
37

ShopGuru
An SMS-based Shop Detail Discovery Service

Bandara U.K.J.U.

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

bandaraukju.11@cse.mrt.ac.lk

Abstract—This research paper describes ShopGuru, a Short

Message Service (SMS)-based service developed as an attempt of

solving some of the issues faced by customers in discovering the

locations, details and availability statuses of shops around them

as well as by shopkeepers in communicating their shop details to

customers. It outlines the approach followed and major decisions

taken during the conceptualization, design, implementation and

evaluation of the application, and points out key concerns of the

evaluation such as latency and accuracy of the responses, along

with suggestions for future improvements in making it more

attractive, user-friendly and available to a greater audience.

Keywords—IdeaMart; SMS; Location Based Services (LBS);

geolocation; neighbourhood

I. INTRODUCTION

The purchase-based economy of modern times requires
customers to frequently visit and communicate with different
shops. Two main problems arising from this model of
customer-shop interaction can be identified: 1. A customer may
need to know the current status of a particular shop (e.g.
whether the shop is open, whether some of the goods are out of
stock, etc.) before actually travelling there, 2. A person in an
unfamiliar neighborhood may need to find a shop of a
particular category, in the close vicinity (e.g. a pharmacy).

If there existed a service via which the shop owner could
communicate the „status‟ of his shop to its customers (as and
when required), it would be quite helpful for both parties. The
medium should be asynchronous so that the shopkeeper will
not have to get involved in every customer query, as in the case
where the customer gives a phone call to the shop, and simple
and versatile enough to be used anywhere, anytime.

ShopGuru is an SMS-based service app that attempts to
address this requirement under minimal commitments and
infrastructure requirements from both the clients‟ and the shop
owners‟ perspectives. In addition to this primary function,
ShopGuru plays the role of a location-based shopping guide,
where a customer can send a query to the application regarding
the type of shop he/she is looking for, and receive a list of
shops and addresses located closest to his/her current location.

II. BACKGROUND AND MOTIVATION

Most of the shops currently in Sri Lanka still do not have
websites or other public communication media via which they
can communicate with customers without real-time human
intervention. Voice communication (direct or over phone) is

inconvenient in this regard as it is synchronous (both parties
should be involved simultaneously) and unicast (each customer
should be contacted separately). The next best choice is SMS
communication, provided that it is made asynchronous and
multicast (shop owner updating the shop status once, and
multiple customers being able to view it whenever required).

While it is possible to use a smartphone application for
communication, it should be kept in mind that the majority of
mobile phone users in Sri Lanka are still using regular
(„feature‟) phones [1, pp. 6-7]. Furthermore many of the small-
to medium-scale shop owners are accustomed to using feature
phones primarily due to their low price and ease of use. Thus, a
bare-bones mobile service would have a larger customer
reachability than a smartphone app in this case.

Dialog [2] is one of the leading mobile service providers in
the country [1, Fig. 1], and its IdeaMart developer Application
Program Interface (API) is available free of charge for any app
developer. If an application is built (with proper decoupling
and modularity features) to work with the IdeaMart APIs, it can
eventually be adapted to run with any other mobile subscriber‟s
API specifications (e.g. Mobitel [3] also has similar APIs, but
they are available only for commercial use and it is necessary
to register and sign an agreement in order to start using them).

Based on the above facts it was decided that the intended
application should be an SMS-based app compatible with all
mobile phones, utilizing IdeaMart APIs so that it would be
accessible for all Dialog subscribers, covering a significant
portion of the mobile phone user community [1, Fig. 1].

III. LITERATURE REVIEW

SMS is widely used as a communication medium among
the general public, mainly due to its simplicity, reliability and
speed. With the massive growth and inadequate infrastructure
in many countries, voice and where available IP are just not
feasible unless there is massive investment to bring up the
networks. SMS will get through even when the „network is
busy‟ for hours [4].

