
31

Floating Polygons
Crowdsourcing touch screen inputs for a contextual data model

Kasun Buddhika Dissanayake

Department of Computer Science and Engineering, University of Moratuwa, Sri Lanka

kasundissanayake.12@cse.mrt.ac.lk

Abstract— Since the first iPhone introduced in 2007, smart

phones have being changing the way we communicate, work, shop,

and more. Today there are billions of apps and millions of app

developers. The UX design of these apps should be carefully

designed in order to attract the targeted audience. The purpose of

this project is to create a data model about the user interactions

with the touch screen which can be referred when designing new

apps and games. The Android game “Floating polygons” was

developed as a demonstration and it captures all the data about

user interactions with the touch screen while it is being played. In

addition, an online data model is being created with data of the

game which can be later referred by the developers when they

need. This data model is categorized to three gesture types, three

screen sizes and two screen orientations.

Keywords— Touch screen; Crowdsource; Android app; Touch

inputs

I. INTRODUCTION

The number of mobile applications and games in Apple
App Store and Google play is increasing exponentially day
by day. There are billions of apps and millions of app
developers. Touch screens have become the main input device
for these applications. Users can interact with the app by various
gestures such as translating, pinching and rotating. The
developers have to more careful when it is come to the UX or
user experience engineering because if it fails, the whole system
will be ineffectual.

By the end of March in 2015, there were nearly 600
thousands of mobile apps which had been rejected by the users
in the Google play [1]. According to the experts of the field the
poor quality and the poor UX designing are the major reason to
these failures. The apps and games would be more user friendly
if there exists a data model to refer when UX engineering.

The proposed project is to develop an Android game which
is capable of fetching categorized data about the user
interactions with the touch screen and dispatch them to an online
server. The data which are being uploaded to the server will be
the screen size and orientation of the device and arrays of touch
counters with respect to the different gestures. Since all the data
have been categorized according to the screen size and screen
orientation a complete data model can be created and the
developers can refer that model when they are taking UX related
decisions.

The implemented solution was “Floating Polygons” which is
an Android game where players have to use all different type of
gestures (i.e. translate, pinch and rotate) to continue with the
game. The game is not manipulating player to go to specific
positions in the screen. Player can pan and zoom the camera by

translating and pinching while he can use rotate gesture to rotate
game objects. For an example, if one player is more comfortable
with bottom-right side of the screen nothing prevents him to stay
at the bottom-right. If game objects are trying to go away from
the bottom-right he can easily pan the camera again to the
bottom-right. In that way we can find out what are the most
comfortable areas of a touch screen to the user.

The paper is structured as follows: Section II describes the
related literature and Section III explains the system model
including requirements and design aspects of the Android app.
The implementation details and the application GUI are
presented in Section IV. Section V specifies the testing and
analysis of the system and Section VI concludes the paper.

II. LITERATURE REVIEW

Researches focusing on effective and efficient input with the
touchscreen on mobile devices have always been important after
it began to increase of the usage of mobile devices exponentially.
Today researches related to touch input analysis are going in
mainly three areas. Those are describing and understanding
touch input, HCI input analysis and crowdsourcing user studies
while this research project is focused on HCI input analysis and
Crowdsourcing [2].

 During recent past, crowdsourcing has become popular
among the researchers. There are games with a purpose of
studying user behaviors, as presented by Law et al. [3]. They
present the concept of using games that rely on input agreement
to collect labeled data and same technique is used in this project.
While these platforms were first mainly used for a lot of human
computation tasks, recently some research groups have started
utilizing the potential of crowdsourcing HCI user studies [4, 5].

Recently Niels Henze et al. present a paper with the analysis
of 100,000,000 taps on the touch screen [6]. The Android game
they presented is “Hit it”. Their intention was find error rate
when touching the screen. “Hit it” can help developers to
understand errors of user inputs. A self-learning keypad app is
an example app for dealing with user input errors. Developers
can rely on the results of the above mentioned research since it
has an analysis of 100,000,000 user inputs. The same method,
crowdsourcing, is used in “Floating polygons” project in order
to get a reliable analysis of user inputs.

Tao Feng et al. have published a data model about gestures
in an uncontrolled environment [7]. They have created a model
with different users on how their touch movement went when
they using the launcher. This enables developers to get an
abstract idea about the user interactions with the touchscreen.
Hence developers were able to decide the majority of users from

32

left handed and right handed users which will helps to develop a
better UX design.

But the mobile app development industry travelled so far and
it now needs more parameters to decide UX design. It cannot
survive with only an abstract view of user interactions. The data
should be more specific and categorized such as screen sizes,
screen orientation, country and localization. Currently
developers are getting these data from doing experiments with
their own apps. If a UX designer cannot decide where a button
should be placed on left side or right side, he releases two
versions of app with the integration of an analytic tool and comes
to a final decision with the results. Since the above method is a
slow process to find out the required data, “Floating Polygons”
will be carried out as a solution by creating a data model which
has been categorized into different types of gestures, screen sizes
and screen orientation with crowdsourcing.

