £*
£A

user£Tjjre

A0x234...
•rdt* lor rrv.3 f

0x222...
0x123..
0x211..
0x234...

5
&

A&
& A

Fig 1. Wildcard indexing in BISSA

In the first phase we generate a 160-bit unique hash for
the tuple and store it in the DHT. We use PAST[12], A
storage system built on top of Freepastry for storing tuples.
Hence the tuple is stored in a node in the system which has
the node id closest to the tuple hash.

The second phase is to update the tuple Indexes. We use
an indexing mechanism to support the read operation of
tuples.

As shown in the above diagram after a tuple is inserted to
the space we update the indexes that represents it and
matches the possible wild card queries for that tuple.

Ex : a tuple : <hello,world> can be quarried from a two
tuple templates <hello,??> or <??,world>

In our system a wild card is represented by a null value.
So a template tuple for <hello,??> will be <hello,null>.

The tuple indexes are actually list-like data structures that
contain unique hash ids for a given template and a list
mapping the template ids to the hash ids of actual tuples and
the nodes where they are stored.

Update of these indexes happen at the node where indexes
are actually stored. In an earlier version of BISSA
implementation, we used to retrieve the data structure in to
the node where a tuple write takes place. The approach
introduced inconsistencies & scalability issues. Thus in the
current implementation we use a
mechanism to do the updates at remote nodes.

To improve the performance we allow parallel updates in
the index storage system within a node. But to achieve
mutual exclusion and thereby avoid problematic scenarios as
described above we use a local-locking mechanism based on
a hash id, inspired by a similar implementation in PAST. It
provides the facility to access the storage system parallel but

3) Take Operation
This operation differs from the read operation, since it

removes all the tuples that match the given template.
Removing a tuple instance that has been replicated among
the nodes of a peer-to-peer system raise some serious
questions.

The BISSA take operation can be divided in to three
phases,

1. The retrieval of the tuple from the peer-to-peer system
that matches the given template.

2. Deletion of the tuple content from the peer-to-peer
system.

3. Updating the indexes that carry wild card info of the
deleted tuple.

4. Return the tuple to the
operation.

application that called themessage passing user

We use a messaging based mechanism to delete the stored
“Pies right in their local nodes & avoid race conditions

through hash id based locking mechanism as with write
operation. Still the BISSA tuple Space implementation does

o guarantee the atomic execution of the take operation. K
possi e to implement 100% consistent lake operation

10

with some agreement protocol, but still we prefer light
weight behaviour of the system as our goal is to implement
highly scalable tuple space implementation.

The non-atomic behaviour does not break the consistency
of the space at any time. For an example if the take operation
failed during the index updating phase then there will be
false indexes pointing to a non-existing tuple. When read
operation encounters an invalid index, if ultimately does
return the indexed tuple since it is not stored within the peer-
to-peer storage.

The other major obstacle for removing all the instances of
a particular tuple is the caching feature. When a node
retrieves a tuple it gets stored in their local caches. The next
time when there is a query for that exact tuple it retrieves the
tuple from the local cache. We have provided a time stamped
based caching implementation for the users who wish to
make use of the cache. Users can specify the time-out of the
cache, so that user don't mind getting a cached version of the
tuple out from their local caches given that the threshold
time has not expired (even if the tuple has been removed in
the space by a take operation).

notification messages to nodes that are not there.
To avoid the problem of loosing subscription data with the

dead nodes we replicate both indexes and subscription data.
That will give some level of fault tolerance for subscription
mechanism and other operations.

Identifying dead nodes can be achieved by running a
messaging protocol time to time. But as same as the polling
method it will be costly in terms of system performance. As
an alternative, without polling we do a checking for
liveliness of a node only when it is needed to be notified.
Till then it will remain as a subscribed node, even though it
may not exist in the system. If the liveliness check it returns
false system will remove the subscription data for that
particular node. Still yet there can be a trivial scenario that
will be not identified by above method which is if a node
goes dead and another joins with the same node id and in
that dying and joining time period no liveliness check was
done. So system will not know that it’s a new node and
subscription will remain. So as a solution when a node joins
it sends a join message to other nodes so that nodes that has
subscription data can use this detail to update its data.

not

C. Tuple Subscription Mechanism
Bissa provides a subscription mechanism for the

applications which enables them to subscribe for a tuple
templates. Subscription can be done by giving a tuple
template and a reference to a TupleListener implementation.

