
97

We Care : Online Disease Tracker System

Nadini Jayatissa
Department of Computer Science and Engineering, University of Moratuwa

Sri Lanka
nadinij.13@cse.mrt.ac.lk

Abstract—The Online Diseases Tracker System is an online
web application which intends to help the people with self-
diagnosis or self-triage by means of using an algorithm. After
analyzing the symptoms, the system provides the predicted
diseases along with the probability of the patient having the
disease and the doctors to consult for each disease. For a better
diagnosis the system provides the patients to keep an up-to-
date profile of patient’s medical history. Apart from disease
tracking the patients can find ideal doctors to consult for a
particular disease, can find hospitals where a particular doctor
is available and they can contribute information to the system
regarding diseases and their symptoms, doctors and hospitals
which will be later added to the system database after a
thorough inspection by the system administration. For the
system administrators the system provides a user friendly
platform to interact with the system database and thereby to
update the system database.

Keywords—symptom checker; diagnosis; doctor; disease;
hospital; patient; web application; online; Symfony

I. INTRODUCTION
The Online Disease Tracker System is intended to help

the registered users with the self-diagnosis after analyzing
the symptoms the user entered and the medical profile the
user maintains in the system. The patients can contribute
information to the system which will be evaluated by the
system administrators and if the provided information is
marked as success the owner of that information will be sent
a response email. Apart from the registered users the system
admins have access to the system and the system provides a
platform for them to manage the database of the system. As
for now the system keeps a database maintained by the
system admin through the user interface. But when scaling
the system, instead of information from the system database,
a web search will be added to retrieve information. The
system was developed to make the diagnosis process and the
doctor consulting process easier for the patients.

Even though there are many online symptom checkers
available, not many of the systems provide more details
about what doctors to consult and which hospitals to go for
that particular disease and the probability of the user having
that disease. Moreover, the predicting process does not take
into consideration the prevailing medical conditions of the
patient. This system provides solution for all the above
mentioned concerns.

The online application was developed to meet the project
requirements in providing symptom checker and an
information management system. The system displays the

predicted diseases for the provided symptoms and the system
provides a platform for the system administrators to manage
the system database. The Symfony framework [1] has been
used for the development of the system where the MVC
architecture has been incorporated. The twigs represent the
view layer and the controller files which contain the business
logic represent the controller layer. The entity files represent
the model layer. Entity files have used the doctrine PHP
library which made persisting and reading information to and
from a database easier. Symfony framework provides
reusable PHP libraries which makes the development
convenient.

The outcome of the project is the online system ensuring
complete protection of data from unauthorized access. All
confidential information accesses are subject to user
identification and password control.

This paper consists of 6six sections altogether where the
Section I is the introduction. The Section II compares the
system with the existing other similar systems. Section III
includes the system design and system models and Section
IV includes the system implementation. Section V and VI
incudes system evaluation and the conclusion respectively.

II. LITERATURE REVIEW
Online Symptom checkers prevail to a higher extent thus

providing self-diagnosing facilities. The developed system is
objected to serve basically the people living in Sri Lanka
with the diseases found in Sri Lanka and Sri Lankan doctors
and hospitals. Moreover, the system intends to customize the
list of predicted diseases for a particular set of symptoms and
the probability of the user having the disease depending on
the user. This has been implemented by giving the users the
facility to keep an up-to-date medical profile.

The symptom checker handled by the WebMD
Corporation [2] is a similar system which provides help for
patients with self-diagnosis. Nevertheless, this system does
not provide any information regarding the doctors and
hospitals in-need for those predicted diseases. In addition,
WebMD symptom checker does not take into consideration
the medical conditions prevailing in the patient and also it
lacks the user involvement in the system. Compared to the
system in question, the system has no user involvement for
the information used in the application and no separate
medical profiles for each registered user [2].

The “Isabela” Symptom checker [1] is another popular
similar system which provides a platform for patients to do
self-diagnosis. This system provides two options for the

98

users: either they can register in the system and have a better
diagnosis process or else they can check their symptoms by
providing the relevant information without registering in the
system. Although the diseases are predicted and the relevant
sources of information will be provided for each disease they
do not clearly mention the doctors and hospitals in need for
those diseases. Further, “Isabela” symptom checker does not
provide the probability associated with each predicted
disease and also the users do not have the facility to maintain
an up-to-date medical profile [1].

The system was developed using the Symfony
framework where MVC architecture has been incorporated.
Symfony is integrated with many decoupled and reusable
PHP which are used as the standard foundation on which the
application has been built on. Doctrine is another library
which symphony comes integrated with, to make persisting
and reading information to and from the database easier [3].

