
1

Voice based E-mail and Skype-call Application for

the Blind

M.D. N. Dilini
Department of Computer Science and Engineering, University of Moratuwa, SriLanka

nathiesha.12@cse.mrt.ac.lk

Abstract- In the modern world, communication has become

easy and efficient due to advancement of technology and

development of the Internet. However, this does not apply for the

visually impaired people. With the new technological

developments, blind population finds it is challenging to keep up

with the modern communication methods such as email and

Skype. The main barrier stands in between these communication

methods and the blind users is, their inability to use the keyboard

and to see the computer or phone screen. This paper aims at

describing the system being developed for the visually impaired

people to use email/Skype using a desktop and to take phone calls

using a smart phone, without any previous training. The system

will not require the user to make use of keyboard; instead, it will

work only using mouse operations and speech conversion to text.

Text to speech conversions would be used to give the output and to

read the screen contents to the user. This system can also be used

by any normal person, for example the ones who are not able to

read (illiterate). The system is completely based on interactive

voice responses, which will make it user friendly and easy and

efficient to use.

Keywords— User Interface Design; Speech to Text; Text to

Speech; Communication for Blind

I. INTRODUCTION

Today we live in an information world where the computer
and mobile phones have become an inseparable part in
everyone’s lives. The computers, mobile phones and internet
together with the advancement of technology have significantly
affected the ways of communication. The old communication
techniques have been replaced with email, Skype, Viber etc.
Mobile phones also play a key role in modern communication.
Most of these methods are very simple to access and use. The
users only need to follow the guidelines on the screen and click
or type the required inputs. However when it comes to the
visually impaired or illiterate population, this process becomes
really hectic and complex due to their inability to make
decisions, as decision making and communicating the choices
involve reading the contents on the screen and clicking a
particular area for selection or typing using the keyboard.

All these communication applications are originally
designed targeting the normal users and with the aim of
improving usability for them. However when statistics is
considered, it becomes evident that over 285 million of the
world population is visually impaired while 39 million out of
them are blind [1]. Nearly 12% of the world population is
illiterate [2]. These numbers suggest that an effort should be
made to facilitate the visually impaired people to use modern
communication methods. All the visually impaired and illiterate
people are deprived of the access to modern communication

technology due to their visual inability. To overcome this
challenge and to build an application for the blind people to use
modern communication methods were the main objectives of
the project.

The system enables user to use his voice as the main tool of
communication. The user does not have to read the screen
contents. Instead, the application would be reading out the
contents on the screen for the user and each interface is
designed in a way that makes the users to access function of
system efficiently. Based on the audio output, user can give an
input or select an option using his voice, or a simple mouse click
or a key press, whereas in the Android system, a tap on the
screen would do that. The system identifies the user voice
commands and based on the identified commands, the system
services can be accessed by the user. This simple procedure is
capable of overcoming the barrier for the blind users to access
these communication methods, up-to some satisfactory level.

The project was aimed at developing two applications, one
for the Android phone and the other as a standalone desktop
application. The system would allow a user to use it without
previous training or any external support. Though the
applications were developed primarily targeting the blind group
of users, this can be used by anyone else, who finds it easier to
listen and speak rather than reading and typing. This also allows
people who cannot read or write, to access emails and Skype.

II. LITERATURE REVIEW

A wide variety of related work is available in literature on
voice based systems or blind users [3, 4]. Among them the
authors in [3] have proposed a system which will help the
visually impaired people to access email services efficiently.
That proposed system [3] helps in overcoming some drawbacks
that were earlier faced by the blind people in accessing emails.
They have eliminated the concept of using keyboard shortcuts
along with screen readers which will help reducing the
cognitive load of remembering keyboard shortcuts. Also with
the use of the proposed system any naive user who does not
know the location of keys on the keyboard need not worry as
keyboard usage is eliminated. The user only needs to follow the
instructions given by the IVR and use mouse clicks accordingly
to get the respective services offered. Other than this the user is
needed to feed in information through voice inputs when
specified.

Unlike current systems which emphasize more on user
friendliness of normal users, the research article focuses more
on user friendliness of all types of people including normal
people, visually impaired people as well as illiterate people. As

mailto:nathiesha.12@cse.mrt.ac.lk

2

they suggests IVR and recognizing mouse click events while
making the whole screen area clickable was incorporated into
my system as it seem to be an effective way to take user input.
Furthermore I additionally incorporated the key press event as
an error correction mechanism, where by pressing any key user
can try giving voice inputs again or visit a previous interface.

