
7

Migraine Trigger Recorder: A Migraine Tracker

M. S. Wickramarathne
Department of Computer Science and Engineering, University of Moratuwa, Sri Lanka.

mithwick.13@cse.mrt.ac.lk

Abstract— The purpose of the project is to develop an
effective mobile application to record and track migraines and
provide means to organize those records. The project aims to
help people suffering from Migraine headaches by tracking,
analyzing and giving meaningful reports and suggestions to
improve the health condition of the users. Rational Unified
Process (RUP) is used for the system development. The target
platform for the project are the smartphones running on the
Android Operating System. The Model-View-Controller
architectural pattern is used in the system design and
implementation. The end product of the project is a standalone
Android mobile application with a SQLite database to persist
the migraine records. The implications of the project output
are to provide a simple, easy to use and trustworthy digital
companion to improve the quality of life of Migraine patients.

Keywords— Migraine; Android application; Model View
Controller architecture; Rational Unified Process

I. INTRODUCTION
Migraine is a headache disorder suffered by

approximately 15% of the world population. It is
characterized by headaches occurring often or repeatedly
with varying levels of severities. Migraines can severely
affect the day to day activities since it causes vomiting,
sensitivity to light, sound, smell etc. There is no exact cause
of the disorder and no permanent cure found to date. They
are believed to be caused by a mix of genetic and
environmental factors [1].

Therefor it is very important to track and record the
causes and patterns of Migraines per individual basis to have
a better chance of evading or minimizing the effects of the
disorder. Scientists can use the collected data from the users
to get a better understanding of Migraine to produce effective
drugs and even possibly to find a permanent cure.

Migraine Trigger Recorder is a standalone android
mobile application. Its main purpose is to help Migraine
patients to track and record their Migraines along with the
possible triggers of the headache. Special attention is given
to user’s health conditions while developing the application.
The application hopes to assist users by recording the
relevant data regarding each Migraine attack the users’
experience. The main expectation of the app is to assist
Migraine patients in predicting future Migraines and thereby
helping to prevent them by taking proper precautions. This is
important since Migraine cannot be cured, but only
prevented and controlled.

This paper describes how the Migraine Trigger Recorder
application was designed and developed. Section II surveys

related work in building applications for Tracking Migraines.
Section III provides an overview of the system. System
models, design, implementation and testing of the application
are described in the later sections respectively. Final section
of the paper describes conclusion and future work.

II. LITERATURE REVIEW
Prior to the development of the system began, research

had to be done on the current findings and knowledge base
about the Migraines. This included finding about the
definition, symptoms and current research done on the
subject. “Mayoclinic.org” has exceptional details on the
particular subject [1]. Data was gathered from reputed
sources such as Mayoclinic.org to provide base questions and
answers to be filled by the users of the application. It was
found out that Migraines are not permanently curable and
there are many causes for it. The triggers vary from person to
person and it might have an effect from genes.

Apart from the research on Migraine, research and testing
were done to get familiarized with the android developing
environment. The coding standards, design guidelines were
referred extensively since the project has a high concern on
usability and simplicity of the final application.
Documentation by google on “Android core app quality” was
strictly followed when implementing the user interface and
performing tests on the system [2].

The proposed application is targeted for the android echo
system. Many headache management applications are
available in the google play store, but only a handful of them
are Migraine specific [3].

“Migraine buddy” application is able to stand out from
others and has a good reputation and usability [4]. It provides
headache tracking and sleep recording. However, it has a
very long procedure to record Migraines. The user has to
navigate through many required screens to record a single
Migraine. Applications such as “Migraine Diary” and
“Migraine” do not provide adequate features and
functionality to perform the tracking task properly. They do
not provide the ability to record broad information and
analyze the past records as desired.

Although most of the existing applications provides well-
established migraine management solutions, our application
provides a specific solution to Migraine management and
analysis while taking usability, productivity and practicality
in to great consideration. New system is developed using the
Android Studio IDE. It provides built in debugging and
support for test harnesses. The minimum supported SDK

8

API level will be KitKat. The data persistence will be
handled by the inbuilt SQL API of android SDK which uses
SQLite as the database [5].

III. OVERVIEW OF THE SYSTEM AND PROCESS FOLLOWED
Migraine Trigger Recorder is an Android mobile

application developed using the Rational Unified Process
(RUP). RUP is based on four main phases; inception,
elaboration, construction and transition. In the inception
phase most of the planning was done while in the elaboration
phase most of the design work was carried out. The project
included analysis, design, implementation and testing phases
where some were overlapped with each other as allowed by
RUP. The Application supports devices running Android
KitKat and above. Model-View-Controller architectural
pattern was incorporated when designing and implementing
the application. Construction phase was used for the
implementation of the features. And refactoring of the code,
testing and deployment were mainly carried out in transition
phase. The outcome of the project is an Android application
(APK) ready to be deployed on the Google Play store.