As a result, SMS is quite popular as a communication
medium not only in developed countries but even in
underdeveloped ones in Africa, and in developing ones like Sri
Lanka. For example, in Zambia, a farmer‟s union uses SMS
messages to distribute market prices while in Uganda, Malawi
and Benin, health education messages are sent via SMS [4].
SMS query-response systems are widely used in academic

38

contexts as well, such as at Kenyan universities for checking
exam results and fees balances, and reporting emergencies [5].

Many researchers have pointed out the possibility of SMS
being used as marketing tools. For example, as with the
internet, SMS advertising can introduce shopping in a specific
store, or driving in close proximity to a retail outlet [4].
Although ShopGuru is more of a service, a potential is offered
to shops to market their products via their status updates.

Mobile phones fall into two major categories as feature
phones and smartphones. The former ones have a limited, fixed
set of functionalities, whereas the latter ones generally have
more advanced features and offer more customizability and
expandability, often achieved via externally installed
applications which are named „apps‟. Although SMS applies
for both classes in pretty much the same way, location based
services can be quite diverse as smartphones often support
Global Positioning System (GPS) and wireless network (Wi-Fi)
based location identification. GPS and Wi-Fi typically provide
more accurate location results than regular mobile network
based locations [6].

In fact, GPS- and other kind of location-based
recommendation and guidance apps are now in plenty. Popular
smartphone apps like Google Maps, Google Places, Foursquare
and ShopKick can be cited as examples [7]. However, such
apps are not widely available for feature phones, especially
those which do not have GPS or mobile data (General Packet
Radio Service, GPRS) capabilities. Hence a majority of mobile
phone users in countries are still confined to the use of lower-
accuracy network-based LBS, and do not enjoy the benefits of
many of the advanced location based services (e.g. apps).

Location-dependent Data (LDD) has great promise for
mobile and pervasive computing environments [6]. Location
based application often provide its services (LBS) by using
location based queries (LBQs). LBQs can be categorized into
four types; range queries, nearest neighbor queries, navigation
queries and geo-fence queries. For example, nearest neighbor
queries deal with the entities closest to the point of query origin
(similar to location-based queries in ShopGuru) [6].

Location-based services, such as the ability to provide
features like weather forecast, restaurants guides, hotels maps,
address finders, and traffic update have been cited as consumer
friendly features of new media [4]. For example, in a location
based shop query system, the user just searches for a particular
grocery shop, and the user location is automatically detected by
the mobile phone and encapsulated along with the query. This
enhances the way the query is processed in the back-end, as
based on the location, the query works only on a subset of the
back-end database of shops [6]. It also returns a response that is
more meaningful for the user, as details of a nearby shop are
quite valuable than those of one which is several miles away.

Although location-based recommendation and assistance
systems are quite popular in the world today, such systems
have not been widely adapted in Sri Lanka when it comes to
the mobile service provider. For example, even under Dialog‟s
IdeaMart app developer campaign [8], there are only a few
apps such as Mega Mind [9] and WikiLanka [10] that offer
location-based support and recommendations.

In conclusion, considering the potential benefits that can be
enjoyed by the general mobile phone user population
(including both feature phone and smartphone users), and the
lack of such services in the current Sri Lankan mobile service
field, the development of a service like ShopGuru can be
considered as a useful, timely and profitable venture.

IV. OUTLINE OF THE SOLUTION

Services provided by ShopGuru are based on four basic
user activities (operations) which are described in detail follow:

A. Shopkeeper Subscription

Shopkeepers can subscribe to the service using a Dialog
mobile phone (providing shop name, location (address) and
shop category (e.g. pharmacy, bakery, grocery etc.)).

B. Shop Status Updates

Subscribed shopkeepers can update the statuses of their
shops (e.g. “open”, “closed”, “closed from 10AM to 2PM”
etc.) at any time (via SMS). If the shopkeeper has not updated
his status within a predefined time period, the service notifies
the shopkeeper to do so. Each update has a maximum validity
period of one day, which can be configured by the shopkeeper.