Another interesting work has been done in the same
research area [4] that describes about a voice mail architecture
that helps blind people to access e-mail and other multimedia
functions of operating system (songs, text).It also focuses on
mobile applications where SMS can be read by system itself. In
that research paper, they describe the voice mail architecture
used by blind people to access E-mail and multimedia functions
of operating system easily and efficiently. This architecture
they propose will also reduce cognitive load taken by blind to
remember and type characters using keyboard. It also helps
handicapped and illiterate people.

When analyzing the architecture of the latter proposed
system [4], major components of the system were found, and
they are G-mail (System read messages on recipient mailbox),
RSS (Real Simple syndication for news), Song (listen songs),
Book reader (system read book) and Drive browser (To search
drives and folders). They also proposed a similar system for the
mobile devices. Although the system I developed was less
complex than the proposed system by the research article, the
concepts discussed were adoptable to my system.

As the latter system proposes, the user can apply the same
keyboard command by performing different mouse operation
and voice operation in their system each voice operation
mapping to certain keyboard operation and also voice operation
map with certain keyboard operation enabling user to use
keyboard or mouse or voice commands to get a work done. [5]
Although this concept was not used in this system, that can be
included in future developments to make the system more
usable.

III. SYSTEM MODELS

A. System Requirements

The system requires two standalone applications, one for the
desktop and other for the android phone. Each application needs
to provide access for emails. User should be able to view the in-
box and sent mails and also to send emails to his contacts. The
android application should have the similar requirements, with
the additional feature of taking phone calls. All these features
should be incorporated with voice recognition and text to
speech conversions. Fig. 1, shows the layered view of the
system.

Fig.1. Layered View

The most significant non-functional requirements of the
application, is system usability. As the target group is blind
people, ease of accessing the services should not be
compromised. The voice recognition functions and error
correction mechanisms have been incorporated to the system to
increase the ease of access. Also the system should be reliable,
and available as if any error occurs, the blind users may not be
able to fix it on their own.

Fig. 2.Use Case Diagram

Fig. 2, shows the use case diagram of the email access sub
system in the windows application. Once a user log into the
system, it announces the registered user names, where user can
select one using voice commands. Then the user credentials will
be loaded and the user is provided with the functionalities such
as read the inbox, read sent items, edit contacts or compose new
email.

3

If the user has not registered into the system before, he can
select ‘add new user’ option using the speech commands and
then enter the new user details, which would be stored in the
system and can be accessed anytime. If in-box/sent items are
selected, user in-box/sent mails would be loaded and the
available emails in that particular folder would be read out for
the user to listen. If user wishes to compose a new email, the
recipient name can be selected out of the registered contact
names that would be read out by the system. The user message
would be recorded, stored and sent to the recipient as an audio
attachment.

B. System Design

The windows application, once installed on the PC will open
up automatically. The user can start using it by a simple mouse
click. The MIC of the PC will capture user’s voice inputs. With
the use of Microsoft speech SDKs, speech would be recognized
and accordingly the next step would be taken and relevant data
would be fetched from the files and user would be notified by
the reader. The files will contain the authentication details and
user contact lists for email and Skype as well. The hardware and
software modules proposed and the flow of information is
depicted in Fig. 3.

The android application architecture is also quite similar to
the architecture of windows application. Roughly, the hardware
requirements for the Android version of the application are
touch screen device, preferably of size 4.0‖ x 4.0ll, android OS
version 2.3.6 or higher, CPU speed ≥ 400 MHz, at least 30 MB
of free phone memory, with support for SD card installation.
And the system requires at least 80 MB of secondary memory.

The android application should be supported by android API
level 2.3 or higher. Data persistence should be addressed using
a relational database in the mobile device and PC.
Authentication is supported using user name and password. The
architecture is flexible and extensible, ensuring re-usability for
the next phase of the development and response time constraints
due to less processing power.

The UML 3-tier architecture diagram shown in Fig. 3,
depicts the main layers of the architecture of the application, the
packages within each one of them and interactions between
these packages.

As shown in Fig. 3, the UI layer could interact directly with
the service layer if there is no application logic in the operation.
But if data needs to be processed first it should be done in the
logic section rather than the Data Access Object or UI layer. In
the domain layer, the model section contains the plain old Java
objects and the logic section would use Data Access Objects
and other services from the services layer and return data to the
UI layer.

The service layer would contain features of the device like

file access for the domain and UI layers. Fig. 4, depicts the

class diagram (Logical view) of the system Fig. 5, depicts the

activity diagram (process view) of accessing in-box. When the

user initiates a request to see the in-box, the user name would

be passed with the request.