Whenever a tuple inserted in to the space, which matches
a subscribed template, the subscribed parties will be get
notified by the system.

There are some problems to be solved when implementing
this mechanism.

1. How to distribute subscriptions in the peer to peer
network.

2. How to maintain the subscriptions with the ad-hoc
behaviour of the space.

3. How the un-subscribing will work
One approach is to busy wait on the subscribed tuples.

But such approach will introduce a lot of unnecessary'
message passing in the system and degrade the performance
of the overall system. As a solution for that we maintain a
data structure that is associated with the tuple indexes to
keep subscriptions. When a tuple added to the system which
matches a subscribed tuple template; in the corresponding
write operation it will update the index data structure
associated with the subscribed template. After that system
will send notifications to subscribers that are registered in
that index structure .This subscription mechanism vs ill
reduce the number of messages passed compared to the
polling method.

Maintaining the subscriptions with the ad-hoc nature of
the system is another problem to be solved. With the ad-hoc
nature it can cause two major problems.

1. Nodes that keep the subscription data may be
unavailable or dead so that can cause inconsistencies
(mainly data losses).

2. Nodes that have subscribed for data can die without
properly unsubscribing. That will cause system to do
unnecessary' work since it will be sending unnecessary

IV. BISSA GADGET COMMUNICATION

A. Approach
BISSA browser Tuple Space resides in a local browser

instance and integrates into the global Tuple Space.
However depending on application programmers’ choice
BISSA browser space can remain as an independent tuple
space residing only in browser or as a fully integrated tuple
Space that is being synchronised with dynamic tuple Space
environment as well. Local tuple Space API is fairly
consistent with the global tuple space; hence all the
primitives available in global space are true for local space
as well.

Design approach of local tuple space is primarily
concentrated on managing tuples that are being queried and
updated on the local space and synchronising local tuples
corresponding to the global space. The core functionality is
implemented in a JavaScript library' compatible in running
under latest browsers. As is in the case of global Tuple
Space, a tuple of the form {al,a2,a3.....;an} is the
granularity of message passing process in local browser
based tuple Space.

Local tuple Space can be considered as a combination of a
tuple pool (TP) that keeps track of tuples in local space and
a hash table instance (TPHT- tuples to processes hash Table)
that associates tuples with the respective local processes who
involve in the tuple exchange. Whenever a tuple is written
into the local space, the tuple pool is updated accordingly
and relevant processes are notified of the availability of
tuples using the hash table. If a local process wants to query
a tuple T or a specific template Te (a tuple with wild card
entries in it), Local tuple Space Manager will match T or Te
with the tuples set {Tl,T2,....,Tn}in TP.

A special case occurs when matching tuple set with a
given template Te .First matching algorithm compares the no

11

Sometimes it may be important that the browser
application relieves the connection burden on global tuple
Space and resume the local work it has been engaged in l0

performance of the application. BISSA
asynchronous connectivity supports this requirement by
temporary delegating tuple queries to global layer and letting
it do the work for you. The local tuple content will only be
updated when these queries become successftil reducing
overall memory footprint on the browser runtime.

On the other hand, sometimes applications may want to
constantly query content n a specific template. In this
context handling and management of tuple queries would be
pretty cumbersome to the application developer .Application
programs can use subscribe option in these scenarios, to
bind into global space for specific tuple queries. BISSA will
take care of the periodic querying on global space for the
respective tuples/templates and notifying the relevant
processes which subscribed/bind to them.

of entries with each tuple in the set. If this is successful on a
given tuple Ti in the set then tuple entries contained within
Ti are individually matched bypassing any wild card that is
encountered. If a mismatch occurs at any given entry,
matching on Ti is considered unsuccessful. Ti is considered
successful if an only if all the entries are matched with
entries of Te.

increase

B. Integration
BISSA provides access to global tuple Space for users

who work within local browser instances .The main idea is
to provide a uniform Interface that can seamlessly
communicate with both local and global tuple Space
memory easily and flexibly. Integration approach for BISSA
infrastructure for local browser clients is through Web
Services that wrap BISSA runtime instances. Prospective
clients who wish to query tuples distributed in the global
space (i.e.:- in different geographic localities) can use the
JavaScript API provided by local tuple Space runtime inside
the browser instance. This mechanism also provides an
efficient way of communicating between two or more
browsers located in two different machines or even within
two browser windows in the same machine.

