
43

Big Data Visualization
Human Flow Visualization

Mirage Abeysekara

Computer Science & Engineering Department, University of Moratuwa, Sri Lanka

mirage.12@cse.mrt.ac.lk

Abstract— Computer based visualizations have been a popular

approach that provides accurate and efficient visualization

techniques to the users. There is an increasing growth in

geographical data with the development of mobile devices. There

is a trend to analyze the human behaviors and patterns with

respect to the geographical locations in order to take decisions and

predictions. This paper presents a Human Movement Visualizer

tool to provide populating flow data between regions of a given

map. The tool was designed to use with modern web browsers by

implementing the complete functionality of the system using client-

side JavaScript language. Also the tool can integrate with other

visualization tools by introducing component based architecture

to the system. Users of this tool can give a Shapefile as a base map

and CSV (Comma Separated Values) based data to visualize the

geographical data. The main goal of this tool is to provide

visualizations for the transport planning in Sri Lanka.

Keywords—Geographical; Goolge Maps; JavaScript; Client-

side; Component based arcutecture; CSV; Shapefile

I. INTRODUCTION

Today most of the devices are collecting data related to
human behavior with their geographical locations. This includes
mobile phones, vehicle GPS systems, geo tagged pictures [1],
etc. Based on these data collections, researchers analyze human
behaviors and patterns with respect to the geographical locations
to take decisions and predictions. As the data grows with time,
problems can arise in data analyzing due to the complexity and
huge amount of data. Visualizing these data using geographical
map is a solution for this problem.

Transport planning is vital in urban areas due to the high
crowd and vehicle density. Estimating the flows of human
movement between two regions are normally done by using
surveys. Visual analysis is used for transport planning to easily
understand the human movement [2]. These visualizations either
done manually or generate using software. The proposed
visualization tool allows generating and modifying visual
models easily based on gathered data. Also this tool allows the
interactive visualizations to the wider audience.

The main purpose of this data visualization tool is to
communicate information clearly and efficiently with the users
via a statically or dynamically generated maps [3]. Also the
system makes complex data to be more accessible,
understandable and usable by visualizing it. Furthermore the
users of the system can analyze and predict traffic flow patterns
in a country by populating known data on top of the map.

Section II describes the background of data visualizations
and importance of a visualization tool. Furthermore it explains
currently available visualization tools and their features. Section
III describes the system requirements and design of the system
using the system architecture. Section IV explains the
implementation procedure as well as user interfaces of the
system. Section V explains the testing plan of the system
including unit testing, user interface testing and performance
profiling. Finally the section VI describes the conclusions and
further improvements to the system.

II. LITERATURE REVIEW

Big data visualization uses tools to represent data in the form
of charts, maps, tag clouds, animations, or any graphical image
that makes content easier to understand. The past few years have
seen a major improvement of visualization applications,
technologies and infrastructure to support increasingly
sophisticated visual representations of data [4].

Creating a visual representation of statistics once involved
compiling, interpreting, parsing and determining the visual
presentation type that would mean for the data. Big data
visualization tools provide a simplified process from compiling
data to visualizing data [4]. Therefore the most visualization
tools work as a black box which the users can paste data or
upload spreadsheet, CSV file to the application interface and the
tool then turns the data into a visualization, such as a colored
map or an interactive chart. A skilled user can use a wide range
of technology tools to create any kind of visualization they want,
but the importance of newer tools is that they allow nontechnical
users to visualize data without any complexity. Therefore
finding a tool that can turn data into an appropriate and
informative visualization can be difficult [5].

Visualizations help people to see the data in different
perspective that cannot be easily seen by just analyzing the data.
Even the data volumes are very large, the hidden patterns can be
seen quickly and easily [6]. Visualizations make people to share
data with others simply and easily. Before the visualization tools
available public, it was researchers who designed visuals to
analyze data and find out trends. However, current web
applications allow anyone with access to data to enter
information and easily create a virtualization of those. People
can now easily create visualizations that might reveal trends that
are not obvious from the numbers alone. Therefore these kind of
public visualization tools allow improving the development
process from home to large scale businesses.

44

Geographic information systems allow individuals to gather,
transform, and analyze data. Every day the new geographic data
visualization tools become available that they allow users to
easily create interactive visualizations of big data gathered by
geographic information systems. The most common example is
the Google Maps [7]. Google Map provides visualization for
their API (called Data Layer [8]). This will help for the
developer to easily add geographical data and visualize in on top
of the google maps. But for the non-technical people it is very
difficult to learn and use it. Fig. 1 shows population growth of
the world using Google map’s Data Layer. The MapsData is
another visualization tool which provides customized
visualizations [9]. The work done by Koblin [10], visualizes the
flight patterns between regions using line based visualization
technique to populate data. They have described the Human
Flow Visualizer tool that uses the line based data visualization
to populate data.