IV. SYSTEM MODELS

A. System Requirement Specification
The main functional requirement of the application is to

record the data related to Migraine attack. Most of the data is
to be collected as user input. However, the application must
provide the user with an option to choose the level of
information recorded. These levels can be categorized in to
basic, moderate and full. The application must also support
the managing of the answers to the question categories.
Initially a set of most common answers would be provided
by the application. The user will have the ability to add,
delete and reorder the answers according to personnel taste.

One of the most common triggers for Migraine is the
surrounding weather conditions. The application must gather
the relevant weather data such as temperature, humidity and
pressure at the time of the Migraine based on the location of
the user. The Migraine application must provide
functionality to view past records of Migraines saved in the
application. The records will be available in two views,
namely the list view and the calendar view. The records must
also be able to be filtered according to user needs. Upon
clicking on a particular record all the data on that record will
be displayed. One of the main features of the application is to
provide a comprehensive report view to the user after enough
data has been collected on several Migraine attacks. The
report would help the user to analyze their situation in a more
understandable manner.

The application is used by Migraine patients. Most users
will be sensitive to light levels, and colors and they might
even be triggers for a Migraine attack. The user must be able
to use the application comfortably. Hence a set of
customization options must be provided to personalize the
experience according to user needs. The application must be
able to provide a solid and correct knowledge base to the
users. Users can learn about Migraine and the results

obtained from past research. The collected data is of great
value to the users. It is a record of their medical history.
Therefore, the application must have functionality to
securely backup the app data and restore them later in the
event of an unexpected application behavior or any other
unpredicted situation.

When considering the nonfunctional requirements,
following are important. Intuitive User Interface, adhere to
google material design standards, accuracy and reliability in
data and reports. The application must use the mobile
hardware resources efficiently. The application is expected to
be used by a user for a prolonged time. It should have the
ability to record all inputs by user for a several years.

B. Use Case Diagram
The application is a single user standalone android

application. The user will have access to all functionalities of
the system. When viewing past records the user can filter the
records and switch between list view and calendar view. The
user can update individual past records. When recording a
new Migraine, the user can select the detail level and retrieve
weather data. Once the user requests weather data the system
would obtain device location and pull the information from
internet and display back to the user. The use case diagram
of the application is shown in Figure 1.

User

Record migraine

View past records

View Individual record

Choose view type
Update record

Filter records

<<extend>>
<<include>>

<<extend>>

<<extend>>

Retrieve weather data
Choose detail level

<<extend>>

View Report

View Migraine FAQ

Manage answers

Backup and restore data

Customize appearance
System

Collect abnormal recordings

Send E-mail

<<extend>>

<<extend>>

Figure 1. Use case diagram of the system

V. SYSTEM DESIGN

A. Architecture of the system
The system is a standalone application targeted for the

Android operating system. Therefor it is not necessary for
the application to be compliant with an existing software or
interface. The architecture of the application can be made
from the ground up. However, it is mandatory to follow the
Google guidelines and recommended architecture for
building apps for Android [6]. Android applications use a
version of Model-View-Presenter pattern which is

9

structurally similar to Model-View-Controller (MVC)
pattern which will be used to model the architecture of the
application.

The overall architecture of the application follows the
recommended Android application structure. Android User
interfaces are defined as XML files. Those files and related
resources such as images, theme definitions will be put under
“res” package or folder. The actual java class files are
contained under “src” folder. The developer is given the
freedom to package the application java classes according to
his/her need.

Since the application Uses MVC model, the packages are
divided in to the three sections model, view, and controller.
Model classes represent the domain objects of the system.
They function as data units. Data will be transferred as
Model objects within the application. The model classes
contain the important attributes and getters and setters for
those attributes.

The view classes are the activity classes created along
with the XML files. The activity classes function as the
interface between Java and XML written user interfaces. It
will handle the function of transferring data to and from the
user interface to relevant controller classes. These classes are
part of the android SDK and inherited from the Android
SDK classes. They refer to controller package classes to
obtain application logic and data.

The most important package of the model is the
controller package. This is the core of the application, where
all the application logic is be handled by controller classes.
Controller classes accept input via view classes, perform the
necessary logic and calculations and return an output. They
can access the persistent storage for data using Database
Access Objects.

Database Access Objects (DAO) contains logic to handle
the database. They are responsible for querying and updating
the database for the application. DAO classes include SQL
code to communicate with SQLite database. The application
need to access location services and internet services. These
actions are performed by utility classes and will be included
in the Utility package. The package diagram visualizing the
above details is shown in Figure

User interfaces, input
validation

Business logic, record
filtering, answer

sorting etc.