BISSA local tuple Space connects to a BISSA web service
node via a JavaScript Stub that wraps an Ajax connectivity
layer. The browser tuple Space will try to synchronize its
localised tuple content during each connection session as
required effectively appearing to be a tuple cache for local
browser processes. As a result any process those queries for
a certain tuple or a tuple template will be delivered all the
conforming tuple content from the local tuple space as well
as global Space. This model is pull based since browser
tuple Space itself is responsible for pulling tuple
content/data out from the globally scalable tuple space. The
diagram in Fig 2 describes this overall model of integration

D. Web Gadget Communication
With all these aforementioned features at our disposal,

BISSA has the potential to become an extremely efficient
communication infrastructure for web based applications
and scripting based platforms .Usually web application
integration spanning across the internet tend to be ugly and
highly complex and coupled with the increase of number of
integration units. This inherent nature of web applications
can be exploited by BISSA to provide an ideal way of inter
communication, since this is exactly and fundamentally what
BISSA tries to resolve, “Providing a shared memory
abstraction for naturally tightly coupled set of
processes/entities”. So in-effect communication between
these set of application entities/components can be
facilitated through writing and retrieving tuples through
BISSA (shared) tuple Space, greatly reducing complexity or
coupling between the components involved.

In implementation aspects this concept of using BISSA as
an inter-communication framework has presented us with
several challenges. That is, where/in which aspect of web we
should be implementing such a system? And how exactly it
should be implemented to achieve an almost unified way of
inter-communication? The

n
I B

HmfP2P link

& 1 answer lies in Web Gadgets. As
stated previously on this paper, Gadgets are web content that
operate within a single entity inside a web based application.
Specified in xml syntax they
entities even when they
page. So as per the answer to our first question web gadgets
seems to be a very good choice due to their independent and
highly coupled nature. For example BISSA can present
shared channel for gadgets operating inside a web page or
set of gadgets integrated across a network/internet. That in-
effect is

BISSAWeb Service 4
Node ; 6ISSAP2P CloudHTTP/AJax Irk

P2P Integration component

are considered independent
are contained within a single web

Connection Manager

Service Generatorl.._r
Event dispatcher

Fig 2. Overall model of integration a

C. Messaging Layer
Local space queries for tuple content provided by the API

are differentiated into two categories, synchronous and
asynchronous. Synchronous method calls would wait until
global Web service enabled global node replies for the tuple
query while asynchronous calls would notify the node and
resume execution. Users have the choice of adapting any of
these variants depending on the requirement or performance
considerations.

an efficient communication mechanism since
otherwise complex message passing mechanisms could have
deteriorated the overall system performance.

Web Gadgets also seem to be the ideal answer to our
second question as well. The solution lies in “features"
which are standard compliant way to implement specific
erviees for web gadgets. This is in the sense that, BISSA

f Serr^,Ca^ sPace runtime can be wrapped into a gadget
re [3], to be deployed on gadget servers at runtime.

a

12

Therefore gadgets can be deployed in different gadget
servers (provided vve have required BISSA feature in turn these Local tuple space instances would provide
implementation for each different gadget server i.e., Shindig, the inter-gadget communication infrastructure for Web based
i oog e. etc) exposing them to specific BISSA runtime gadgets so that multiple gadgets participating can form very

i raries creating a unified infrastructure for inter-gadget robust and powerful web based applications integrated
communication. Using this kind of BISSA enabled feature, across a geographically dispersed area. The fact that now

the functionality described these gadgets are effectively connected across a scalable
aci itate communication between gadgets located global tuple space provides them obvious advantages such as

in a sing e rov^er window (is:-using local space API) or persistence and scalability. Additionally BISSA enables
even etween i erent gadgets located in separate servers or different clients other than browsers to connect to Global
domains.

gadget developers could use
above to

tuple Space as well. This is also achieved through the web-
service interfaces of BISSA web-service nodes connected toFollowing is high-level overview of how a BISSA enabled

feature can be deployed on a Gadget Server. Note that this BISSA cloud (or ring) .Therefore any web service enabled
feature requires BISSA local Tuple Space runtime to be or REST based client such as mobile devices, Java clients,
present in both container and gadget level at the deployment data centres, etc. can use tuple Space as a unified way of
time. This is because gadgets and their containers
typically decoupled in gadget servers and gadgets
accessing local Tuple Space instance shared between them. possibilities to web/gadget application developers and
BISSA feature is using RPC feature intern to delegate API different platform designers of various kinds for applications
calls between container and gadget level.

communicating between different platforms or systems. In
essence BISSA provides enormously wide range of

are
are

that span from parallel computation to distributed system
integration and coordination.