Fig.3. Three-tier architecture diagram

The application would check whether the user name is valid,
and if verified correct, the application would fetch the
credentials from the file server. The email address and
password would be passed back to the application. Using these
credentials, the application would connect to Gmail and user
would be logged into the system. If the user wishes to read the
in-box, the application would access the in-box, and text to
speech converter would read the in-box

Fig.4. Class Diagram

Although the original plan was to design and develop a database

for the storage of data, with the project progress, the design

slightly deviated. The user information of the system had to be

stored and accessed when needed. However only the basic log-

in information like user name, email address, Skype ID and

contact list of emails and Skype IDs the user frequently uses

had to be stored. Furthermore as this was a desktop application

for blind, most probably there would be a single user or two

4

maximum, therefore the amount of data to be stored would be

minimal and the security expectations were not very high. As

the use of a separate database degrades the performance of the

system, it was decided during the feasibility study, that a simple

file system would be sufficient for the storage of data.

Fig.5. Activity Flow Diagram

IV. SYSTEM IMPLEMENTATION

A. Implementation Procedure

The system development followed the rational unified
process. The development phase was completed in two
iterations. The first iteration focused on completing the
windows application whereas in the second iteration
development of the similar android application was done. When
developing the desktop application, .Net architecture was used.
The system was developed using the language C# and available
MSDN libraries were made use for most of the functions. The
android application was developed using the android
framework. Java was used for the coding of logic and XML was
used for the development of interfaces.

Visual Studio was used as the IDE for the development of
desktop application. As it supported the .net architecture and
the use of C# and as the application made use of MSDN APIs
for some functions, Visual Studio seems to fit the purpose most.
Android Studio was used as the IDE for the development of the
android application. The built in functions supported the
development of android application and it was easy to use
Android APIs. Other than the IDEs, OpenProj was used for the
project planning purpose. The project schedule and resource
allocation was done using that.

Several open source speech engines like CMU Sphinx and
Kaldi were evaluated, but Microsoft speech recognition engine
seem to fit the purpose for the user speech input recognition,
most because it could be easily integrated with the C# code
base. Furthermore MS speech engine supported many
languages like English, Chinese, German, French etc. and it
also supports voice training. Other than that Microsoft text to
speech conversions were also used. MSDN APIs were used for
this purpose. In the Android application, the available Android
APIs for text to speech conversion were used to provide user
audio guidance. For the speech recognition purpose, Google
speech recognizer engine was incorporated into to the
application because of its high accuracy than the available other
speech recognizer. Online tutorials and forums were frequently
used during the android and desktop application development.

The system does not require any initial data for its
functioning. The user is supposed to enter the log in credentials
when a new user account is created. This information would be
stored in separate text files. Whenever the user needs to log in,
these data would be fetched and used. Additionally the contact
names and their details like name, telephone number, email
address and Skype IDs will also be stored in text files and
fetched whenever the user requires. For the demonstration
purpose these files were filled with real values.

No special algorithm was used for the application. However
in each form of desktop application, same procedure was called.
When a form object is created a text to speech convector needs
to be declared and initialized. The output device of the
synthesizer needs to be set to the default audio device. Using
the speak method; user should be guided about the interface
using audio.

Then a speech recognizer engine object needs to be declared
and initialized. Additionally semantic result value objects that
contain key values and their codes also needed to be declared
to insert the key words used within the given interface. (Ex-in-
box, email, Skype, compose). Then the choice objects needed
to be created and semantic result value objects using implicit
conversion from Semantic result values to grammar builder
objects. Once the speech recognizer object and associated
semantic result values are created, the event handler for the
event speech recognized needs to be declared. The method
associated would trigger as soon as a speech is detected. For the
speech recognition grammar need to be loaded as well.

A separate method need to be declared to handle the speech
recognized event. Once a speech is recognized, the
corresponding string value is stored into a variable and
necessary actions should be taken based on the string value.
Meanwhile user should be notified about the detected string by
saying it aloud, where user can try again if needed. If the
recognized string value matches with any of the specified key
values, based on that user should be directed to the necessary
and relevant interfaces. This is done using a series of if else
statements

5

B. Main Interfaces

1). User Interfaces-Android system

First-time user of the mobile application should see the
welcome page when he/she opens the application. The system
would read out the contents of the screen and when the user is
ready, he can simply click anywhere on the screen and he would
be directed to the net interface.

The next interface would list the functions available in the
system and would read them to the user. The user can say one
of the given key words and access a particular service. The
system would be listening to the user voice inputs and once a
voice command is detected, the system would say it back. If
user agrees with it, he can proceed by simply click in the mouse.
If user wants to try giving the voice input again, he can make
right click.

Fig. 6, depicts the user interface, when the user selects
email service. A couple of options will be available like log in,
add new users, back and close. The Skype system would have
similar interfaces. The windows application would have similar
interfaces.

Fig.6. User Interfaces

2). Hardware Interfaces

Since neither the mobile application nor the PC have any
designated hardware, it does not have any direct hardware
interfaces. The system makes use of MIC and speakers of PC
and mobile phone. The physical connection to Mic and speakers
is managed by the underlying operating system on the mobile
phone and the desktop application.

