
13

Taxi Master: The Smart Solution For Taxi Service
Industry

D. Atapattu
 Department of Computer Science and Engineering, University of Moratuwa, Sri Lanka.

dulaj.atapattu.13@cse.mrt.ac.lk

Abstract — Smartphone solutions are rapidly being applied to
many industries to make the day to day life of the human
beings easy. Travel and transportation is a service which is
useful for any person. Taxi service industry plays a major role
in modern transportation services. Even though the taxi service
industry has such a position, this industry has not been treated
with a proper solution using the latest technology to make the
entire industry more smart and efficient. The proposed system,
Taxi Master, addresses many underlying issues in taxi service
industry and provide solutions to those problems. Taxi Master
is a mobile and web based system using GPS, Google maps and
many more latest technologies.

Keywords — Mobile, GPS, Google API, Transportation

I. INTRODUCTION
Taxi services play a major role in transportation in Sri

Lanka. Taxi service providers receive hundreds of orders per
day. But these providers face a lot of problems and have not
been able to take the maximum profit from the resources
they have due to the lack of a proper system. Major problems
in existing systems are inability to track driver’s real-time
location and the availability, higher overhead in calling and
messaging to drivers, manual allocation of drivers, inability
of the drivers to pickup calls while driving, lack of real time
information for both the customers and the drivers about the
locations of each other. Further, many complaints have filed
against taxi drivers for answering phone while driving.

Taxi Master is a mobile and web based system which
provides solutions to almost all of the above problems. Both
customers and drivers are provided with two separate mobile
applications and the taxi service center is provided with a
web application. Maximizing the profit of taxi service
companies by proper utilization of resources in an efficient
manner and providing a satisfactory service to customers are
the main purposes of the system. In addition to that, in a
world where GSM calls and SMS’s are being outdated, this
application is easy to use with latest technologies.

The paper is structured as follows. Section II discusses
existing systems in the relevant industry. Section III gives an
overview of the functionality of the system. Section IV and
Section V describes the functional requirements and
architecture of the system respectively. Section VI describes
the technologies used and the implementation techniques.
Section VII discusses the testing strategies used and Section
VIII concludes the paper mentioning about future
enhancements.

II. LITERATURE REVIEW
PickMe [1] and Uber [2] and are the already existing

applications in the same domain. Uber is an international
company and PickMe is a Sri Lankan fast growing company.
Both of these applications have a similar business objective.
Their target is not, providing a system for taxi service
companies. Their goal is to build a central taxi system by
registering all individual taxis and taxi services within the
country with their system. But most of the leading taxi
service companies didn’t like to join either with Uber or
PickMe. All leading taxi companies have the fear that these
systems will disrupt the base of their business. Only some
small companies and individual vehicle owners and drivers
have joined with PickMe, because they don’t have that fear
which the leading companies have [1].

Uber has different types of cars and price levels. The
pricing strategy of Uber is somewhat complex as they charge
for the time as well as distance of the hire. In addition to that
a base payment should also be paid. Actually the rate per kilo
meter is low as 30 Rupees [2]. But the problem is ultimate
fare of the hire become too high due to the time based
charging of Uber with higher traffic in Colombo. Therefore,
Uber has not become very famous within Sri Lanka yet.
PickMe is much friendly to Sri Lankan society compared to
uber. But it also has drawbacks. One thing is PickMe highly
depends on GPS which is not available in some areas of Sri
Lanka. Even the drivers complain about this problem.

Compared to Uber and PickMe my solution Taxi Maser
has a completely different business plan and an objective.
Taxi Master is intended to be used as a central system of a
Taxi Service company. It doesn’t centralize all the taxi
service companies. Meanwhile it’s not just only for a single
taxi service company; it can be deployed in several taxi
service companies with a minimal configuration change. Add
on services can also be provided based on the subscription.

Taxi Master supports real time driver location tracking.
Taxi Master can handle the complete process of an order
from the placement to completion of the order. No single
phone call is needed except for exceptional cases. But in
PickMe after placing the order rest of the process is handled
through phone calls (In most cases driver calls the customer
and asks where to come). Drivers can use the dedicated
distance fare meter along with Taxi Master. It’s not
compulsory to do distance calculation using the driver’s
mobile application. This is useful for a country like Sri

14

Lanka where GPS is not available in all over the island. A
Driver rating system and a customer loyalty point award
system has been integrated to the Taxi Master. Customers
can use these points as money in next orders. This will
increase the loyalty of a customer with a specific taxi
provider. Driver rating system helps to improve the quality
of the services provided.

III. OVERVIEW OF THE SYSTEM AND PROCESS
FOLLOWED

Taxi drivers are provided with an android application.
This application can be used to set his current status and send
location updates to the central server. Customer can also
download an android application from Google Play to access
the services offered by the taxi provider.