C. Customer Queries

Any regular subscriber can send an SMS query to the
service, to retrieve the best matching status results for a given
shop category, in SMS form. Relevance of the results can be
improved using Dialog‟s LBS API, and Google Maps APIs for
decoding textual addresses to geographical coordinates. For
example, the query “pharmacy” might return up to 3 status
results for pharmacies, in the form “Pharmacy A [location]:
open, Pharmacy B [location]: closed”.

D. Customer Registration under Shops

Additionally regular subscribers can „register‟ under a
given shop via SMS. Results related to such registered shops
would appear with higher priority in the response, whenever
applicable. For example, if a user has registered under the
hardware store X, if he sends a “hardware” query from a
location in close proximity to X, the status of X would appear
at the top of the response SMS.

V. DESIGN CONSIDERATIONS

A. Basic Architecture

Although the service uses a client-server architectural
pattern, no specific client interface is available because the
SMS mechanism is handled by Dialog, the mobile network
service provider. A layered approach is used to achieve better
levels of modularity, maintainability, reliability and
extendibility. The system interfaces with IdeaMart‟s Idea Pro
[11] web APIs, and Google Maps Geolocation API [12] for
address manipulation.

ShopGuru exhibits a mix of client and server
characteristics, this is due to the fact that it acts as a server for
its subscribers and at the same time as a client of Idea Pro
(IdeaMart) and Google Maps APIs. ShopGuru also
communicates with a MySQL database which, although hosted
on a different MySQL server, is part of the application itself.

39

Clients of ShopGuru indirectly communicate with it via
Dialog‟s service architecture, using SMS and LBS protocols.
ShopGuru utilizes HTTP (and HTTPS) to communicate with
external APIs.

Fig. 1. Basic architecture of ShopGuru application.

B. System Tiers

Since ShopGuru is more server-oriented and has no visible
client interface, the traditional 3-tier, presentation-application-
data access layered architecture is not directly applicable.
Hence a slightly different approach has been followed in
modelling the tiers of the application.

Handlers (in Fig. 1) interface with client requests (queries).
Since there is no customized interface, these merely listens for
incoming queries and passes them to lower layers, and
transforms information generated by lower layers into more
human-friendly responses to be sent to the clients. Hence this
can be considered partially as a presentation layer and partially
as a communication layer.

Controller tier (in Fig. 1) is analogous to the business logic
layer in traditional 3-tier architecture. It processes client
requests received via handlers to produce required responses,
during which it communicates with the database (via data
connectors) and with external APIs (LBS and Google Maps).

Data Connector tier is analogous to the data access layer of
traditional 3-tier architecture. It is responsible for entity
management (retrieval, persistence and discarding of entities)
and the consistent handling of database queries via a persistent
database connection.

C. Performance Metrics

In order to serve multiple client requests concurrently, a
client handler factory implementation is used to spawn new
client request handlers whenever new requests are received.
Nevertheless, singleton implementations like the database
connection (necessary for avoiding concurrent updates and
maintaining database integrity) can sometimes induce a
bottleneck effect. Hence the development of an efficient
database schema and set of queries is crucial for maintaining
the application at desired performance levels.

VI. IMPLEMENTATION

A. Package Hierarchy

ShopGuru source [13] contains several packages for

providing different operational and maintenance functions.

TABLE I. PACKAGES IN SHOPGURU SOURCE

Package Contents

adapter

classes used for interfacing internal web request handlers

with external web server API classes (e.g. Google App

Engine software development kit (GAE SDK) vs. web
services gateway interface (WSGI) server)

config
app configuration parameters (e.g. app ID, password, API

endpoint URLs, database connection parameters)

exception
exception hierarchy of the app, spanning from a base

ShopGuruException

launcher
modules for launching the app on different platforms (e.g.
GAE SDK, WSGI)

lbs handler module for LBS request handling

maps Google Maps Geocoding API handler

model

entity model, entity handler and datastore connection

modules for the app; contains submodules db for database-

level operations (with a MySQL connector and data
manager) and entity for entity classes used by the app

sms SMS receiver, sender and parser modules

task modules related to handling of user queries

B. Entity Model

Following are the distinguishable entities for the app:

TABLE II. ENTITIES IN SHOPGURU APP

Entity Description

Shop

contains shop details (phone, name, location,

registration time, category), current status and last

status update time (for status expiry notifications)

Customer contains customer details (phone, name, location)

Subscription

subscription of a customer for a shop; contains

references to the shop and customer, time of

subscription initiation, and time at which the last query
related to the subscription (i.e. from the particular

customer to the particular shop) has been made

In addition, two SMS-related entities were introduced for
logging and statistical purposes: IncomingSMS, representing an
incoming message (query or otherwise), and OutgoingSMS,
representing an outgoing SMS response. Each has an
associated phone number, timestamp and message content.

Some non-persistent entities are defined for internal tasks:

TABLE III. NON-PERSISTENT (HELPER) ENTITIES IN SHOPGURU APP

Entity Description

Message

(BaseSMS)

parent of IncomingSMS and OutgoingSMS; message

persistence is handled via polymorphism, where each
type gets persisted in the appropriate table

Location
a geographical location inside the application; persisted

as part of a customer or shop entity

Query
a user query; in addition to the original message entity,
contains query-specific parameters (e.g. for a shop

registration, the shop name, address and category)

C. Basic Algorithm

The following sequence of steps takes place when a new
SMS is received by the app:

1. Message arrives on the server, and it is routed to the
SMS receiver module as a POST request.

2. A new ClientHandler (class for representing and
handling a client request) instance is created using a

40

ClientHandlerFactory, and launched. ClientHandler is
a thread on its own, so the SMS receiver gets released
for handling further queries without remaining blocked.

3. ClientHandler first persists the message, and then
passes the message into a parser module.

4. The parser parses the message (in a sequential manner),
and returns a Query object. In parsing, case insensitivity
of keywords is honoured but actual parameter values
(e.g. customer and shop names) are taken as case
sensitive. Also, the order of parameters is not strictly
enforced (“reg SHOP n:Amila Hardware C: hardware”
and “Reg Shop c:hardware N: Amila Hardware ”
would produce the same Query with type =
SHOP_REGISTER (shop registration), name = “Amila
Hardware” and category = “Hardware”)

5. Each subsequent parser method thoroughly checks the
incoming message for illegal parameters (which is
currently limited to too long and too short parameters,
such as very short or very long names). If such a
discrepancy is faced, an appropriate error and
instruction response is thrown, which is subsequently
caught and handled by the ClientHandler.

6. The Query object is processed by the ClientHandler. It
has a series of dedicated methods for each type of
query. Each method returns a response string that can
then be composed into an SMS and sent either as
acknowledgement or as query results, to the client. If
any of the methods fail, an appropriate exception is
thrown to the calling (driver) method, which then
generates an appropriate error or instruction response.
ClientHandler also contains a series of predefined
message templates that can be used for response
generation. In case a particular response has to be
modified, the programmer simply has to change the
message template at the beginning of the file.

7. The returned reply string is composed into a message,
and sent to the customer. The response is also persisted
in case it might be useful for further analysis.

D. Notable Features

For name-based shop queries, it is necessary to retrieve the
nearest set of shops (relative to the customer‟s current
location), sorted by proximity. For this, a Euclidean distance
calculation is performed in the relevant database query itself.

For location-based shop queries, shops to which the
customer is already subscribed are given a higher priority in the
response list, as a potential benefit of subscribing under shops.
Due to the high level of decoupling between the entity model
and the back-end SQL query implementation, it is not feasible
to write a SQL join query to handle this, since it would result in
the query specification leaking into the application logic.
Hence it had to be handled via a somewhat complicated list
intersection algorithm in the application itself.

E. Communication

SMS reception and delivery is handled over standard
HTTP, by sms_receiver and sms_sender modules. SMSs are

received as JavaScript Object Notation (JSON) payloads in
POST requests to the SMS receiver endpoint URL that is
defined during the hosting of the application. The module
parses this JSON object and generates a Message entity, which
is then bound to a new ClientHandler instance.