3). Software Interfaces

The system does not use any purchased components. All the
components are developed with the uses of APIs when
developing the desktop application. The language used for
coding is C# in windows application. And Java is used for the
Android application development. Therefore even though the
functions of the 2 systems for PC and android are quite same,
the components developed for one cannot be used for the other.
However the error correction functions and speech recognition
functions within a single application can be reused within the
same application for different interfaces.

4). Communication Interfaces

The communication between the different parts of the
system is important since they depend on each other. However,
in what way the communication is achieved is not important for
the system and is therefore handled by the underlying operating
systems for both the mobile application and the PC.

V. TESTING

The testing process was carried out with the mission of
finding as many bugs as possible is the 2 sub-systems, finding
important problems and any risks to the quality of the system,
certifying the system is up to standards and fulfilling the
process mandates. Accomplishing the above mentioned
mission helped to increase the user satisfaction. It also helped
in standardization. Furthermore it decreased the development
time, and integration more easy and less time consuming.

This Testing approach supported the following objectives of
identifying existing project information and the software that
should be tested, listing the recommended test requirements,
recommending and describing the testing strategies to be
employed and listing the deliverable elements of the test
activities. The following components were tested and they all
fit the purpose.

 Speech recognition module android/desktop

 Gmail sending module

 In-box Access module

 Skype calling module

 Face recognition and user authentication module

 Phone calling module

 MSDN API for speech recognition

 MSDN API for text to speech conversion

 Google offline library for speech recognition

 G mail mobile app

 SkypeCOM API
These 3rd party libraries and applications have been

successfully integrated into the system. Those have been
thoroughly tested by the relevant parties before release.
However testing was done before integrating those into the
system to make sure they fit the purpose.

Unit testing was done for each unit in android application
and desktop application. Unit tests were written using JUnit for
the Android application and using NUnit for the desktop
application. The user interfaces were also tested using test

6

classes. The application successfully passed all the written unit
tests. Additionally, the android system was tested using the tool
Testdroid, where the system was installed into different mobile
devices and tablets and tested for the compatibility. The system
was compatible with 70% of available devices.

VI. CONCLUSION AND FUTURE WORK

The main aim of the project was to facilitate blind users to
access email Skype and calls, which are modern ways of
communication, incorporated with the technology. The
challenge was to develop a mechanism to overcome the
inability of the user to see the screen or to input using keyboard.
Speech recognition could be successfully used for this purpose.
Not compromising the usability of the system meanwhile was
another key concern.

Different mechanisms like declaring the keyword objects in
the system dictionary in advance could boost the accuracy in
speech recognition. In the android application, although android
APIs were used at first, later Google speech recognizing engine
was incorporated into the system, because of its high accuracy
and increased usability. However this requires internet
connection and adds latency to the application which can be
considered as a drawback. An efficient error correction
mechanism (listening to the key press event) was also
incorporated to the system in order to increase usability.
However as the system could not be tested with a group of blind
users for real, the level of usability could not be measured
accurately.

As future work, the system needs to be tested under real
conditions, with the target group of users. Based on the
observations, further adjustments or improvements are intended

to be carried out. During the final evaluations, it was pointed
out that the android application has a higher response time due
to the use of Google speech recognizer. Necessary actions
needed to take to improve the response time.

Furthermore, a similar windows application targeting the
windows mobile phones is to be developed. As the desktop
application already uses .Net and C# languages, porting that
application into a windows mobile application would require
less time and cost. If the android application and windows
application is detected to be error free with furthermore testing,
they will be releases in Google play store and windows play
store as free applications, for the blind users to make use of.

REFERENCES

[1] The WHO website. Available:
http://www.who.int/mediacentre/factsheets/fs282/en/

[2] Robin Leonard Arlene, “Statistics on Vision Impairment: A Resource
Manual”, April, 2002

[3] Jagtap Nilesh, Pawan Alai, Chavhan Swapnil and Bendre M.R.. “Voice
Based System in Desktop and Mobile Devices for Blind People”. In
International Journal of Emerging Technology and Advanced Engineering
(IJETAE), 2014 on Pages 404-407 (Volume 4, issue 2).

[4] Jae Sung Cha, Dong Kyun Lim and Yong-Nyuo Shin, “Design and
Implementation of a Voice Based Navigation for Visually Impaired Persons”,
June, 2013

[5] Disabilities, Opportunities, Internetworking, and Technology Website
[Online]. Available: http://www.washington.edu/doit/how-can-people-who-
are-blind-operate-computers

[6] IEEE Software Engineering Standards Committee, “IEEE Std 830-1998,
IEEE Recommended Practice for Software Requirements Specifications”,
October 20, 1998.