Fig. 1. Google Maps Data Layer - Population growth of the world

III. SYSTEM MODELS

A. System Requirements

The web based big data visualization tool for visualizing
human flows was design to maximize the analyzer’s
productivity by providing tools to generating and modifying
visualizations in less time. More specifically, this system is
designed to allow a user to render a given base map and draw
the flow data on top of the map. The generated visualizations
can be statically saved for publishing or dynamically saved for
interactive presenting.

1) Functional Requirements
The visualization tool allows loading maps from Shapefiles

and Google Maps as overlays. Also the user must have the
ability to load CSV formatted data file which contains
visualization data (“source, destination, volume, time” format in
the CSV file). After loading the base map and the data file the
tool is required to render the visualization with directed arrows
or colored lines.

The visualization tool should have visualization filters which
allow the user to filter regions. As an example if a user want to
see the flows from region X the lines must show flows from
region X to other regions. If a time based CSV is loaded user

should have ability to select a time based flow from (or to)
specific region. Visualization styling is another functional
requirement for this tool. Styling options enables users to
customize line colors, region colors, changing the line width etc.
Furthermore the tool should provide zoom and panning
functionalities with content resizing and enables uses to save the
visualization as image for publishing or further use.

2) Non-Functional Requirements
The tool needs to handle large amount of data (support for

visualizing 500,000 flows smoothly) with minimum rendering
time without crashing the web browser. The visualized geo
locations must be accurate and the tool should have high
performances. It is required to provide understandable web
based user interface for nontechnical users. Further, the tool
should be easily extendable for further development and should
be able to integrate with other big data projects.

Fig. 2. Use case Diagram

Fig. 2 shows the use case diagram for the tool. The
visualization tool has only one actor who is the analyzer of the
visualized data. The Render Visualization use case describes
loading the Shapefile as the base map and populating the CSV
data on top of the loaded map. Also this includes the sub path of
visualizing CSV data on top of the Google Maps. View Region
Details use case provide the user to view the flow details of
specific region by selecting a region on the map. User can zoom
or pan if required for resizing the rendered map. The use case
Modify Visualization describes the visualization editing features
of the tool such as the changing the colors and size of the map,
editing the flow line width, etc. The Save Visualization usecase
provides user to save the geographical map with given data for
further use or publishing. User can choose two save versions.
Static save allows user to save the visualized map as image
format for publishing. The dynamic save allows user to save the
all geographic map and data for view later which enables
interactive visualization of the map.

B. System Design

 The tool has used component based architecture to improve
the reusability and maintainability. (Fig. 3) One of the major
architecture goals is to provide integration because of this
software tool is a part of a major big data visualization tool
collection and required to integrate in to a one big data project
in future. The visualizations are done only at the client-side (web
browser) and the tool is written in JavaScript as components.

45

Fig. 3. Abstract architecture of the system

Fig. 4.Class Diagram

 In Fig. 4, the RenderEngine component have three major
responsibilities which are to render the base map and populate
the flow data on top of the map, respond to the user navigations
such as zooming and panning, and change the visualization
graphics according to the input data.

 Inside the RenderEngine the BaseMap component provides
base map layer generation on the web browser (takes GeoJSON
[11] data) also handles the map region rendering. The
MapNavigator takes user navigation inputs such as zoom and
pan details to update it on the web browser while saving the
current state of zoom level and panning. DataMapper is a one of
major component which decode data and overlay the flow data
on top of the base map. As well as it provides calculation and
rendering the legend based on the data. It also handles map
projection and geo coordinates to pixel conversion. The

DataMapper is mainly associated with the BaseMap and
GoogleMapHandler to get the locations, region names and
mappings with region data. ContentManager provides file IO
functionalities such as loading the Shapefile, converting
Shapefile to GeoJSON and loading CSV data. The
GoogleMapControl is used for handle Google Map API
functions and map with current visualization data.

Fig. 5 Activity Diagram

Activity diagram in Fig. 5 shows the activity flow in the
Render Visualization main use case and Fig. 6 shows the
corresponding sequence diagram. Here, D3 is 3rd party
component which provide graphics rendering on the web
browser. The ShapeFile decoder provides the conversion
between binary data to the GeoJSON format. The RenderEngine
component takes the GeoJSON result and render it in the web
browser using D3 library. When the user loads the CSV data file
it will be sent to the DataMapper (which is inside the
RenderEngine component). It will decode the data and populate
data on top of the previously rendered map.