When a customer wants to place an order for a taxi,
he/she can open the app and check nearby drivers or drivers
near to a specific location entered by the user. If a driver is
available customer can select the driver and place an order.
Then that particular driver will get a real time notification
about the order.

Driver can either accept or reject the new order. The
response of the driver is informed to the customer with a
push notification. If driver accepts the order, customer can
track the driver’s real time location and the driver can see
navigation instructions to the pickup location.

In a case where customer calls and place an order, an
officer at the taxi service center can manually place the order
using the web system. In this scenario customer cannot track
the driver as customer doesn’t interact with the system
directly. Taxi Master can also be used to record and view the
order history through the web system.

IV. SYSTEM MODELS

A. System Requirements
The driver can set his current state and then the location

update settings are automatically set according to the state.
The driver receives new order notifications through the app
and he can either accept or reject the order. If driver accepts
the order, it will be added to his ongoing orders list. Driver
can obtain navigation details to the customer’s pick up
location when going for the hire.

Customers can enter pick up location and destination and
check the available drivers at the moment. If a driver is
available, a new order can be placed using the application.
Customer can track the real-time location of the driver while
driver is coming to pick him/her. At the end of the hire
customers can rate the drivers and give a comment. In
addition to that customers receive some loyalty points as a
percentage of the hire fare. Customers can spend earned
loyalty points in future hires. Registered customers of the
system receive push notifications about offers and discounts
when available.

There is an admin panel for monitoring purposes and
resource management activities. Orders received on phone

calls can be placed using the admin panel. Admin panel is a
web application.

Taxi Driver

Update status
and

Start/Stop location updates

Accept new hire

Track customer

<<extend>>

Reject new hire

Fill and submit hire details

Customer
View nearby drivers

Check details and
distance to driver

Place an order

<<extend>>

<<extend>>

Call taxi provider

<<extend>>

Track driver

<<extend>>

Rate	and	
comment

Fig. 10. Use cases related to taxi driver and customer

Figure 1, represents the functional requirements of the
taxi drivers and the customers of the system. Customers and
taxi drivers completely depend on the system for orders.
Therefore, reliability is a major non-functional requirement
of the system. Higher customer request load should be
expected in peak hours and that load should be manageable
by the system without losing the performance. System
should be secured from unauthorized access. At least a GPS
accuracy of 100 meters is expected form the system.

V. SYSTEM DESIGN

A. Architecture of the system
The main architecture of the system is model-view-

controller (MVC) architecture. The web application and the
server side implementation exactly follows the MVC
architecture and two android applications follow model-
view-presenter (MVP) architecture which is an extension of
the MVC architecture.

In web and server implementation all the requests are
passed to the Laravel routes layer which is an extra security
layer added by the Laravel framework [3]. Routes layer
direct these requests to controller layer after authorizing the
request. Model layer is responsible for all the data access
logics. View layer return the well formatted output [3].

In MVP architecture the presenter acts as the
intermediate layer between model and view layers. View
layer handles all user interface related activities and model
layer handles all network and other logics. Presenter is
responsible for calling necessary model layer functions
related to user interactions and returning the response. Due to
this layered architecture the user interface or the logic of the
application can be changed with a minimal impact to other
layers [4].

15

B. Logical View

NewOrder

Order

FinishedOrder Driver

Location

<< enumeration >>
OrderState

0..*

1

1

2

<< enumeration >>
DriverState

0..*

1

1

0..*

Fig. 11. Class diagram of driver app

Taxi

<< enumeration >>
TaxiType

Driver

Location

Order

1

2

1

1

0..1

0..*

0..*
1

Fig. 12. Class diagram of customer app

Privilege

<<enumeration>>
Taxi Type

State

Driver Update
User Level

Taxi
Taxi Driver

User

Finished OrderNew Order

Order

1
0..*

1

1

0..*

1

1

1

0..*

1

1..*

1

1..*

1..*

Fig. 13. Class diagram of web app

Figure 2, Figure 3 and Figure 4 represent the class

diagram of the Taxi Master classified into sub applications.
Each “Driver” has a “Driver State” and that state is used to
determine the availability of that driver for an order.
Customers place “New Orders” on drivers and the orders
also have different “Order States” according to the progress
of the order. “Location” represents the origin and destination
locations of an “Order”. Drivers periodically send “Driver
Updates” to the central server informing their current
“Location” and the “State”. Each “User” of the system has a
“User Level” and each user “User Level” is associated with a
set of “Privileges”.

C. Process View

Place an order

Customer System

Enter starting
location and taxi type

Search for a taxi Display available
taxies

Select a taxi

Enter end station,
time and submit

Notify driver

Display new order
page

Is accepted by driver?

Create new order

Display driver
contact details

No

Yes

Fig. 14. Activity diagram for place an order use case

16

Update status and Start/Stop location updates

Driver System

Select new status

Submit the new
status

Change the driver
status in the server

Apply suitable
location update

settings

Is connected to internet?

