
53

Med-Lab Report Viewer

Helani Madurasinghe

Department of Computer Science & Engineering

University of Moratuwa

Sri Lanka

helani.madurasinghe.11@cse.mrt.ac.lk

Abstract—In this paper, the project on developing a web

based Android application named ‘Med-Lab Report Viewer’ is

discussed in terms of the need for such application, the nature of

the application, which technologies and tools were being used,

along with how the overall development process was carried out.

Med-Lab Report Viewer application lets the medical laboratory

to store details of patients, store medical reports, send medical

reports to patients and notify them the availability of medical

reports. The patients can collect the medical report without

visiting the laboratory via their mobile devices. This software

application gives the ability for patients to keep their medical

reports in their mobile devices and maintain a proper medical

history. The project was done according to the RUP software

development process with two iterations for three months and

finally an initial version was obtained as a successful outcome.

Keywords—Medical Reports; Android; Web services; GCM;

Spring; Mavan

I. INTRODUCTION

There are many small scale medical labs in Sri Lanka

which are not part of private hospitals, but provide service to

the patients who consult doctors in individual dispensaries.

These patients have to visit the medical lab at least twice to

give the blood sample and to collect the report. The easiest

solution to address above problems is to introduce a ―Medical

Lab Report Viewer‖ application to the patients. They can use

their mobile device to easily access the medical lab services

remotely and can show the report to the doctor using the

device.

Android has become the most popular mobile device OS in

Asian counties. In Sri Lanka many people hold Android

devices and it is useful to develop a system that addresses the

problem as an Android app.

The design and development of the project is done using

the Rational Unified Process as the development

methodology. Object oriented approach is used for the

implementation. During the system development life cycle of

the project we go through four phases following the unified

process: inception, elaboration, construction, and transition.

The life cycle of the system is composed through the iteration

of these phases. Practices under software engineering

discipline are highly adhered.

II. BACKGROUND STUDY

A. Cloud Computing

Cloud computing [15] is the delivery of services of the

computing rather than a product, whereby shared resources,

software, and information are provided to computers and other

devices as a utility over a network. Cloud computing also

focuses on maximizing the effectiveness of the shared

resources. Cloud resources are usually not only shared by

multiple users but are also dynamically reallocated per

demand.

B. Mobile devices and Applications

Mobile devices have become common devices that many

people use today. Even in a country like Sri Lanka many

people use smartphones. Almost all of them use various kinds

of mobile applications. Apps are usually available through

application distribution platforms; some apps are free, while

others must be purchased. Usually, they are downloaded from

the platform to a target device such as an Android device.

Mobile apps were originally offered for general

productivity and information retrieval, including

email, calendar, contacts, and stock market and weather

information. However, public demand and the availability of

developer tools drove rapid expansion into other categories,

such as mobile games, factory automation, GPS and location-

based services, banking, order-tracking, ticket purchases and

recently mobile medical apps.

C. Mobile Computing

Mobile computing [13] is human–computer interaction by

which a computer is expected to be transported during normal

usage. Mobile computing involves mobile communication,

mobile hardware, and mobile software. Communication issues

include ad hoc and infrastructure networks as well as

communication properties, protocols, data formats and

concrete technologies. Mobile software deals with the

characteristics and requirements of mobile applications. The

user of a mobile computing environment should be able to

access data, information or other logical objects from any

device in any network while on the move.

D. Mobile Application Development

Mobile application development [14] is the process by

which application software is developed for low-

power handheld devices, such as PDAs, enterprise digital

assistants or mobile phones. These applications can be pre-

installed on phones during manufacturing, downloaded by

customers from various mobile software distribution

platforms, or delivered as web applications using server-side

or client-side processing (e.g. JavaScript) to provide an

"application-like" experience within a web browser.

54

Application software developers also have to consider a

lengthy array of screen sizes, hardware specifications and

configurations because of intense competition in mobile

software and changes within each of the platforms. Mobile

app development has been steadily growing, both in terms of

revenues and jobs created.

III. PROBLEM STATEMENT

There are many small scale medical labs in Sri Lanka

which are not part of private hospitals, but provide service to

the patients who consult doctors in individual dispensaries.

These patients have to visit the medical lab at least twice to

give the blood sample and to collect the report. And the

patients have to maintain their own folder to collect their

medical reports in case they have taken multiple medical

reports within a particular period of time.

IV. PROPOSED SOLUSION

The easiest solution to address above problems is to

introduce a ―Medical Lab Report Viewer‖ application to the

patients. They can use their Android device to easily access

the medical lab services remotely and can show the report to

the doctor using the device. Then they have to visit the lab

only once to give the blood sample. Customer’s medical report

history will be stored in medical lab’s database and the data

will be sent to the customers’ mobile device on requests.