III. SYSTEM MODELS

A. System Requirements

Diagnose disease

Look up doctors to consult

Look up hospitals

Patient

Suggest new information

Check for user provided information

Send response e-mails to users

Update information

System admin

Record user success

Update user profile

<<include>>

<<extend>>

<<extend>>

Fig. 1. Use Case Diagram of the System

As shown in Figure 1 the main functional requirements
of the system are centered on symptom checking and
information management sub systems. There are two types of
users in the system, both user types have to first register in
the system to have access to the system. The user type
‘patient’ once logged into the system, can do the self-
diagnosis by entering the symptoms. To have more accurate
results the users have to update the user profile with the
relevant and recent information. Beyond the process of just
knowing the predicted diseases the user can find doctors for
those diseases and the hospital where those doctors are
available. In addition, the users can contribute information to

the system. The system admins can log into the system and
manage the information in the database. Apart from that they
check for the recent information provided by the ‘patient’
type users and mark those information as success or failure.
For the owners whose information were marked as success, a
response e-mail will be sent.

The non-functional requirements include performance,
security and reliability. The online disease tracker system is
available all the time. There shall be no more than 4% down
time. The security of the user profiles and personal data have
been secured with user identification and passwords. A
normal user should be able to use the system at a productive
rate after a maximum time of 1 minute and for a power user
it will take 30 seconds or less time of learning. The average
number of errors done by the experienced users shall not
exceed two per hour of system use.

B. System Design
 The software architecture of the system is based on the
MVC architecture with the view layer, controller layer and
the model layer. MVC architecture allows the re-use of
business logic across the application lessening the
redundancy of code. Moreover, multiple user interfaces can
be developed without concerning the codebase. Therefore,
the developer can specialize and focus on UIs and the
business logic separately. The View Layer contains all of the
visible web pages and handles all input from and output to
the user. The Controller layer which includes the business
logic, handles all of the controlling between the view and
model while controlling the access to corresponding user
types and the Model layer consists of the data access process
and stored procedures contained within provides the
persistence required for the system.

The class diagram of the system is shown Figure 2. The
two classes, patient and admin, are derived from User class
using inheritance concept. Composition and aggregation
have been used in many instances. For example, the
relationship between Symptom class and Disease class is an
aggregation. Disease is the container class and symptom is
the contained class. Polymorphism has been used to
override some methods in the parent class. (e.g.
Redirect_after_login method in User class was overridden in
the Patient and Admin classes).

The main activity diagram in the Online Disease Tracker
system illustrates in Figure 3. Once the patient was given
access to the system, he/she can enter the symptoms to the
system. Then the system analyzes the provided symptoms
and the relevant details in the user profile and displays the
final list of the predicted diseases. Thereafter the patient can
select one disease at a time and view the doctors available
for treating that disease. Similarly, by selecting one doctor
at a time patient can view the hospitals where that particular
doctor is available.

99

User

-Username
-Password

Doctor

Admin

-name

Patient

-name
-gender
-
date_of_birth

Disease

-name
-gender
-severity
-minAge
-maxAge
-description

Symptom

-name

MedicalProfile

-Patient name -name
-gender
-speciality

Hospital

-name
-district
-address
-telephone
-email
-other_details

UserInfo

-information
-status

-
memberNa
me

Fig. 2. Class Diagram

Symptom Checker

User (patient) System

Request login Initiate login

Input Disease
symptoms

Analyze
symptoms and

user details

Display disease
details

No

Notify of the
unavailability

Disease
determine

d

Select a
disease from

the list

Display doctors
for the disease

Select a doctor
from the list

Display
hospitals for the

doctor

Fig. 3. Activity Diagram of the Symptom Checker

IV. SYSTEM IMPLEMENTATION

A. Implementation Procedure
The system was developed using the PHP Symfony

framework where MVC architecture has been incorporated.
Symfony is an object- oriented framework. Therefore,
relational database information was mapped to an object
model with ORM tool provided by Doctrine. The entity
classes created in this process represented the Model layer.
The Controller layer comprise of the controllers. Controllers
extend the Framework Bundle base controller and use
annotations to configure routing, caching and security. The
business logic was decoupled from the framework, while, at
the same time the controllers and routing was coupled to the
framework to get the most out of it.