Prompt to connect to
internet Yes

No

Connect to internet

Start periodical
location updates

Is GPS on?

Propt to switch on
GPS

Switch on GPS

No Yes

Fig. 15. Activity diagram for update status and Start/Stop location updates
use case

Driver and the customer are the main user roles of the
system. Setting correct state and sending his own location
updates to the server is the main use case and the
responsibility of the driver. This will help customer to pick
up the drivers suitable for their hires.

Main use case of the customer is placing a new order.
Customer can search for nearby drivers and place a new
order after filling out necessary details.

D. Database design
User table stores all the personal details and credentials

of system administrators, taxi drivers and taxi operators.
There is a child taxi driver table to store the details only
related to taxi drivers. All users are related with a specific
user level and each user level is related with a set of
privileges.

The new orders placed by the customers are temporarily
stored in new orders table. Successfully completed orders
are moved to the finished orders tables for order history
management purposes. New orders table is cleared
automatically once a month to remove unwanted data from
the table.

Fig. 16. Entity Relationship diagram of Taxi Master

State table and taxi type tables are static tables and hold
all possible states of the drivers and all taxi types
respectively. Detail about all the taxis the company have are
stored in taxis tables. Each taxi has a taxi type and the taxis
are mapped with taxi drivers. Driver updates table contains
the latest state and the location of each taxi driver.

VI. SYSTEM IMPLEMENTATION

A. Implementation Procedure
Android studio [5] was used for android application

development and PhpStorm [6] was used for web and server
side development. Both of the IDE’s are IntelliJ based and
provide a very interactive and sophisticated development
environment.

PHP was used with Laravel framework for server side
scripting. Therefore, the database was implemented using
Laravel migrations which provide easy version management
for the database. The data access layer is completely
managed by the Laravel eloquent ORM and raw MySQL
queries were not used. This will make the system migratable
from MySQL to PostgreSQL without any modification.
Access management and authorization is controlled by
Laravel middleware and the auth façade. Laravel middleware
was also used to handle cross site reference forgery attacks
using CDRF tokens. Laravel blades were used for web
interface designing which made the process easier and
efficient by applying concepts of reuse.

Both of the android applications are native and have been
written in java. Material design concepts were used for user
interfaces which will make the applications more interactive
and self-understandable. GSON library was use to serialize

17

and de-serialize java objects to JSON when communicating
through the network. Google fused location service was used
to fetch GPS coordinates instead of the android location
provider. Fused location services have been optimized to
provide the location with better accuracy with lower power
consumption.

Several Google APIs were used for location based data
and other calculations. To select drivers for orders distance
between the driver the customer’s pick up location has to be
calculated. This was done by using Google distance matrix
API. For better accuracy and interactivity locations are
suggested when user types for a pick up locations or a
destination. These suggestions are provided by Google
Places API. When a driver is going to pick up a customer,
driver can enable navigation to driver’s pick up location
within the application (without switching to Google maps).
These navigation services are provided by Google navigation
API. Real-time notifications are needed for both customer
and driver applications. All notifications are sent as push
notifications using Google cloud messaging (GCM) and
OneSignal API.

As the initial development step, the database was
developed. Then the system was developed in use case wise.
To complete most of the main use cases of the system,
functionality of all three applications (driver application,
customer applications and server) are needed. Therefor all
three applications were developed in parallel. Since both of
the android application are using GPS, real android devices
were used to test the applications from the beginning of the
development stage. Server was hosted locally with the help
of XAMPP server and has been forwarded to a public IP
using the tunneling tool ngrok [7]. The public URL provided
by ngrok was used to access the server from android
applications.

B. Algorithm

getAvailableTaxis(request)
responseList = []
origin ß request.origin
taxiType ß request.taxiType
availableTaxiList = Database.read(“select all from

taxi_drivers where taxiType=taxiType
ordered by ((latitude – origin.latitude
+ longitude – origin.longitude)/2)
asc limit 10”)

distancesList = getDistances(availableTaxiList)
i ß 0
while i < distanceList.length
 if(distanceList.status == “OK”)

responseList
.add([availableTaxiLust[i], distanceList[i])

i++

return responseList

getDistances()
 url = GOOGLE_DISTANCE_MATRIX_API_URL
 for each taxi in availableTaxiList
 url = url + taxi.latitude + “,” + taxi.longitude
 return (get data from google api);

Fig. 17. Pseudo code of the algorithm used to filter the available taxis for
an order

After customer enters the pickup location available list of
taxis should be displayed. In the real world scenario there is
a lot of drivers in the database. Therefore, we cannot just
return all the available drivers. Fig. 8. Represents the
algorithm used for this filtering.