Since today Android devices are popular in the society, the

medical lab can provide a better service to their customers by

introducing this application while increasing the efficiency

and elevating the profit.

A. Targeted Users

The product is recommended for the owners/ managers of
small scale medical laboratories. They can provide this
Android app to the customers who need to view their medical
reports remotely. The users are of two types: the customers of
the lab, who use the Med-App Report Viewer and the workers
of the lab who use the Med-App Assistant Interface.

B. Operating Environment

The Med-App API is hosted on a web server, thus

operating on the cloud. The Med-App Assistant Interface is

operating as a standalone application on a PC at a small scale

medical laboratory. The Med-App Report Viewer is running

on the Android devices of the registered customers of the

medical laboratory.

C. Scope and Constraints

This project targets only small scale medical laboratories.

The outcome helps the patients only when the doctor’s

dispensary is away from the medical lab. The mobile

application usage is restricted to Android devices users. The

system facilitates the services only for blood report

management; lab management or payment management is not

supported. The system can be integrated with an existing

medical lab management system.

D. Assumptions

It is assumed that the patients/customers can do their

payment manually at the lab because they have to visit the

medical laboratory at least once to give the blood sample.

Thus a payment method via the app is not embedded to this

system.

V. DESIGN

This system uses a layered architecture along with the

client-server concept. The system has three major sub

components which can be listed as:

 Med-Lab Assistant Interface (Desktop application)

 Med-Lab Report viewer (Android App)

 Med-Lab Assistant API (Web service)

Each was implemented to have layered architecture inside.

Apart from that the architectural concept that interconnects

each of the components is client-server model. The system

design overview is shown in Fig. 1.

Fig. 1. System design overview.

A. Med-Lab Assistant Interface (Desktop Application)

The users of Med-Lab Assistant Interface are the system

operators at the medical laboratory. He/she is able to log into

the system, add new patients (customers), enter, store, and

view customer details and medical report data. After finish

entering medical report data he is able to send a

message/notification to the patients to indicate the completion

of processes. This component of the system is a standalone

application running on the PC at the medical laboratory.

B. Med-Lab Report Viewer (Android App)

The users of Med-Lab Report Viewer are the patients who
need to get blood/medical reports from the lab. Once they are
registered as a customer at the lab, they are provided with the
Android application. They can register their device for the
service of receiving blood report to the phone. They receive a
message/notification once the report is released. Then they are
able to view the report using a mobile app when he visits the
doctor next time.

55

C. Med-Lab Assistant API (Web Service)

The API is the heart of the project which provides services

to both the lab users and report viewer app users. The API is

web hosted along with the database such a way that it can

provide services to both other components via internet.

D. Developer Requirements vs. Design Decisions

When designing the architecture of the system, not only

the user requirements, but also the developer requirements

should be considered.

 Maintainability: The software should be easy to

maintain. It should have ability of repair or replace

faulty or worn-out components without having to

replace still-working parts, and capability of cope with

the changing requirement or environment

 Reusability: The components of the system should be

reusable

 High Cohesiveness: The small components of the

system should focus on specific small tasks

 Low Coupling: The function of one component should

be independent of others. So the changing of one

component will not affect others

 Extensibility: the implementation takes future growth
into consideration. New capabilities can be added to the
software without major changes to the underlying
architecture.

 Compatibility: The software is able to operate with
other products that are designed for interoperability with
another product.

 Modularity: the resulting software comprises well
defined, independent components.

The layered architectural approach that has been selected
provides a way to achieve these requirements.

VI. IMPLEMENTATION

Fig. 2. Implementation architecture.

The implementation architecture of the system shows how

the designed software architecture is implemented using tools

and technologies. Fig. 2 shows the use of tools and

technologies for the development of each component as well

as the connections between the components.

A. Dependency Injection

Dependency injection is a software design pattern in which

an injection of a service is present. An injection is the passing

of dependency (service) to a dependent object (a client). The

service is made part of the client's state. Passing the service to

the client, rather than allowing a client to build or find the

service, is the fundamental idea of the pattern. This provides

loose coupling and the result is a set of more independent

objects that are easy to maintain and test. Use of spring

framework provided the advantage of dependency injection to

my implementation.

B. Technologies and Tools

1) Android: Android is a mobile OS based on the Linux

kernel and currently developed by Google. With a UI based

on direct manipulation, Android is designed primarily

for touchscreen mobile devices such as smartphones and tablet

computers. Android is the most popular mobile OS. Android

was selected as the platform of this project as it is a popular

OS among mobile users today. Android has a growing

selection of third party applications, which can be acquired by

users either through an app store such as Google Play or

the Amazon Appstore, or by downloading and installing the

application's APK file from a third-party site. Google Play

Store allows users to browse, download and update

applications published by Google and third-party developers,

and the Play Store client application is pre-installed on devices

that comply with Google's compatibility requirements and

license the Google Mobile Services software [1] Availability

of means to reach users is another reason for selecting

Android.