The templates which represent the View layer were
formatted using the Twig templating. The base.html.Twig
file was initially formatted by dividing the template into
blocks. The other templates extend the base.html.Twig to
make formatting easier and make all the templates follow a
common style. The forms created in the project were
Symfony forms because of the convenience it provides in
form handling, form rendering and form submitting. The
forms that needed to be reused were created as PHP classes
and stored in the “AppBundle/Forms” namespace.

The user login of the system was built on top of the
authentication bundled with symfony. Authentication is
configured in security.yml, primarily under the firewalls key
with the anonymous key enabled. The passwords have been
encoded with the bcrypt encoder instead of the traditional
SHA-512 hashing encoder. The main advantages of bcrypt
are the inclusion of a salt value to protect against rainbow
table attacks, and its adaptive nature, which allows making it
slower to remain resistant to brute-force search attacks.

The system is developed in a user friendly way such that
the system gives feedback for every update action the system
admins make via the system interfaces and for patients the
information displayed are differentiated as according to the
best way it should be. Using Doctrine built-in statements to
persist and retrieve data from the database provided a risk
free environment. In every other case prepared statements
were used in executing queries to make the system
completely immune to SQL injection attacks.

Mailing functionality has been added to the system and
was implemented using the swiftmailer configuration.
Instead of using a regular SMTP server to send emails,
Gmail has been used to the send the mails. The Swift Mailer
library works by creating, configuring and then sending
Swift_Message objects. The "mailer" is responsible for the
actual delivery of the message and is accessible via the
mailer service [4].

The information about diseases, doctors and hospitals
have been stored in separate tables. As the next step the
symptoms have been linked to the relevant diseases.
Similarly, the available hospitals to relevant doctors and
doctors to the diseases for which they should be consulted
have also been linked. In addition, the patients registered in

100

the system update their profiles with their medical histories
and that information will be accompanied with the other user
details to be used in the process of predicting the diseases.

B. The Algorithm
The Figure 4 shows the main algorithm used in the

system is the algorithm used to diagnose the diseases for a
particular user for the symptoms he/she entered. Since the
system uses data from the system database the algorithm is
based on data interactions.

Fig. 4. Algorithm for disease predicting

In the disease prediction algorithm, initially all the
diseases with the provided symptoms will be fetched from
the database and will be given a probability of 10 for each
disease. Thereafter comparing the relevant criteria of the
disease and the user the probability of the disease will be
adjusted or that particular disease will be removed from the
predicted disease list.

Most of the other algorithms used in the system are
primarily based on interactions with the database. Either to
fetch data from the database by filtering through different
benchmarks or else to persist new data in the database.

C. Main Interfaces

Fig. 5. Enter Symptoms Page

Figure 5 shows the interface where patients can enter the
symptoms. They can enter 1 to 10 symptoms by selecting
symptoms from the pick lists. Once submitted the form, as
displayed in the interface shown in Figure 6. possible
diagnoses are displayed to the user.

Fig. 6. Possible Diagnoses Page

The “next step” button in the interface shown in Figure 6,
takes user to the page where they can find information
regarding the doctors for that particular disease. There is a
button that would navigate the users to the page which
contains information about the hospitals where that doctor
can be consulted.

The user interfaces available for the users with the role
system admins are primarily to update data in the database.
The user interface shown in Figure 7. is for the admins to
evaluate the user-provided information. Information is
displayed in an order where the most recent one comes first
and they have been categorized by the evaluated state of the
information. Just by pressing a button admin can mark
whether the information is a success or a failure. If the
‘success’ button is pressed a response email is sent to the
user who provided that information.

user user of the session
medical_profile [] Ids of diseases in user’s
medical profile
symptom_ids [] array containing the ids of
user entered symptoms
predicted_diseases [] ids of diseases with
the entered symptoms fetched from the database

for each (disease in predicted_diseases[])
{
 disease.probability = 10

 pre_req[]=disease.prerequisites fetched
from the database

if(user.gender != disease.gender)
{
 remove disease form predicted_diseases[]
}

if(user.age is within disease.age_group±5)
{
 dif = |disease.age_group - user.age|
 disease.probability = disease.probability
– dif
}

if(user.age is not within disease.age_group)
{
 remove disease form predicted_diseases[]
}

for each (condition in pre_req[])
{
 if(condition not in medical_profile[])
 {
 disease.probability =
disease.probability–1
 }
}
}

101

Fig. 7. Evaluate User Provided Info Page

V. SYSTEM TESTING AND ANALYSIS
The test plan [5] of the project covers the major

components of the system developed. The subsystems in the
system including symptom checker sub system and the
information management sub system needs to be tested for
verification.