Fig. 6. Sequence Diagram

46

IV. SYSTEM IMPLEMENTATION

A. Implementation Procedure

The visualization tool was developed using the waterfall
method as the requirements of the application are not likely to
change and system requirement specifications are well defined.
The system was purely based on the web browsers JavaScript
[12] language and map rendering was done using the HTML5
[13] SVG (Scalable vector graphics) [14].. The browser based
map rendering and data decoding is choose to reduce the
network traffic. If the tool was required to decode Shapefile by
sending to a server, it will cause network traffic and time
because some of the Shapefile are larger than 20MB.

NetBeans [15] IDE was used for the development of the
system. NetBeans chrome extension helps to automatic page
rendering in the Google Chrome web browser and allows
debugging JavaScript thought the NetBeans IDE. Also the
Google Chrome was used for the debugging CSS [16] and
HTML in the tool. The D3 and jQuery JavaScript API was
heavily used in the application due to the easy rendering and
event handling provide by those API’s. Shp.js library was used
to convert the binary Shapefile in to GeoJSON [11] format the.

Fig. 7. Algorithm for data decoding

The Shapefile provides region names with their actual geo
coordinates. Therefore it was used to find geo coordinates based
on the given CSV data. DIVA-GIS [17] and StatSilk [18] are
examples for those who provide free Shapefiles. Sri Lanka,
USA, UK and Russia administrative boundaries Shapefile was
used to test the visualization tool. The mock CSV data
generation was done using the mockaroo.com which provide up
to 1000 entries per CSV [19]. Fig. 7 and Fig. 8, show the
algorithms used for data decoding and converting flow volume
to color, respectively. The flow volumes are dived into 7 steps
and calculate the color based on the step boundaries.

Fig. 8. Algorithm for converting flow volume to colour

One of the major challenges were the decoding and
rendering the Shapefile on top of the web browser. Because of
the Shapefiles are not heavily used in the web designing it was
very difficult to find resources. In the early stages of the
development it was mainly focused on decoding data and draw
lines between regions according to the decoded data.

B. Main Interfaces

 Fig. 9 shows the main interface after loading the tool. The
right side tool panned provide functionalities of the main use
cases. Fig. 10 shows flow’s going out from Colombo to other
regions in Sri Lanka. Fig. 11, shows Google Map overlaid view
of the visualization.

V. SYSTEM TESTING AND ANALYSIS

 The test plan ensures that the implementation of the
visualization tool meets its specifications and design criteria.
The major part of the testing is based on the JavaScript testing
due to the most of the functionalities of the tool is implemented
using the JavaScript. The testing plan will help to deploy the tool
for the users with minimal risk of software failure. The main test
plan is expect to find all possible bugs and ensure the
implemented tool meets the specification of the system
requirement document and the design document. The majority
of the testing are done as black-box testing [20] technique.

 Unit testing [21] consists of testing all the basic functionality
of the tool such as Volume to Color mapping, Region to
Geocode decoding, etc. The QUnit JavaScript unit testing
framework was used to test the functionality of the system. Fig.
12, shows the output of the functionality testing of the
RenderEngine and DataMapper components.

Function DecodeCSV (csvData){

 minFlowVolume = MAX_VALUE

 maxFlowVolume = 0

 regionListSource = new Array();

 regionListDestination = new Array();

 dateTimeList = new Array();

//calculate min and max volumes and generate source

and destination region and timing arrays

 for each(dataRow in csvData) {

 tmpVolume = dataRow.Volume

 if (maxFlowVolume < tmpVolume)

 maxFlowVolume = tmpVolume;

 if (minFlowVolume > tmpVolume)

 minFlowVolume = tmpVolume;

 if

(regionListSource_Not_Contains(dataRow.Source))

 regionListSource.add(dataRow.Source);

 if (regionListDestination_Not_Contains

(dataRow.Destination,))

regionListDestination.add(dataRow.Destination);

// timeing array if time based csv uploaded

 if

(dateTimeList_Not_Contains(dataRow.Time))

 dateTimeList.push(dataRow.Time);

 }

}

Function FlowVolumeToColor (volume) {

 flowVolume = (volume)

 minVolume = decoded csv min volume

 maxVolume = decoded csv max volume

 // calculate the 7 color step size

 colorStepSize = (maxVolume - minVolume) / 7

 color = black

 // check the margins of the volume and assign

colors

 if (minVolume <= flowVolume && flowVolume <

(minVolume + (colorStepSize * 1)))

 {

 color = assign legendColor1

 }

 else if ((minVolume + (colorStepSize * 1)) <=

flowVolume && flowVolume < (minVolume +

(colorStepSize * 2)))

 {

 color = assign legendColor2

 }

Conditions for step size continues…

 else if ((minVolume + (colorStepSize * 6)) <=

flowVolume && flowVolume <= maxVolume)

 {

 color = assign legendColor7

 }

 return color

}

47

Fig. 9. Main Interface

Fig. 10 .Visualization flows of Colombo

Fig. 11.Google Map overlaid visualization

48

Fig. 12. Qunit Test Results

Fig. 13. Data Decoding Performance

User Interface testing are done using Selenium automation tool
[22]. Web interface testing such as map navigation, Shapefile
uploading, data viewing, cross browser compatibility etc. were
performed. User experience and the usability of the tool are
expect to evaluate during the test. In Performance profiling
testing, the response time of the web tool is evaluated based on
the web browser. Due to the nature of the big data tools, data
loading and decoding time were tested. Furthermore map
loading and rendering time, navigation performance was
evaluated. Fig. 13, shows CSV decoding time performance.

