
1

 Schema.org Mapping Tool for Drupal 8

Sachini A. Herath

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

sachini.11@cse.mrt.ac.lk

Abstract—The paper discusses methods of seamlessly

integrating Structured Data with Content Management Systems

(CMS), to be used by users with no expertise on Linked Data or

RDF. First two methods of integrating Linked Data with CMS is

presented: mapping Content Structure with Linked Data

vocabularies and creating Content Structure based on schemas

for structured data. Finally the implementation details of the

module developed for Drupal 8, using Schema.org as the mark

up vocabulary, is discussed in detail.

Keywords—linked data; CMS; structured data

I. INTRODUCTION

Content Management Systems contributes largely to Hyper
Text Markup Language (HTML) Web today. The vast amount
of data hosted through them remains unstructured, thus not
machine understandable. Meanwhile Semantic Web [1]
continues to grow, with many new features and methods of
presentations. However connecting these two worlds in a
method that can be used by non-experts is still an area largely
unexplored.

Drupal is free and open source CMS distributed under
GNU General Public License from 2001. The Drupal project's
principles encourage modularity, standards, collaboration,
ease-of-use, etc. and the architecture has undergone vast
changes in its latest version, Drupal 8 (yet to be released) [2].
The content structure of Drupal makes it ideal for this project
[3].

Schema.org [4] is an open community driven vocabulary
that is sponsored and used by all major search engines such as
Google, Yahoo, and Microsoft etc. The vocabularies cover
entities, relationships between entities and actions.

A. Content Structure of Drupal

On Drupal, „Content‟ defines how data is stored for web
content. Each content is an implementation of a Content Type,
which is a pre-defined collection of data types (Fields) that
relate to each other by an informational context. Content Types
are how site editors can input original content on a Drupal site
and are the building blocks for structured authoring and
content. Content types often work in conjunction with Views,
which is one way the content can be served up to the end users
- how content types appear and the order they appear can be
controlled [5].

Fig. 1. Drupal Content Structure.

Each Content Type has a set of attributes termed „fields‟ as

shown in Fig.1. Fields too can be generic or user-defined.
Some of the default fields are title and body. Each field has a
unique machine name, field type which specifies the type of
data to store in the field (e.g. - image, text, integer etc.), and a
set of parameters to define how the field is displayed. Fields
can be reused across content types.

B. Schema.org vocabulary structure

Schema.org vocabulary introduces hierarchical schema
(shown in Fig. 2) that can be presented in Microdata, RDFa, or
JSON-LD formats.

C. Linked Data and Web Content

The two content structures described above can be
integrated to introduce machine understandable structure for
the data, as shown in Fig. 3.

Fig. 2. Hierarchical structure of Schema.org.

2

Fig. 3. Content type with RDF data.

Fig. 4. HTML Text annotated with markup.

Fig. 4 shows the relationships shown as graphic in Fig. 3

depicted as RDFa markup in the HTML body.

II. RELATED WORK

Drupal has introduced RDF module as one of its core
modules starting from Drupal 7, which injects the defined
Resource Description Framework (RDF) mappings to theme
functions and templates [6]. Moreover Drupal 7 has a
considerable collection of contributing modules which focuses
on Linked Data. RDF Extensions [7] is one such module and it
presents the functionality to map Content types and fields with
vocabularies, much similar to the first component described in
this paper.

Other popular CMS such as Joomla and WordPress have
modules for introducing Linked Data, although due to the
differences in architecture they are not tightly coupled with the
underlying content structure.

III. DESIGN AND IMPLEMENTATION

The implementation was done for Drupal 8 as a
contributing module [8]. The main module, RDF UI, contains
the tools for mapping content structure with Schema.org
vocabularies while the submodule, RDF Builder, focus on
creating content structure based on schemas for structured data.

A. RDF UI

Schema.org core schema is fetched through a Hyper Text
Transfer Protocol (HTTP) request to the module. The fetched

data is processed as a graph using EasyRDF library for PHP [9]
and cached for faster access.

The existing create and edit forms for Content types are
altered using hooks to introduce Schema.org mapping. The
altered process view is depicted in Fig. 5 and UI in Fig. 6.

Once a Content type is created the mapping for fields and
properties are to be selected. The candidate properties for auto-
completion will be properties of the selected Type or its parent
Types, and are filtered removing deprecated properties. The
process view for specifying field mapping is shown in Fig. 6
and the UI in Fig. 7.

jQuery autocomplete widget is used for the dropdown
menu for selecting the Types and Properties. However since it
presents the limitation of categorizing properties according to
the Type it belongs to, it is advised to use Select2 autocomplete
combo-box for the select widget [10].