Domain representation
classes

Database access and
quarrying logic

Database file handling

Utility classes to provide
common functionality

across all classes

Figure 2. Model View Controller architecture of the system

B. Logical view
The class diagram for functionality of adding a new

migraine record is shown in Figure 3. Record is the container
class for the other domain classes. The user interaction is
captured by the “AddRecordView” class and the control is
passed to the record controller. The record controller
manages the Record class and the classes contained within it.
Some of the answers have priority. They are inherited from
the PriorityEntity abstract class. The PriorityEntity class
implements comparator to compare the relative priorities of
answers and sort them in a given list of answers.

<<Entity>>
Record

<<Entity>>
Trigger

<<Entity>>
Relief

<<Entity>>
Medicine

<<Entity>>
Symptom

<<Entity>>
weatherData

<<Entity>>
Activity

<<Entity>>
BodyArea

<<Entity>>
Location

<<Control>>
RecordController

uses

1

0..1

<<boundary>>
AddRecordView

ProrityEntity

0..*

0..*

0..*0..1

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

Figure 3. Class diagram for adding migraine record

C. Process view
The sequence diagram for adding a new migraine record

is shown in Figure 4. This specifies object interactions are
arranged in time sequence. When the user wants to add a
record, the system askes the level of information to be filled.
Depending on the level chosen, a set of questions and
answers are provided to be selected by the user. Only filling
the start time is mandatory. User can add new answers while
filling the record. The user can postpone filling at any
moment and choose to fill the data at a later time.

D. Database design
The system must be able to manage the answers to

different question categories. Since the number of questions
is fixed, the answers for the fixed number of questions can be
managed in tables apart from the Migraine record itself. User
can change the priority of answers in some categories
according to their preference.

A priority attribute is required to store this information.
The taken Medicine and reliefs can be effective. An attribute
is used to store the effectiveness of the taken medicine/relief.

10

:System

startNewRecord()

detail levels

showQuestions(detailLevel)
questions

compleateRecord()

record summery

[confirmSave=false] discard()

saveRecord()

alt

[else]

success message

[later=false]

saveRecord()

selectAnswer(questionId,AnswerId)
[answerAvailable=true]

getAnswerManager(categoryId)

alt

alt

loop

hasNextQuestion=true

[else]

[else]

User

If answer is not
available, user
can add a new
answer

Figure 4. Sequence diagram for adding new migraine record

Figure 5. Database schema of the application

11

A record can contain multiple answers for same question
category; therefor the relationship is many to many. Additional
association table is required to store these types of
relationships. Each Migraine record can associate exactly one
weather data record. However, it is not mandatory to have a
weather report for Migraine records although a weather record
must have a related Migraine record. Therefore, Migraine
record and weather report have one to one relationship and a
total participation. Figure 5 shows the Data view of the
application after above considerations and database
normalizations.

VI. SYSTEM IMPLEMENTATION

A. Implementation procedure
Java language is used to implement the business logic and

the user interfaces are designed using XML as per the Android
design specification. The official IDE provided by Google
“Android Studio” was used for the development phase. The
IDE has support for visual editing of user interfaces, unit
testing, application profiling, logging and debugging. These
features make it very versatile software for Android
developers. The development was done on a standard laptop
computer. The provided Android Device Emulator was used to
run and test the application on an emulated Nexus 5X
smartphone running Android Marshmallow operating system
(API level 23). The target API level of the application is 23
while the minimum API level is 19.

The implementation was tightly bound to Android design
specifications and standards. The visual design is inspired by
android Material Design. The core logic of the application was
implemented using Model-View-Controller classes as designed
in the Architecture document. The database was implemented
using the SQLite API provided. The access to the database is
provided by the singleton class “Database Handler”. The
business logic is implemented separately from the Android
classes responsible for the User interface (UI). The user
interface classes, Activities and Fragments were implemented
separately in another package. Then the business logic classes
were connected with the UI classes. This strategy was useful in
checking the correct logic and database functionality without
the need of a user interface.

It was required to sort the answers by their priority, for this,
a “PriorityEntity” abstract class was created with the priority
attribute defined and the answer classes were extended from
PriorityEntity class. The comparator interface was
implemented in the “PriorityEntity” abstract class to implement
the comparison logic to sort the answers.

The official android developers’ web site [7] and
stackoverflow QA website [8] were of great help in providing
required source code examples and answering questions
aroused during the development.