BISSA Feature
F. Functions Supported

BISSA local space provides a clean and consistent API to
support inter gadget communication. Although related to
generic tuple space API. functions supported makes into two
categories.

a) Local tuple space API
b) Global tuple Space Integrated API
This differentiation gives application developers a clear

separation of concerns whether to use a standalone local
tuple space or to get exposed to the distributed tuple Space.

Container-side Library Gadget-side Lib ran/

RPC Feature

Gadget Features Core

Gadget Engine

/) Local tuple space A PIFig 3. Overview of the BISSA features implementation.

Following are the supported local space primitives.
E. The Big Picture

a) bissa.read(t_template,caIlBack.subscribe)
Read a tuple from the space relevant to the given

If we predominantly focus on the big picture, what BISSA
tries to create is an infrastructure that expands over intra
nets, possibly over the Internet on different platforms where template,
each node is contributing to the distributed memory' of the ♦callBack = the call back function that the requested tuple

will be delivered when available in space or immediately, if
already existing in space.

♦subscribe = if true the user will be notified every time a
tuple with the given template is added, else notified only
when tuple is available in space OR immediately, if tuple is
already in space.

tuple space
With local and global space integration in place

see some of these nodes exposed as BISSA Web Sendees
enabling independent browser instances to act as clients
providing them the ability to access global space as well as
their own local ones. This is shown in Fig 4.

we can

Memplate can be either a tuple template (i.e.:-
bissa.Tuple(Ma","??","??"» or a pure tuple (i.e.:-
bissa.TupleCa'V’bVc"))

$ JA<3

b)bissa.take(t_template.callbck,subscribe)
Remove the tuple from the Space and read it
callBack = the call back function that the requested tuple

will be delivered when available in space or immediately, if
already existing in space.

subscribe - if true the user will be notified every time a
tuple with the given template is added and respective tuple

ft S3<&•
&

-

Fig 4. BISSA local and global space integration

13

will be deleted from space else notified only when tuple is
available in space OR immediately, if tuple is already in
space and will be deleted from space after that.

c)bissa.put(tuple)
Insert a tuple into space; subscribed users will be notified

if requested tuple is being inserted.

1) Results Obtained

2) Global tuple space API
Following are the Global Space primitives supported,

a)bissa.read_global
Read tuples to a given tuple/template from the tuple

space. Tuples would be read from both global and local
space. This API supports both asynchronous and
synchronous messaging .Synchronous read requests to the
tuple space would block until an available tuple is fetched
from the global space. Asynchronous reads would
immediately switch control to local space after dispatching
the respective request to the global space. Tuple read
requests can be bind/subscribed to a template. Tuple space
will take care of fetching tuples from global space from
periodic intervals for a specific timeout period. User can
configure these parameters to suite their application
requirement.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Number of nodes

Figure 5: Speed up gained with the increasing number of
nodes.

Figure 5 shows the Results we obtained from the scale test
with the increasing number of machines.

2) Analysis
As we see in the results we were able to get an almost

ideal parallelism with the scaling of the system. But since we
tested only with 35 machines we can’t claim that we have a
massively scalable implementation. But with these results we
can say with confidence that our system is a reasonably
scalable one. The results show a slight performance lag in
the latter part of the results. This is due to the number of
work per worker node became less so cis a result the
communication latency came into effect on the results.

b)bissa.take_global
Removes tuples to a given tuple/template from the tuple

space .Tuples would be removed from both global and local
space. Similar to the #g!obaI_read this API supports both
asynchronous and synchronous messaging.

c)bissa.put_j>IobaI(tupIe)
Insert a tuple into both global space as well as local space.

B. Latency Test
One other test performed on the BISS A peer to peer space

was the Latency test. A latency test is used to measure time
taken for an operation to complete. The idea of this test was
to measure the time taken for the main BISSA operations;
write, take and read to complete and analyse the effect of
increasing number of nodes to its performance.