VI. CONCLUSION AND FUTURE WORK

This paper presents a Human Movement Visualizer tool that
visualizes the flow data between regions on top of a map. It
provides grater advantages to the transport planning in urban
areas by helping analyzer’s to visualize high crowd and vehicle
density. Therefore the users of can gather large amount of data
from the devices and analyze it using this web based tool. This
tool is publically available to analyze flow data.

 The tool can be extended to integrate with existing big data
tools. Further improvement of this architecture is to allow all the
visualization tools are integrate in to one website. Therefore
users can visualize various kind of data types using a single
website. This will improve the country planning, future
prediction and further development to the society.

REFERENCES

[9] Wikipedia, 'Geotagged photograph', 2015. . Available:
https://en.wikipedia.org/wiki/Geotagged_photograph.

[1] Fhwa.dot.gov, 'Visualization for Transportation Planning - Visualization
In Planning - Scenario And Visualization - Planning - FHWA', 2015. .
Available:http://www.fhwa.dot.gov/planning/scenario_and_visualization
/visualization_in_planning/visplanning.cfm.

[2] Earth.nullschool.net, 'earth :: a global map of wind, weather, and ocean
conditions', 2015. Available: http://earth.nullschool.net/

[3] Wiki.doit.wisc.edu, 'Data Visualization Literature Review - Engage
Program - Confluence - DoIT Wiki', 2015. . Available:
https://wiki.doit.wisc.edu/confluence/display/engage/Data+Visualization
+Literature+Review

[4] Lirneasia.net, 'Big Data for Development » LIRNEasia - a regional ICT
policy and regulation think tank active across the Asia Pacific', 2015. .
Available: http://lirneasia.net/projects/bd4d/.

[5] Sas.com, 'Data Visualization: What it is and why it's important', 2015. .
Available: http://www.sas.com/en_us/insights/big-data/data-
visualization.html

[6] Google Maps, 'Google Maps', 2015. . Available:
https://www.google.com/maps

[7] Google Developers, 'Data Layer', 2015. . Available:
https://developers.google.com/maps/documentation/javascript/datalayer.

[8] Mapsdata.co.uk, 'MapsData | Data visualization and custom maps', 2013.
. Available: http://www.mapsdata.co.uk/

[9] Aaronkoblin.com, 'Aaron Koblin - Flight Patterns', 2015. . Available:
http://www.aaronkoblin.com/work/flightpatterns/

[10] Wikipedia,'GeoJSON',2015..Available:https://en.wikipedia.org/wiki/Geo
JSON

[11] Wikipedia,'JavaScript',2015..Available:https://en.wikipedia.org/wiki/Jav
aScript

[12] Wikipedia,'HTML5',2015..Available:https://en.wikipedia.org/wiki/HTM
L5

[13] Mozilla Developer Network, 'SVG In HTML Introduction', 2015.
.Available:https://developer.mozilla.org/en/docs/SVG_In_HTML_Introd
uction

[14] Wikipedia, 'NetBeans', 2015. . Available:
https://en.wikipedia.org/wiki/NetBeans.

[15] Wikipedia, 'Cascading Style Sheets', 2015. . Available:
https://en.wikipedia.org/wiki/Cascading_Style_Sheets.

[16] Diva-gis.org, 'Download data by country | DIVA-GIS', 2015. . Available:
http://www.diva-gis.org/gdata.

[17] Statsilk.com, 'Download free shapefile maps | StatSilk', 2015. . Available:
http://www.statsilk.com/maps/download-free-shapefile-maps.

[18] Mockaroo.com, 'Mockaroo - Random Data Generator | CSV / JSON /
SQL / Excel', 2015. . Available: http://mockaroo.com/

[19] Wikipedia, 'Black-box testing', 2015. . Available:
https://en.wikipedia.org/wiki/Black-box_testing.

[20] Wikipedia, 'Unit testing', 2015. . Available:
https://en.wikipedia.org/wiki/Unit_testing.

[21] Wikipedia, 'Selenium (software)', 2015. . Available:
https://en.wikipedia.org/wiki/Selenium_(software).