In sms_sender, messages are encoded as JSON payloads
and posted to the relevant API endpoint URL.

Similarly, the LBS request handler module sends out LBS
requests to the relevant API endpoint URL, and parses the
received responses (in JSON format) into Location entities.

The Google Maps Geocoding API handler, geocoder, also
uses standard HTTP to process address queries. The resulting
JSON responses are parsed and converted into Location entities
to be returned to the respective ClientHandler instance.

MySQL database queries are executed via the MySQLdb
Python library interface, which then interacts with the database
hosted on the app hosting domain itself.

All internal communications take place over standard
Python method (API) interfaces.

VII. EVALUATION

A. Unit Testing

Since the application is triggered by, and solely dependent
on, incoming text messages, correct message interpretation is
very important. Several internal test cases have been derived in
this regard, covering all possible types of queries that the
application may receive.

The PyUnit [14] unit testing framework that comes bundled
with the Eclipse PyDev [15] extension was used for evaluating
unit tests. Python‟s unit test package was used for defining test
cases. The tests generally focused on evaluating the message
parser against different valid and invalid messages, and
asserting the outputs and errors generated, respectively.

B. System Testing

While unit testing is important, more emphasis must be
placed on system testing when it comes to a system like
ShopGuru with multiple modules working in collaboration.

System testing was performed using the IdeaMart
Simulator provided as part of the IdeaMart Developer Bundle.
This simulator provides a mobile phone-like interface via
which text messages can be sent to the application from
preferred mobile numbers. Responses sent by the application
are displayed in the simulator itself.

Since the simulator runs on the local machine (localhost), it
can be accessed via a web browser. This allowed the use of
Selenium IDE [16], the popular website functionality testing
framework, to be used for overall testing of ShopGuru via the
simulator. Test cases were written to send a predefined
sequence of messages to the application, and assert that the
expected responses are received.

As the data currently existing in the database might
interfere with the testing process, two (Preconditions and
Postconditions) test cases were written such that Preconditions
backs up the data currently in the database and „cleans‟ it (by

41

truncating all tables), and Postconditions restores the old data
back into the database, both using the phpMyAdmin database
management interface.

For convenience and modularity, two custom functions
doSendSMS(phone, message) and doSetLBSLocation(latitude,
longitude) were written and added to the Selenium Core.

All test cases were combined into a test suite, which could
be run whenever required to verify that the overall application
functions as expected, conforming to the required quality of
service parameters (e.g. timeout limits could be defined for an
SMS, in order to measure the latencies in serving queries.)

C. Performance and Accuracy

Duration between a user query and the corresponding
response was measured to be approximately 6 seconds. While
the actual query processing did not usually take more than 2
seconds on the server side, communication overheads such as
delays in message delivery and database queries accounted for
the remaining time difference. Significant deviations were
observed in case of customer and shop registrations, where
location geocoding using Google Maps API was performed
over the internet, which was clearly due to the network
communication overhead. Due to the same reason, actual
performance of LBS-included queries could not be measured.

The application produced accurate responses for all cases
considered in the system tests (e.g. location- and name-based
shop queries, ordered by subscription priority and by location)
for different forms of client (customer and shop) queries.

VIII. FUTURE ENHANCEMENTS

A. Smartphone Interface

While ShopGuru is available as a regular SMS application
for all Dialog subscribers, it is also possible to introduce an
Android and/or iOS interface for the app. This would allow
non-Dialog users to use the service, while allowing smartphone
users to enjoy more advanced features (like Maps-based
display and navigation to nearest shops, and richer shop status
notifications including banners, icons and formatted text).

B. Item Reservation Capabilities

Via Dialog‟s eZcash (CAAS) API, it would be possible to
extend ShopGuru to a point where a customer can not only
query a shop status, but also place an order or reserve an item
on the shop (to be purchased on arrival at the shop).

C. Natural Language Processing (NLP)

Rather than depending on a specified querying format, it is
expected to make ShopGuru understand natural language
queries (such as “register me as a shop”). IdeaMart Apps like
Mega Mind already possess this capability.

