
11

Computer Vision Library for Western Music Sheet

Notations

Sanka Rasnayaka

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

sanka.11@cse.mrt.ac.lk

Abstract—This paper discusses a computer vision system to

detect western music notations from images. The developed

library will take in images of western music sheet notation and

identify the key features necessary to extract the notes. The

images will go through several pre-processing stages and then

using straight line detection techniques the staff and notes will be

detected. The paper will discuss the algorithms used and

developed to achieve this. Finally the paper will present the

accuracy measures in the developed system for different types of

images.

Keywords—computer vision; notation; detection

I. INTRODUCTION

Western music notation scheme is a highly structured and
methodical notation scheme which uses five horizontal lines
(the staff) to place notations according to their pitch. This is
illustrated in the Fig. 1.

With the high use of technology in music, there are many
software which could be used to generate, edit or play western
music sheet notations. However a vision system which could
detect sheet notations and recognize notes was lacking, making
vast number of printed sheet notations unusable for digital
processing without manually entering them into digital formats.

All the existing developments focus on creating western
music notations and there are no popular solutions for
extracting data from an existing western music notation in a
computer understandable way.

The library discussed in this paper is intended to extract key
features of the western music notation scheme using standard
image processing and computer vision techniques. These
features would be used to identify the notations in the sheet
music.

Fig. 1. Western Music Notation Scheme.

The paper will first discuss the related work in the fields of
western music and the computer vision libraries selected for the
implementation. Next the implementation details of the

algorithms and the results obtained by the developed
algorithms is presented.

II. RELATED WORK

There are several standards for representing western music
notations, like musicXML [1] which is a digital sheet music
interchange and distribution format. Also there are
specifications like SMuFL [2] which provides a standard way
of mapping the thousands of musical symbols required by
conventional music notation into the Private Use Area in
Unicode’s Basic Multilingual Plane [9] for a single font.

Also there are open source applications which give features
like creating sheet music, playing them and composing music.
For an example Musescore [3] is a free and open source
software used for music composing and notation creating.
Musescore supports exporting musicXML files to save sheet
music that have been created.

In order to create a vision library for detecting western
music notations currently available computer vision libraries
were searched. OpenCV [4] is an open source library which
provides many features. Therefore OpenCV was used in this
project. Since the library was created in java the JavaCV [5]
wrapper for OpenCV was used for the implementation.

III. DESIGN AND IMPLEMENTATION

The system flow is shown in Fig. 2.

Fig. 2. System flow.

A. Processing Image

At the initial stage several image processing algorithms
were run on the images in order to standardize them for the
detection algorithms. Some such operations were; converting
the images to binary images, scaling the image, rotating to
make sure the staff is horizontal and smoothing the image to
reduce noise effects.

12

Fig. 4. Sample Western Music Notation.

Fig. 5. After Canny Edge Detection.

B. Edge Detection

The Canny edge detection algorithm [6] was implemented

for detecting edges in the image. This algorithm can be

explained in the following four steps:

1. Applying a gaussian mask: A mask matrix is used to

average the values of neighbouring pixels.

2. Sobel operator: The gradients on the horizontal and

vertical directions were calculated for each pixel by

applying a sobel operator. The equations (1) and (2)

show the two masks that were used for this.

 [

]

(1)

 [

] (2)

At each pixel the mask was applied using its neighbors and

the gradient values in x direction (Gx) and y direction (Gy)

were calculated.

3. Calculate edge directions: The angle and the strength

for each pixel was then calculated with the following

equations:

 (

)

(3)

 √

(4)

4. Trace edges: The adjacent pixels for each pixel would
be traced along the directions and edges will be
detected when directions match. For the current
application, angles were reduced to 4 ranges shown in
Fig. 3, and the tracing was done only using the
immediate adjacent pixels.

Table 1 shows how this tracing happens from i(x,y)’th pixel
to the next.

TABLE I. TRACING DIRECTIONS

Angle Next Position

0° (x + 1, y)

45° (x + 1, y + 1)

90° (x, y + 1)

135° (x − 1, y − 1)

Fig. 4 shows the sample image used to illustrate
intermediate steps in this paper, and Fig. 5 shows the result
after applying the canny edge detection algorithm explained
above

C. Staff Detection

The edge detection output is fed to the staff detect
algorithm, which would use the openCV cvHoughLines2 [7][8]
for straight line detection with a tolerance in order to make sure
the same lines are not selected multiple times due to its
thickness.

The OpenCV implementation uses the polar coordinate
system in representing the points. Using this system the Hough
Transform in OpenCV keeps track of the intersection between
curves of every point in the image. If the number of
intersections is above some threshold, then it declares it as a
line with the parameters () of the intersection point.