Fig. 5. Process view for mapping Content type and Schema.org type.

Fig. 6. Content type mapping form.

3

Fig. 7. Process View for mapping fields and Schema.org properties.

When creating content using the Content type template the

specified mappings will be injected in the HTML body by the
core RDF module. The mappings in HTML can be extracted
and viewed using the Google Structured Data Testing Tool
[11].

B. RDF Builder

RDF Builder module introduces the novel concept of using
the Schema.org schema structure to specify and create Content
Types. This not only makes the life of Content developers
easier but also creates content structure expected by the search
engines.

RDF builder uses a multi-step form to create new Content
Types as shown in Fig. 8. Once a Type is selected, the
properties of the selected Type and its parent Types are listed
as candidates for fields, as shown in Fig. 9. Based on the
information available in the vocabulary many of the field
properties can be filled automatically. One example is the field
type widgets to be used for fields, which are suggested based
on the data type of each property.

Upon submission the new Content type and fields are
created and stored along with RDF mappings. The user then
can use the usual tools to customize the created Content Type
and fields.

This tool presents a faster and efficient alternative to the
typical Drupal workflow.

C. Testing and Maintainance

All the functionality presented in the two modules are
tested using SimpleTest [12] automated Testing tool.

Fig. 8. Field mapping form.

4

Fig. 9. Process View for RDF Builder.

Fig. 10. RDF Builder.

IV. CONCLUSION AND FUTURE WORK

The tools developed for this project enables non-expert
users to easily integrate Linked Data to their websites and
define better structure for the data to optimize search.
Functionality such as suggestions for fields, given a Content
Type and matching relevant properties and types based on the
display name of Content types and fields can increase the user
experience of this module.

The next step for improving the Semantic Web Technology
in Drupal 8 would be matching actual content with relevant
entities through URIs.

ACKNOWLEDGMENTS

The author thank Stephane Corlosquet, Senior Software
Engineer, Acquia Inc. for mentoring the project and Google
Summer of Code initiative for sponsoring the project in 2014.

REFERENCES

[1] W3.org, “Semantic Web - W3C”, 2015. [Online]. Available:

http://www.w3.org/standards/semanticweb/. [Accessed: 05- Jul- 2015].

[2] Buytaert.net, “Why the big architectural changes in Drupal 8 | Dries
Buytaert”, 2015. [Online]. Available: http://buytaert.net/why-the-big-
architectural-changes-in-drupal-8. [Accessed: 04- Jul- 2015].

[3] S. Corlosquet, “Bootstrapping the Web of Data with Drupal”, Master
Degree in Computer Science, National University of Ireland, Galway,
2009.

[4] Schema.org, 2015. [Online]. Available: http://schema.org/. [Accessed:
05- Jul- 12015].

[5] Drupal.org, “Working with content types and fields (Drupal 7 and later) |
Drupal.org”, 2011. [Online]. Available:
https://www.drupal.org/documentation/modules/field-ui. [Accessed: 04-
Jul- 2015].

[6] Api.drupal.org, “RDF Mapping API | rdf.module | Drupal 8 | Drupal
API”, 2015. [Online]. Available:
https://api.drupal.org/api/drupal/core!modules!rdf!rdf.module/group/rdf/
8. [Accessed: 05- Jul- 2015].

[7] Drupal.org, “RDF Extensions | Drupal.org”, 2015. [Online]. Available:
https://www.drupal.org/project/rdfx. [Accessed: 05- Jul- 2015].

[8] Drupal.org, “RDF UI | Drupal.org”, 2015. [Online]. Available:
https://www.drupal.org/project/rdfui. [Accessed: 05- Jul- 2015].

[9] N. Humfrey, “EasyRdf - RDF Library for PHP”, easyrdf.org, 2015.
[Online]. Available: http://www.easyrdf.org/. [Accessed: 05- Jul- 2015].

[10] Select2.github.io, “Select2 - The jQuery replacement for select boxes”,
2015. [Online]. Available: https://select2.github.io/. [Accessed: 05- Jul-
2015].

[11] Google Developers, “Structured Data Testing Tool | Google
Developers”, 2015. [Online]. Available:
https://developers.google.com/structured-data/testing-tool/. [Accessed:
05- Jul- 2015].

[12] Drupal.org, “SimpleTest | Drupal.org”, 2015. [Online]. Available:
https://www.drupal.org/project/simpletest. [Accessed: 05- Jul- 2015].