III. SYSTEM MODELS

A. System Requirement

System was developed in order to fulfill four main functional
requirements. Developing a playable android game which uses
different types of gestures to control the game. Capturing user
gestures details accurately is a functional requirement since the
data model relies on the user data. The captured data must be
dispatched to the remote server without disturbing the player.
The data is needed to be stored locally before dispatching them

to server because frequent connections with the server will
increase the server traffic and decrease the performance of the
game.

Non-functional requirements are challenging game levels
and attractive graphics in order to get a maximum audience.
Apart from that frame rate of the game should be at a higher
value because users do not want to experience lags in the game.
Heat maps are used to represent the data model as it helps to
analyze the data productively.

As shown in the usecase given in Fig. 1, Game manager is
responsible for activities and processes in the game. It initiates
the game when user wants to play the game. If the level is a
bonus level, Game manager will organize the game board
according to the bonus. Game manager can enable or disable
the input handler. Disabling input handler should be done when
player wants to pause the game. Game manger can pass a
message to the data fetcher to dispatch data to the server.

Input handler can capture user gestures and control game
objects according to the gestures. It can send captured gestures
to the data fetcher in order to store them a local file until it is
being dispatched to the server.

Fig. 4. Use Cases of the System

33

Fig. 5. Class diagram of the system

B. System Design

The system is designed according to the MVC architecture.
The model component of the system is the Game manager
which is responsible for managing resources and the Controller
component is the Input Handler which controls the game
objects according to the input gestures. View component is the
Unity Renderer which renders the objects in the game.

Fig. 2, shows the class diagram of the system. The Loader
class is only for loading the Game manager and the Game
manger is managing all the other resources. It enables the Input
handler after the game has started. This procedure assures the
user inputs are captured only when the game is being played.
Therefore it does not take any user input when user is in the
game menu. Game manager sends a message to the data fetcher
to dispatch data after the game ends.

Polygons are the main game objects in the game. There are
three types of polygons with four colors. Whenever a polygon
hit by the player it checks the validity of the hit via the game
manager. If it is a valid hit game manager updates the score and
destroy the polygon. If not game manager decrease the health
level. If health level is zero, the game should be finished. Ai
Polygons has a method called onCollitionEnter2d which will
be executed whenever it hit with another object.

Player has method to check a hit is valid or not. A hit should
be valid only if player’s polygon type is equal to other the
polygon or the color of the player is equal to the other polygon.
If it is a valid hit player’ will transform its color and polygon
type to the properties of the polygon which hit player.

34

Fig. 6. Main activity diagram of the system

Main activity of the system is capturing user gestures and the
diagram is shown in Fig. 3. Input handler controls the game
objects after it identifies the gesture and it sends a message to
the Data Fetcher about the gesture. The data fetcher stores them
in an array in the memory. Data fetcher has a method to sync the
data in the RAM and the data file which is stored in the local
storage. This method will run once in 10 seconds. This strategy
is used to increase performance by not writing the file every time
and store all the data by writing them once in 10 seconds.

C. Database Design

An entity relationship diagram is not available since there are
no relationships between entities. Database is only used for store
the touch counts with respect to the gesture and orientation.
There are 6 tables named according the orientation of the screen
and the gesture (i.e. landscape_translate, landscape_zoom).

Each table has 25 columns. 24 of them are big integers while
other is a tiny integer. Tiny integer is for three categories of the
screen. Big integers are used in order to avoid integer overflow.
Each touch point is transformed in to 4*6 grid in the Data
Fetcher. Therefore it only needs to manage a grid of 24 for one
table. The reason behind transforming a grid is reduce the
bandwidth at the server and the database. Network traffic and
bandwidth must be controlled because crowdsoursing deals with
large number of data.

The script at the server increments the counts of the database
according to the category when it receives data from a mobile
device. Category 0 is for screen sizes lower than 5, category 1
for screens between 5 and 10 and 2 is for large screens. This
enables to select

Fig. 7. Data model

data from the database using short and simple queries.

Example to select zoom gesture data of mobile phones in
landscape orientation.

Table: landscape_zoom category: 0

IV. SYSTEM IMPLEMENTATION

A. Implementation Procedure

The game was developed with unity3D [8] and Unity Test
were used for testing. PHP scripts are used to upload data to the
database and to show data from the database. Any additional
material have not used when implementing this system. GitHub
was used as a Version Control System.

Gesture controlling is an essential part of the system because
it controls the game objects while capturing gestures to store
gesture data. The update method is called once per frame by the
unity engine. This method can be used to update data of the
variables. The update method has been used to get touch count
and identify the gesture by analyzing sequence of touch data.