B. Algorithm
The record view section incorporates a filter functionality

in list view to provide the user with a set of filters to find a set
of records by specifying the different answers that the records
should contain and match. The algorithm was implemented in

“Record Controller” class to filter the set of all records based
on the filters sent by the user interface as an ArrayList of
strings. The implementation takes a list of all records and a list
of strings specifying the filter names and outputs a list which
contains records matching the filter criteria. The pseudo code
of the algorithm which searches a list for matching filter in a
single answer category is shown in Figure 6.

Figure 6. Pseudo code of the filter algorithm

The algorithm has O(n2) time complexity since it iterates
for each record and for each record checks in the filters for a
matching one. The filters are categorized under the question
sections, so the algorithm must iterate over each filter set. The
algorithm is optimized to be terminated at the first
identification of the record.

C. Main interfaces
When the application is launched the user is directed to the

main page in Figure 7. This page behaves dynamically and
shows time since the user was Migraine free and gives various
suggestions if the user is currently suffering from a migraine.
Clicking the plus sign gives the user to choose information
level for new record.

Figure 7. Main page of the application

filters ← list of filter strings
recordList ← all records
GetFilteredRecords (filters, recordList) {
 filteredRecordList ← new empty list

recordLoop:
FOR EACH (record in recordList) {

bodyAreaFilters ← get body area filters
from filters

bodyAreas ← get bodyArea list of current
record

FOR EACH (bodyArea in bodyAreas) {

IF (bodyAreaFilters contains name of
bodyArea) {

add record to filteredRecordList
CONTINUE recordLoop

}
 }
 }
 RETURN filteredRecordList
}

12

Once a choice is made, relevant new record form is shown
as in Figure 8. The view reports user interface in Figure 9,
gives analytical information to the user based on the past
records that has been made. The user can select a date range for
the analysis. The report can be sent to a third party via email.

Figure 8. Add new record page of the application

Figure 9. View report page of the application

VII. SYSTEM TESTING AND ANALYSIS
The testing of the application was done under several

sections. The database was tested independent of the User
interface for correct creation and verification. The database
handler class was tested for correct retrieval of readable and
writable SQLite database. This was achieved using JUnit
testing framework. Unit testing was used to test the correct and
intended functionality of the “AppUtil” class which contains all
common methods used by various classes in the application.

Each method was extensively checked for any unexpected
behavior.

The functional tests, performance tests and user interface
tests were combined to a single testing strategy where user
interface tests were recorded using “Expresso” testing library
to check the user interface and to test the fulfillment of
functional requirements by the application. The UI tests were
used to ensure the use cases identified were able to be fulfilled
by the provided interfaces effectively and the standard was
acceptable. Performance profiling was done using the
integrated device monitor in the Android Studio IDE. While
the Interface tests ran, this utility was used to monitor and
identify performance issues such as high CPU and memory
usage and memory leaks.

VIII. CONCLUSION AND FUTURE WORK
The paper is described the design and implementation of

an Android application to record and analyze Migraines. The
project produced a decent Android app with pleasing aesthetic
features and great functionality. The project development was
successfully able to fulfill all the functionalities and cover all
use cases as specified originally.

The source code of the application is available at GitHub
under the Apache License, Version 2.0. The application has
many uses when it comes to researching on Migraines.
Researches can use the application as a data collection front
end. The vast amount of data collected with the approval of the
users would be very useful in research done on Migraines. The
past records search algorithm can be further improved using
more efficient data structures and algorithms. Furthermore, any
contributor can continue with the application and improve the
functionality. The application source code is available at the
following URL for anyone to check out and contribute in bug
fixes and improvements.

REFERENCES

[1] M. C. Staff, "Migraine headache," [Online]. Available:
http://www.mayoclinic.org/diseases-conditions/migraine-
headache/basics/definition/con-20026358. [Accessed 5 3 2016].

[2] "Core App Quality," Google, [Online]. Available:
http://developer.android.com/distribute/essentials/quality/core.html.
[Accessed 31 03 2016].

[3] "Google play," [Online]. Available:
https://play.google.com/store/search?q=migraine&hl=en. [Accessed 5 3
2016].

[4] "Migraine Buddy," [Online]. Available:
https://play.google.com/store/apps/details?id=com.healint.migraineapp.
[Accessed 5 3 2016].

[5] "Saving Data in SQL Databases," [Online]. Available:
http://developer.android.com/training/basics/data-storage/databases.html.
[Accessed 6 3 2016].

[6] "Application Fundamentals," [Online]. Available:
http://developer.android.com/guide/components/fundamentals.html.
[Accessed 10 04 2016].

[7] "Android developer," Google, [Online]. Available:
https://developer.android.com/index.html. [Accessed 18 03 2016].

[8] "Stackoverflow," [Online]. Available: http://stackoverflow.com/.
[Accessed 18 06 2016].