V. RESULTS AND ANALYSIS

After successfully implementing the tuple space service
we performed a scalability test and a latency test to measure
the behaviour and performance of the peer to peer network
while scaling up the system. The results and analysis of this
test are as follows.

1) Results Obtained
Figure 6 shows the results obtained in measuring the time

taken to perform one read and one write on an increasing
number of processes.

A. Scalability Test

The application we used for the test was a Monte Carlo
simulation [13] for stock value changes for a company. This
is an embarrassingly parallel algorithm, which involves
independently executing disconnected components [14]. We
used BISSA as a middleware to share tasks between
processors and finally to aggregate the results; using
master/slave strategy where at start master will put tasks to
the shared space and then after a starting command by the
master, workers will take tasks from the space in parallel,
execute them and submit the finished work to the space.

We used a control lab environment with machines with
same configuration and did the scalability test with up to 35
computers.

2) Analysis
According to the figure 6 it is apparent that the latency of
read and put operations are hardly affected by the increase in
number of nodes connected to the space. This shows that
the performance is unaffected by the number of processes
involved in reading and writing tuples to the space. But
according the pastry algorithm the worst case the message
delivery latency is a function of number of nodes in the peer
to peer system. Although this result shows a minimal
variation in latencies with the number of nodes introduced,

a

14

to implement this kind of infrastructure easily since it
provide a unified communication mechanism for Java
applications and Java script gadgets.

5

4 '■

Tn
E3
a> C. Simple Weather App

The Weather Monitor is yet another possible example
application of possible applications of BISSA. It utilises the
distribution of BISSA to gather and analyse weather data.
Each node in the weather monitor may act as a weather
collector, weather monitor, or both. Weather collectors add
tuples w ith weather information along with its location to the
space. For example, a weather collector collecting
temperature information at location id x and tuple id y will
be updating temperature t with tuples of the form
<x,y,temp,t>. The weather monitor w'e implemented for
demonstration purposes uses only temperature information,
therefore its tuples take the form <x,y,t>. The weather
monitors query for matching tuples in constant intervals and
updates its weather information accordingly. This querying
is done using individual threads that handle new information
coming in from each location.

12
Read1
Put

0
1 4 7 10 13 16 19 22 25

Number ofNodes
28 31 34

Figure 6. Operation latency with increasing number of
nodes in the network.

we must expect the latency of the operations to be increased
when the number of nodes is large.

According to research conducted by Kato and Kamia[15]
Freepastry behaves reasonably well up to about 800 nodes.
Hence we can reasonably conclude that, BISSA being built
on top of Freepastry and having showed good results to the
tests we have conducted, that it would continue to perform
well for an even larger number of nodes. VII. FUTURE IMPROVEMENTS

A. Extending BISSA to Mobile Spaces
As described above in our current implementation we

have a two level tuple space implementation where one is a
peer to peer tuple space implementation and other is a in
browser tuple space implementation which act as a client to
the peer to peer space.

As a future improvement to the our model we can extend
this model to have mobile nodes as explained in
MobiSpace[2] So they will be acting as a client space to the
peer 2 peer space. Having this kind of Mobile Space
integration with BISSA will be useful since. It will introduce
a unified easy to program communication infrastructure for
Java Applications, Web Gadgets and Mobile Applications.

VI. APPLICATIONS

A. The Role of the Web Browser in Distributed Processing.
The world is moving from standard desktop applications

to web-based applications. The modem operating systems
such as Chrome OS establish this concept further. With
browser becomes more prominent in the computing market,
we should explore the possibilities of getting the processing
power of the browser in to distributed processing
environments.

Such applications can make use of BISSA as their
underlying communication middleware. The peer to peer
global tuple space will act as the shared memory between all
the browser instances. JavaScript processing clients can
fetch data from the space, process them & write back to the
global space. VIII. CONCLUSION

Here we presented the design & implementation details
of BISSA, a middle-ware infrastructure based on tuple
spaces for distributed and web based applications. We have
shown how BISSA can comprehensively replace highly
coupled message passing systems with a loosely coupled
shared memory' abstraction using an effective tuple space
communication paradigm.

Here we also present how the hash based DHT
addressing mechanism can be mapped to content based tuple
addressing mechanism. Furthermore this paper presented
how BISSA browser tuple Space can act as a local tuple
cache and shared browser instance to facilitate rapid web
application integration and gadget communication.