The scope of the testing was to cover the system in order
to make sure the system is delivering according to the agreed
user requirements. UI testing was intended to include checks
to make sure all the information is included based on the user
requirement specification. Unit tests were intended to test
and cover the functionality of each component at the
development state. The unit testing has been carried out by
the PHPUnit library which comes integrated with Symfony
framework.

The performance testing is done in order to test the
performance of the system including response times,
transaction rates and other time sensitive requirements. The
main objective of the performance test is to exercise and test
the behavior of functional transactions with respect to the
performance measuring requirements. In order to verify the
performance, the system should be tested with normal
anticipated workload as well as the anticipated worst-case
workload. The technique used to achieve the performance
testing is an enhanced version of the user test procedures.
The test cases developed for the function and business cycle
testing are used modifying the data sets to increase the
number of iterations that occur in each transaction. The
scripts have run on one machine and repeated with multiple
clients. In performance profiling testing, Selenium IDE can
be used as a test script automation tool. Rational Quantify
has been used as an application performance profiling tool.
The success criteria varied depending on the number of users
and number of transactions. The success criteria for single
transaction or single user are the successful emulation of the
transaction scripts and workload without any failures.

The security of the system was provided with user
authentication through encoding password with bcrypt
encoder. And access controlling was done depending on the
user role from each and every controller of the system with
the use of libraries come bundled with Symfony framework.

In application level security the user is provided with the
permissions to access only the functions and data based on
their role, patient or admin. The patient has access to a
certain set of functions including the symptom checking,
whereas the admin has overall accesses including the
information management. These accesses are to be tested in
the application level security.

VI. CONCLUSIONS AND FUTURE WORK
The developed system provides help for patients with the

self-diagnosis or self-triage by means of considering the
symptoms they have and other information such as gender,
age and medical history of the patient. In addition, patients
can contribute information to the system which will be
evaluated by the system admins. User friendly interfaces
have been created for the system admins to interact with the
database and update the needed data in the database. Mailing
functionality has been implemented in the system to send
response emails to the patients who have contributed reliable
information to the system. This system includes user
authentication methodologies as well as access control
methodologies to allow access to each functionality based on
the user type.

As per now the patients can enter symptoms from a pick
list. For the future work, instead of a pick list model the
system can be improved to have a human model where
patients can enter symptoms in simple English and the
system do a search for the symptoms with similar phrases in
the system.

 In conclusion the Online Disease Tracker System
provides a significant support for the patients to have a better
self-diagnosis compared to other symptoms. Furthermore,
the developed system provides more information regarding
the disease, probability of user having the disease, doctors
and hospitals in need for those diseases, etc. which are not
available in similar systems. In addition, managing of the
system database has made lot easier by creating user friendly
interfaces for the system admins to interact with the database.
Thus the developed system provides a complete platform to
manage information regarding health matters. For patients
the system helps to understand their symptoms better and get
to know a rough idea about what the diseases they may be
affected with are and what the likelihood of them having
each predicted disease is. The significance with this
developed system is, beyond the boundaries of just providing
the predicted diseases; We Care Online Disease Tracker
System provides information for the patients to ease the post-
diagnosis process for each predicted disease. Most
importantly the system intends to provide assistance for the
Sri Lankans by having information confined to Sri Lanka
(i.e. diseases common in Sri Lanka, doctors and hospitals in
Sri Lanka, etc.). Thus We Care Online Disease Tracker
system guides the Sri Lankans for a better self-diagnosis in a
successful and productive way making their awareness high
and lives easier.

102

REFERENCES
[1]"Symptom Checker | The one the doctors use",

Symptomchecker.isabelhealthcare.com, 2016. [Online]. Available:
http://symptomchecker.isabelhealthcare.com/home/main. [Accessed:
29- Jun- 2016].

[2]"Symptom Checker from WebMD. Check Your Medical Symptoms.",
WebMD, 2016. [Online]. Available:
http://symptoms.webmd.com/#introView. [Accessed: 29- Jun- 2016].

[3]"Learn Symfony (3.1)", Symfony.com, 2016. [Online]. Available:
http://symfony.com/doc/current/index.html. [Accessed: 29- Jun- 2016].

[4]"How to Use Gmail to Send Emails (The Symfony CookBook)",
Symfony.com, 2016. [Online]. Available:
http://symfony.com/doc/current/cookbook/email/gmail.html.
[Accessed: 29- Jun- 2016].

[5]"Test Plan, We Care Online Disease Tracker System", We Care Online
Disease Tracker System, Test Plan, version 1.1