It looks for the number of touch points and detect the gesture
because translate gesture needs only one touch and the previous
touch position. But if it finds two touch points, it can fetch the
gesture by previous touch point and the delta position of the
current touch point. Rotation and pinch gestures need two
touches. Delta position which is an attribute of Touch class in
Unity 3D game engine is used to detect the direction of the touch
movement.

35

B. Main Interfaces

The Fig. 5, is the main menu of the game. Player can start
the game, view high scores, mute the music or can exit from the
game with these buttons. The Fig. 6, represents the gameplay

and game ending iterface where user can restart or exit from the
game.

Fig. 8. Main menu of the game Fig. 9.:Game play

Fig. 10.. Interface of the data model

In gameplay, a player gets a large polygon and he has to
touch on the polygon and hit other small polygons with same
color or same shape in order to clear the level. If player has a red
circle he can hit any polygon in red or any circle. The player’s
polygon trasforme in realtime when it hits with a small polygon.
If the player hits a red tringle, his polygon transformes into a

red triangle. Player can zoom in and out the screen using pinch
gesture and rotate the player’s polygon using rotating gesture.

Developers can refer data model with the above interface.
There is a navigation menu at left side for select screen size and
the gesture. User can view portrait view and landscape view heat
maps in the middle. He can see actual no. of touches when he
move mouse pointer to a grid.

36

V. SYSTEM TESTING AND ANALYSIS

System testing was done with the unity test tools while
implementing the system. Unit tests were written with NUnit [9]
in order to confirm functionality of the mandatory methods.
Apart from that assertion tests were done in order to confirm the
functionality of the player game object. With the assertion tests
runtime behavior of the player could be easily tested and
identified if there is an unexpected behavior.

There were five unit tests. Three of them were to test the data
fetching module and others is to test the game manager and the
board manager.

 Assertion test were conducted to test the functionality of the
player game object. Player have a box collider, a circle collider
and a polygon collider. Other than the relevant collider to the
type of the polygon in the player, rest of the colliders must be
disabled while the game is being played. For this assertion
components were added to the player and those are meant to
print errors when player hits a polygon.

The tests which cannot be tested with Unit Test and assertion
test, were tested by manually debugging. For an example,
opening the internet connection and dispatching data to the
server cannot be test in unit test in the unity3d environment
because it does not allow to return value from IEnumerator
methods. Animations in the game menu were manually tested
with debugging since it tends to be slow at the beginning in some
low end mobile phones. Security of the data also manually tested
by debugging PHP script.

VI. CONCLUSION AND FUTURE WORK

This paper describes the design and implementation details
of an android game that mainly facilitates the ability to capture
user data of the interactions with the touch screen. The game can
be downloaded by anyone and the user data will be uploaded to

the server. Currently it has received about 200,000 touches
counts.

Future works are to update the game with more levels and to
promote the game among people since the data model will be
more accurate when there is more user data. The project is
available at the GitHub and also it can be developed with the
collaboration of the developers and researchers who are
interested in this area. As well as the project can be extended to
get categorized data according to the country, localization and
age groups since those parameters are not considered in this
project.

Game download link:
https://play.google.com/store/apps/details?id=com.kasun.floati
ng_polygons
The data model : http://floatingpolygons.esy.es/index.php

VII. REFERENCES

[1] Marcello Lins. (2015). Data Mined from the Google Play Store [Online].
Available FTP: s3.amazonaws.com Directory:GooglePlayStore File:
Google Play Stats_2015_02.xlsx

[2] Sarah Martina Kolly et al, “A Personal Touch - Recognizing Users Based
on Touch Screen Behavior”, 2012

[3] E. Law and L. von Ahn, “Input-agreement: a new mechanism for
collecting data using human computation games”, CHI, 2009.

[4] A. J. Quinn and B. B. Bederson, “Human computation: a survey and
taxonomy of a growing field”, CHI, 2011.

[5] B. Tidball and P. Stappers, “Crowdsourcing contextual user insights for
ucd. In Workshop on Crowdsourcing and Human Computation”, CHI,
2011.

[6] Niels Henze et al., “100,000,000 Taps: Analysis and Improvement of
Touch Performance in the Large”, 2011

[7] Tao Feng et al., “TIPS: Context-Aware Implicit User Identification using
Touch Screen in Uncontrolled Environments”, 2014

[8] Unity 3D, Avialable : http://unity3d.com/get-unity

[9] NUnit, Avialable : http://www.nunit.org/

https://play.google.com/store/apps/details?id=com.kasun.floating_polygons
https://play.google.com/store/apps/details?id=com.kasun.floating_polygons
http://floatingpolygons.esy.es/index.php