On another perspective, BISSA can be considered as a
light weight distributed application platform with somewhat
relaxed consistency semantics. This makes BISSA a very

B. BISSA for SETI @ Home Like Applications
SETI at home like distributed computing efforts lacks

user friendlessness to some extent since users need to
download a client and contribute to the grid. But there can
be considerable about of people who are willing to
contribute and can't contribute since it requires them to
download an application to the local computer and run it.

One solution we are purposing is to use the computation
power given by the web browser. If we
browsers it facilitates execution of Java scripts. System can
give a URL to a user and it can go to web application that

Java script base client (ex; web Gadget) so that
gadget will get the jobs from a job pool and calculate and
send back the results. So it will be a better solution than
telling people to download an application. BISSA can be use

a

lake modern web

can run a

15

powerful and scalable middle-ware for a wide variety of web
and Java based applications, acting as a unified
communication infrastructure to make different
environments integrate easily and effectively.

BISS A is an active project with a working code base,
which implements the approaches/functionalities we have
discussed in websitethis Thepaper.
www.bissa.sourceforge.net offers updated information about
the project and downloadable resources including BISSA
source code.

References

[1] Nicholas Carriero, David Gclcmter, “A computational model of
everything”. Communications of the ACM, Vol. 44, No. 11,
November 2001.

[2] Fongen A., Taylor, Simon S J. "Mobispace - A Distributed Tuplespace
for J2mc Environments”, in the 17th IASTED International
Conference on Parallel and Distributed Computing and Systems
(PDCS), Phoenix, AZ, USA. 2005.

[3] The Apache Software Foundation, “Shindig- An overview of Apache
Shindig”, Apache Shindig, 03-02-2010,
Available:httpy/shindig.apache.org/overview.html. [Accessed 25-04-
2010]

[4] Nicholas Carriero, David Gelcmter, “Linda in Context”,
Communications of the ACM. Volume 32 , Issue 4 April 1989, pp
444,
Available: http://portal.acm.org/citation.cfm?id=63337
[Accessed 26-04-2010],

[5] George Wells, “Coordination Languages: Back to the Future with
Linda”, Proceedings ofWCAT05, 2005,pp 87-98.

[6] Yi Jiang ct al, “DTuples: A Distributed Hash Table based tuple”.
Proceedings of the Fifth International Conference on Grid and
Cooperative Computing. 2006, pp: 101 - 106.

[7] Antony Rowstron, Peter Druschel, “Pastry: Scalable, decentralized
object location and routing for large-scale peer-to-peer systems”,
/FI P/ACM International Conference on Distributed Systems
Platforms (Middleware), Heidelberg, Germany, pages 329-350,
November, 2001.

[8] A. Rowstron and P. Druschel, "Storage management and caching in
PAST, a large-scale, persistent peer-to-peer storage utility", ACM
Symposium on Operating Systems Principles (SOSP'OI), Banff,
Canada, October 2001.

[9] Antonio Corradi et al, “A Scalable tuple Space Model for Structured
Parallel Programming”.

[10] OpenSocial and Gadgets Specification Group, OpenSocial
Specification 1.0, Opensocial. March 2010. Available:
http://opensocial-resources.googlecode.com/svn/
spec/l.O/OpenSocial-Spccification.xml,
[Accessed 13-04-2010]

[11] Amy L. Murphy, “Lime Introduction”, LIME: Linda in a Mobile
Environment, 2007, Available: http://lime.so urceforge.net/,
[Accessed 20-04-2010]

[12] P. Druschel and A. Rowstron, "PAST: A large-scale, persistent peer-to-
peer storage utility", HotOS VIII, Schoss Elmau, Germany, May
2001.

[13] N. Metropolis and S. Ulam, “The Monte Carlo method”, J. Am
Statistical Association, vol. 44, pp. 335-341, 1949.

[14] Geoffrey C. Fox, "Lessons from Massively Parallel Applications on
Message Passing Computers", Proc. 37th IEEE International
Computer Conference. NPAC, 1992.

[15] D. Kato ct al., “Evaluating DHT. Implementations in Complex
Environments by. Network Emulator”, 1PTPS 2007, 2007.

16

http://www.bissa.sourceforge.net
http://portal.acm.org/citation.cfm?id=63337
http://opensocial-resources.googlecode.com/svn/
http://lime.so