Fig. 3. Chosen angles.

13

Fig. 7. After Staff Detection.

Fig. 8. After Note Detection.

Fig. 6. Head positions.

After that the length of the lines is used to filter out within

the selected lines and to identify the staff of the notation. The

vertical position of each staff line is the only necessary feature

for the next steps. The result after staff detection is shown in

Fig. 7.

D. Note Detection

First the stems of the notes were detected using the same

approach to detect vertical lines. After that the heads of the

notes were detected using the relative position of the heads

with respect to the stem and the staff as shown in Fig. 6.

The level of white vs. the level of black in each of these

locations were compared to select the position of the heads of

the notes. Fig. 8 shows the result obtained by this step.

E. Applications

There are many applications which could use this vision
library for western music notations. A proof of concept was
developed to demonstrate this, which is indicated using green
color in the Fig. 2.

Here the identified Western Music notations will be
converted into the Eastern Music notation scheme.

Some other applications would be to export the notation in
a standard format like musicXML which then can be used in
already available software like museScore to play back, make
changes and use in compositions.

IV. EVALUATION AND RESULTS

A. Accuracy

The final detection gave diverse results depending on the
quality of the input image. When considering digital images
with high pixel density (like in Fig. 4) the accuracy of the
algorithm was about 95% - 100%.

But when testing with scanned images as shown in Fig. 9
the accuracy went down to 50% ~ 60%.

Another issue encountered was that the low pixel density
images would lead to overlapping of features which made the
detection of the staff impossible as illustrated in the Fig. 10.

However for images scanned or digital with high pixel
density the algorithms were able to detect the notes at the said
95% - 100% accuracy.

B. Performance

The time complexity of the algorithms used were analyzed

to get an understanding of the performance of the library. Let's

assume the input image is of n x m pixel size.

1) Edge Detection

The masking operation will require O(nm) to iterate

through the pixels and mask them.

Calculation of the angles and tracing through them will

also require O(nm) time.

Therefore the Edge detection task is of time O(nm).

2) Staff Detection

After the line detection algorithm is run if number of line

segments identified is l, the complexity of identifying the staff

from these lines will be O(l). This will always be less than the

complexity of the cvHoughLines2 complexity.

3) Note Detection

The note detection is similar to the staff detection, after the

OpenCV line detection it will only need constant time to

detect the position of the head of the note.

14

Fig. 9. Low pixel scanned image.

Fig. 10. Erroneous Staff Detection.

V. CONCLUSION AND FUTURE WORK

This library gives basic functionality needed for Western
music notation detection. Yet it requires many further
improvements to be used in practical applications. Detecting
treble/bass clefs, sharp/flat signs and the timing notations are
needed in order to enhance usability of this library.

Also to make the library more robust more pre-processing
could be done on the images like enhancing the images to
improve the accuracy for low quality images. Compensating
for skewed images and distorted images is also a pre-
processing step which would be added.

Having a complete library for detecting western music
notations could lead to many interesting applications and it
can be integrated with many existing standards and software.

REFERENCES

[1] MusicXML, “MusicXML for Exchanging Digital Sheet Music”, 2015.
[Online]. Available: http://www.musicxml.com/. [Accessed: 04 Jul
2015].

[2] SMuFL, “SMuFL | Standard Music Font Layout”, 2013. [Online].

Available: http://www.smufl.org/. [Accessed: 04 Jul 2015].

[3] musescore.org, “MuseScore | Free music composition and notation

software”, 2015. [Online]. Available: https://musescore.org/. [Accessed:

04 Jul 2015].

[4] opencv.org, “OpenCV | OpenCV”, 2015. [Online]. Available:

http://opencv.org/. [Accessed: 04 Jul 2015].

[5] Code.google.com, “javacv - Java interface to OpenCV and more -

Google Project Hosting”, 2015. [Online]. Available:

https://code.google.com/p/javacv/. [Accessed: 04 Jul 2015].

[6] J. Canny, “A Computational Approach to Edge Detection”, IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 8, no.

6, pp. 679-698, 1986.

[7] R. Duda and P. Hart, “Use of the Hough transformation to detect lines

and curves in pictures”, Commun. ACM, vol. 15, no. 1, pp. 11-15, 1972.

[8] dcs.opencv.org, “Hough Line Transform — OpenCV 2.4.11.0

documentation”, 2015. [Online]. Available:

http://docs.opencv.org/doc/tutorials/imgproc/imgtrans/hough_lines/houg

h_lines.html. [Accessed: 04- Jul- 2015].

[9] Unicode.org, (2015). Roadmap to the BMP. [Online] Available:

http://unicode.org/roadmaps/bmp/ [Accessed: 10 Sep. 2015].