2) Spring Framework: The Spring Framework is an open

source application framework and inversion of

control container for the Java platform. The framework's core

features can be used by any Java application, but there are

extensions for building web applications on top of the Java

EE platform. Spring framework was selected for the

development of the project as it supports JavaSpring has MVC

architecture (Model-View-Controller). The Model-view-

controller design pattern helps in separating the business logic,

presentation logic and navigation logic [9][10][11]. Support

for MVC architecture is another reason for selecting Spring

allowing the application to fit to MVC architecture.

3) Google Cloud Messaging Service (GCM): Google

Cloud Messaging (GCM) is a service that helps developers to

send data from servers to their Android applications on

Android devices, or from servers to their Chrome apps and

extensions [2][3][4]. It has been used in the development of

56

the project as it provides free means to send notification to

Android devices.

4) Java: Java is an object-oriented programming language

developed by Sun Microsystems. Java is a platform-

independent, multi-threaded programming environment

designed for creating programs and applications for the

Internet and Intranets. One characteristic of Java is portability,

which means that computer programs written in the Java

language must run similarly on any hardware/operating-

system platform. Java is selected for the development of

mobile application as it is the most preferable language for

Android development. Most of the Android libraries are

available in Java. Further it has been used for the API

development and desktop application development in order to

maintain the consistency.

5) MySQL: MySQL is an open source relational database

management system. Information in a MySQL database is

stored in the form of related tables. MySQL databases are

typically used for web application development (often

accessed using PHP). MySQL databases are queried using a

subset of the standard Structured Query Language (SQL)

commands [5]. For the development of database MySQL is

used as the database schema was clearly known at the

beginning of the project.

6) JSON: JavaScript Object Notation is a lightweight data-

interchange format. It is easy for humans to read and write. It

is easy for machines to parse and generate. JSON is a text

format that is completely language independent but uses

conventions that are familiar to programmers of the C-family

of languages, including C, C++, C#, Java, JavaScript, Perl,

Python, and many others. These properties make JSON an

ideal data-interchange language [6][7]. The familiarity with

Java lead to select JSON format as the data interchange

language in this project.

7) GSON: GSON is a Java library that can be used to

convert Java Objects into their JSON representation. It can

also be used to convert a JSON string to an equivalent Java

object. GSON can work with arbitrary Java objects including

pre-existing objects that you do not have source-code of [8].

8) REST: Representational state transfer (REST) is an

abstraction of the architecture of the World Wide Web; more

precisely, REST is an architectural style consisting of a

coordinated set of architectural constraints applied to

components, connectors, and data elements, within a

distributed hypermedia system. REST ignores the details of

component implementation and protocol syntax in order to

focus on the roles of components, the constraints upon their

interaction with other components, and their interpretation of

significant data elements.

9) Tomcat Server: Apache Tomcat is an open source

software implementation of the Java Servlet and Java Server

Pages technologies. The Java Servlet and Java Server Pages

specifications are developed under the Java Community

Process.

C. GUI implementation

Graphical User Interface (GUI) is one of the key

components in a software application that interact with human

users. User friendly GUI is the one of the major nonfunctional

requirement of this system. The main design considerations

related with GUIs are listed below where these factors are

considered in the system GUI designs.

 Attractive user interfaces (pleasant appearance)

 User friendly interfaces that are easy to use and easily

learnable

 Easy Navigation and keeping the process flow of the

actions

 Give helpful error messages and error messages

 Provide feedback of the actions whether succeeded or

not

D. Implementation of Med-Lab Assistant API

The API is the heart of the project which provides services

to both the lab users and report viewer app users. The API is

web hosted along with the database such a way that it can

provide services to both other components via internet.

The use of Spring gave the flexibility to work with many

technologies. And also it gave the use of Spring MVC

architecture, as well as use of dependency injection to the API

implementation. Maven [12] was used as the project

management/build tool and Eclipse was the IDE use for the

development process.

First, a web application was created as a Maven project.

The advantage of this is that the created web application gets

the desired structure of a web application. Spring library was

put into the library folder and then stated the required

dependencies inside the pom.xml file. Finally the project was

built using Maven and all the required dependencies were

downloaded automatically from Maven repository. Tomcat

server was used as the server to run the project. Java, JSON,

GSON, REST, HTTP are the technologies used for the API

development.

VII. TESTING

Testing of the system has been planned to be done at two

phases, parallel testing and system and acceptance testing at

the end of the development.

A. Development Testing

1) Unit testing: Individual program units/object classes are

tested to verify the functionality of objects and the methods.