First the average difference between the driver’s
coordinates and coordinates of the customer’s pickup
location are calculated. Then 10 taxi drivers having the least
coordinate difference are selected form the database. Then
real distances between those selected drivers and customer’s
pick up location are calculated using Google distance matrix
API. If API returns a response with status flag “OK” then
that taxi and the distance information returned form Google
are added to the response. Finally, the response list is
returned back to the customer’s application.

C. Main Interfaces

Figure 9. Left user interface is used to search for
available taxis. Available list of taxis will be displayed.
Right interface is used to place a new order on a selected
taxi.
Figure 10. Left interface is used to set the state of the driver
and to start/stop sending location updates. Right interface
can be used to get navigation details from driver’s current
location to customer’s pick up location (Prior to opening
this interface driver has to accept and look for any bookings)

Figure 11. Dashboard is the main user interface of the
web application. This is available to both administrator
account and taxi operator accounts. Using the dashboard all
the taxis of the company can be monitored. Taxis can be
filtered using the either the state of the taxi (available, going
for hire, in hire, not in service) or the type of the taxi (nano,
car, van).

Fig. 18. Customer application main user interfaces

18

Fig. 19. Driver application main user interfaces

Fig. 20. Web application - dashboard

VII. SYSTEM TESTING AND ANALYSIS
While developing the system, unit testing was used to test

all major functions. PHPUnit was used for testing the web
application which comes out of the box with Laravel
framework [5]. All routes of the web application were
requested using test methods and verified that they are
working as expected. Authentication and authorization were
also tested using both authorized and unauthorized requests.
Since the data access layer is managed by Laravel
framework, it doesn’t need to be tested [8].

Component testing were also done using PHPUnit.
Laravel testing supports creating mock objects and mock
request to test controllers and other data returning functions.
Back end validations when entering new data to the table
were tested by trying to input invalid data tests.

Selenium IDE [9] was used for user interface and activity
flow testing. All the activity flows were recorded using
Selenium IDE for both user types, admin and taxi operators.
All the links, buttons filters and all other components where
user interacts were tested and verified using user interface
testing. All data entering user interfaces were tested for front
end validations.

JUnit with espresso framework [10] was used for android
unit testing. Both of the apps use android specific and
hardware required features such as internet connectivity and
GPS. Therefore, all the unit tests were designed using
android instrumentation testing not local unit testing.
Connectivity to the server and all network related methods
were tested by both reading and writing data to the remote
database. Location listener was also tested and verified for
the required accuracy and the delay.

Android test recorder supplied by Droid Test Lab were
used to record test cases. As the automatic assertions are not
supported by android test recorder, the test records generated
by android test recorder were edited to include assertions for
verification.

VIII. CONCLUSION AND FUTURE WORK
Taxi Master is a complete taxi tracking and order

management system which can be used at any large or
medium scale taxi service company. Real time driver
locations, semi-automated driver-customer allocation and
real time driver tracking are the highlighting features of the
system. With the taxi master, drivers don’t need to answer
phone calls while driving and go here and there without
knowing the exact location of the driver. Also customers can
track the real time location of the driver using the android
application. Taxi Master is the smartest solution to taxi
industry with smart phone technology.

In addition to the existing features “My favorites” feature
is a useful future implementation to customer’s application
which will help customers to save and reuse similar types of
routes and orders. And merge rides feature is another big
feature which is to be implemented. By merging multiple
rides of the same route during the same time interval, taxi
companies will be able to provide lower rates to customers.
Finally, the web application can be extended to place orders
online.

REFERENCES
[1] Pickme and the taxi revolustion. (2016, 10 12). Retrieved from

ReadMe.lk: http://www.readme.lk/pickme-taxi-revolution/
[2] uberGO, the most affordable ride in Colombo. (14, 10 2016). Retrieved

from Uber News, Events, Partnerships, Product Updates and More:
https://newsroom.uber.com/sri-lanka/ubergo-the-most-affordable-
ride-in-colombo/

[3] Architecture of Laravel Applications. (2016, 04 10). Retrieved from
Laravel Book: http://laravelbook.com/laravel-architecture/

[4] MVP for Android. (2016, 04 11). Retrieved from antonioleiva:
http://antonioleiva.com/mvp-android/

[5] Android Studio, [online] Available at
https://developer.android.com/studio/index.html

[6] PhpStom, [online] Available at https://www.jetbrains.com/phpstorm/
[7] ngrok, [online] Available at https://ngrok.com/
[8] Testing - Laravel - The PHP Framework for Web Artisans. (2016, 06

16). Retrieved from Laravel - The PHP Framework for Web Artisans:
https://laravel.com/docs/5.1/testing

[9] Selenium IDE, [online] Available at http://www.seleniumhq.org/
[10] Testing UI for a Single App, [online] Available at

https://developer.android.com/training/testing/ui-testing/espresso-
testing.html