D. Expansion to Other Mobile Service Providers

Dialog is only one of the several mobile service providers
in the country. It is considered that Mobitel has acquired an
even larger share of the mobile subscriber community. Since
ShopGuru‟s source code is not tightly coupled with IdeaMart, it
would be possible to introduce the same service under Mobitel
and other service providers. It might probably involve the

necessity to enter into contractual terms, unlike in case of
IdeaMart which is totally free for independent app developers.

IX. CONCLUSION

ShopGuru attempts to address a shop information retrieval
problem commonly encountered by both the customer and
seller community by providing a query service for mobile
devices via the simple, easy-to-use and widely available SMS
service. It can be considered as a platform where shopkeepers
can post and update their shop information, which can then be
queried by interested customers on demand. While it has the
advantage of being able to reach a wider audience, it has some
inherent disadvantages such as the lack of a user interface and
the need to memorize some simple yet relatively long query
syntaxes. Details regarding actual usefulness, effectiveness and
customer acceptance of ShopGuru would be known once it is
placed in active production as a public IdeaMart app.

ACKNOWLEDGMENT

The author would like to acknowledge all lecturers and
colleagues who advised, evaluated and assisted him, members
of the Dialog IdeaMart community who provided him guidance
and assistance, and the authors of all online and offline
resources consulted during the course of the project.

REFERENCES

[1] N. Jain, T. Hatt, and A. Wills, “Country overview: Sri Lanka,” GSMA
Intelligence, London, Oct. 2013.

[2] Dialog [Online]. Available: https://www.dialog.lk [Accessed: Sep. 16, 2014].

[3] Mobitel [Online]. Available: https://www.mobitel.lk [Accessed: Sep. 16, 2014].

[4] P.K. Jaiswal, “SMS based information systems,” Master‟s thesis, School
of Computing, Univ. of Eastern Finland, FI, Sep. 2011.

[5] P. Gichure, “SMS query & response system: the power of SMS”
[Online]. Available: http://www.slideshare.net/gichurepaul/sms-query-
response-system [Accessed: Jul. 5, 2014].

[6] R. Rajachandrasekar, Z. Ali, S. Hegde, V. Meshram, and N.
Dandapantula, “Location-based query processing: sensing our
surroundings,” Dept. of Comp. Sci. & Eng., The Ohio State Univ., OH.

[7] “20 hot location-based apps and services you should know about”
[Online]. Available: http://www.slideshare.net/socialtech/20-hot-
locationbased-apps-and-services-you-should-know-about-12841489
[Accessed: Jul. 5, 2014].

[8] Dialog, “IdeaMart” [Online]. Available: http://www.ideamart.lk
[Accessed: Jul. 5, 2014].

[9] Zhvillues, “Mega Mind” [Online]. Available: http://zhvillues.tumblr.com/
post/103883950726/mega-mind [Accessed: Sep. 10, 2015].

[10] WikiLanka code base on GitHub [Online]. Available: https://github.com/
ridwannaruto/WikiLanka [Accessed: Sep. 10, 2015].

[11] Dialog, “Idea Pro” [Online]. Available: http://www.ideamart.lk/idea-pro
[Accessed: Jul. 5, 2014].

[12] “The Google Maps geolocation API | Google Developers” [Online].
Available: https://developers.google.com/maps/documentation/geolocation
[Accessed: Jul. 3, 2014].

[13] ShopGuru code base on GitHub [Online]. Available: https://github.com/
janakaud/shopguru [Accessed: Sep. 16, 2014].

[14] “PyUnit – the standard unit testing framework for Python” [Online].
Available: http://pyunit.sourceforge.net [Accessed: Sep. 16, 2014].

[15] “PyDev” [Online]. Available: http://www.pydev.org [Accessed: Jul. 5, 2014].

[16] “Selenium IDE plugins” [Online]. Available:
http://www.seleniumhq.org/projects/ide [Accessed: Sep. 16, 2014].