Unit testing [16] was performed on each object focusing on

three major aspects:

 Test all the methods associated with an object

 Set and check values of all attributes of an object

 Test an object for all possible states

JUnit [17] Testing was used for the development testing.

Each class of all three components has been tested using JUnit

57

tests. Test classes were generated for each class. The

constructor and all the method of each class has been tested by

automating the unit testing process. Android JUnit testing was

done for the classes in Android application.

2) Component testing: The component interfaces through

which the components talk to each other are tested to ensure

that the intercommunication between the components happen

correctly. All kind of interfaces such as parameter interfaces,

message passing interfaces, and shared memory interfaces had

to be tested separately.

Part of this process is done by implementing test methods

in unit test class. To test whether each of the components

provides the intended functionality the other portion of

component testing has been done manually.

Additionally testing on the synchronization of communication

between components was performed.

3) System testing: Component interactions were tested.

This was done ensure that system works erroneously when all

the components work together. All the functionalities of the

entire Med-App system were tested manually several times.

4) Development Testing [18]: Normally users test the

system in their own environment. But in this project since

there is no real user only user acceptance testing was

performed. A feedback about the functionality as well as the

user friendliness (learnability, appearance of GUIs, etc.) was

taken.

VIII. CONCLUSION

Today, software industry has become an outstanding field

in the world. There are various kinds of software which are

capable to do simple tasks as well as complex tasks. In Sri

Lanka the software industry is not much popular compared to

developed countries. But, today many of the large and medium

business companies are looking forward to move their manual

systems to automated systems.

In this scenario the beginners for software developing can get

lot of opportunities to enter the field by starting with smaller

projects.

A. Further Enhancements

 Extend the application such that several types of

medical reports are provided.

 Extend the application to view medical history of the

patient

 Integrate the entire system to an existing medical lab

management system

 Develop the mobile application for cross platform

REFERENCES

[1] Google Inc., ―Android Development‖ [Online]. Available:

http://developer.android.com/develop/index.html

[2] Google Inc., ―Send Messages from the Cloud‖ [Online]. Available:
https://developers.google.com/cloud-messaging/

[3] Google Inc., ―Cloud to device messaging‖ [Online]. Available:
https://developers.google.com/android/c2dm/?csw=1

[4] Wikipedia contributors, ―Google Cloud Messaging‖ [Online]. Available:

https://en.wikipedia.org/wiki/Google_Cloud_Messaging. [Accessed: 24
Jun 2015].

[5] Wikipedia contributors, ―MySQL‖ [Online]. Available:

https://en.wikipedia.org/wiki/MySQL. [Accessed: 26 Jun 2015].

[6] ―Introducing Json‖ [Online]. Available: http://json.org/

[7] Wikipedia contributors, ―JSON‖ [Online]. Available:

https://en.wikipedia.org/wiki/JSON. [Accessed: 16 Jul 2015].

[8] Google Inc., ―Class GSON‖ [Online]. Available: https://google-
gson.googlecode.com/svn/trunk/gson/docs/javadocs/com/google/gson/G
son.html

[9] Pivotal Software Inc., ―Spring Framework‖ [Online]. Available:
http://projects.spring.io/spring-framework/

[10] Pivotal Software Inc., ―Spring Framework‖ [Online]. Available:
https://spring.io/

[11] Wikipedia contributors, ―Spring Framework‖ [Online]. Available:
https://en.wikipedia.org/wiki/Spring_Framework. [Accessed: 06 Jul
2015].

[12] The Apache Software Foundation, ―Apache Maven Project‖ [Online].
Available: https://maven.apache.org/

[13] Wikipedia contributors, ―Mobile Computing‖ [Online]. Available:
https://en.wikipedia.org/wiki/Mobile_Computing. [Accessed: 16 Jul
2015].

[14] .Wikipedia contributors, ―Mobile Application Development‖ [Online].
Available:
https://en.wikipedia.org/wiki/Mobile_application_development.
[Accessed: 07 Jul 2015].

[15] Wikipedia contributors, ―Cloud Computing‖ [Online]. Available:
https://en.wikipedia.org/wiki/Cloud_computing. [Accessed: 14 Sep
2015].

[16] Wikipedia contributors, ―Unit testing‖ [Online]. Available:
https://en.wikipedia.org/wiki/Unit_testing. [Accessed: 17 Aug 2015].

[17] Lars Vogel, ―Unit Testing with JUnit Tutorial‖ [Online]. Available:
http://www.vogella.com/tutorials/JUnit/article.html

[18] Wikipedia contributors, ―Development Testing‖ [Online]. Available:
https://en.wikipedia.org/wiki/Development_testing. [Accessed: 7 May
2014].

