
37

Next Generation Word Processors

A generalization of architecture of EasyTuteLO Extension

Tharindu Lakmal Muthugama

Department of Computer Science and Engineering,University of Moratuwa

Sri Lanka

 lakmal.10@cse.mrt.ac.lk

Abstract — Usually the word processors are used for

various documentation related activities. The subject

materials in tutoring institutions are usually prepared

using word processors. Currently one way of making

tutorials or the documents is searching through the

Internet and adding the details to the word processor

separately and it has become a mostly used procedure.

Adding the knowledge component to a word processor

can be done in two ways where the first is to build all the

knowledge within the word processor and the second is

to provide a way to interact with computational and

knowledge engines existing. The second approach is used

in this context. The evolution of word processors can be

described by several generations. If the model described

in this research paper could be generalized and make a

default feature, it could become the next generation

word processors.

Keywords—component; formatting; style; styling; insert

(key words)

I. INTRODUCTION

Composing a document involves inclusion of
human input and computer input together to make a
fruitful output which can be read or seen. But creating
documents by manipulating existing data is most seen
in today's world.

This research paper is based on a project that
developed the extension EasyTuteLO to the
LibreOffice Writer. The extension is capable of
providing mathematical formulas, solutions,
alternative representations, graphs and stepwise
solutions to the users who build mathematical tutorials
and handouts. This helps the user to reduce the time
significantly to create a better and focused subject
material within few minutes. The EasyTuteLO
extension is helpful for those involved in mathematics
tutoring. Similarly, if there exists an extension for
other fields, such as Chemistry for chemical
equations, Music for musical graphs, etc., they'll use
that extension. In that way the domain specific
extensions can be created. There may exist some other
general needs that everyone is looking for, such as
translation, search, related images, related knowledge
on a particular subject and language support. Some of
these features can be added as default features and
some of them can be kept as available features but not
configured. Based on the users’ requirements the
additional features can be configured. This can be the
gateway of a paradigm shift in word processors.

The extension architecture described here will be

the base of the conceptual model

II. LITERATURE REVIEW

A. Technologies Involved

The following technologies were included in

developing the EasyTuteLO Extension.

Python Language- Python[1] is a high-level
general purpose programming language that supports
functional, procedural and object oriented
programming styles. Code readability and ability to
implement using fewer lines of code are the
advantages of Python.

UNO (Universal Network Objects) – UNO[2] is
the Application programming interface used in
OpenOffice.org and LibreOffice which allows to
program the office software in different programming
languages. UNO API supports language such as C++,
Java, Python, CLI, StarBasic, JavaScript, OLE etc.

PyUNO[3] Bridge – This helps the user to use the
standard OpenOffice.org API from python, to develop
UNO components in Python .

LibreOffice[4] 4.0 – A software package
developed on the openoffice.org open source code.
This is distributed with many Linux distributions.

Star Basic [5] –Star Basic provides definitions for
all abstract objects and their interfaces used in
programming with open office. This is used in
developing macros and extensions. Similarly Visual
Basic is used in developing Microsoft Office macros
and extensions.

Wolfram Alpha Math Engine [6] - The aim of
Wolfram Computational and Knowledge engine is to
make all systematic knowledge computable and
accessible to everyone. It targets three points, the first
being collect and curate all objective data. The second
is to implement all the known models. And algorithms
and methods in the world and make it possible to
compute whatever can be computed about anything as
third. The developers target to make the Wolfram

Math engine to be a historical milestone in the 21
st

century.
B. Extensions Available vs EasyTuteLO

The extensions developed so far seemed to be
additions of new features into the word processor. The
extension described in this paper integrates services
into the word processor, but it outsources the
computational or knowledge providing capability.

38

III. ARCHITECTURE OF THE

EXTENSION

The architecture of the extension can be described
using layered architecture and the component based
architecture.

A. Layered Architecture

The extensions are structured between the
LibreOffice Application and the User Interface Layer.
It extends the features available for user. This can be
easily identified using the Figure 1. The EasyTuteLO
Project was implemented in the way the Figure 1
describes. This will be the case for most extensions
for the LibreOffice. As it is shown in the Figure 1 the
extensions may use the services available on the
operating system. In the EasyTuteLO extension it uses
services outside this system also.

B. Component Architecture

 File Handler

 Communicator

 Query Converter

 Document Handler

 Result Converter

 UI Generator

The above components can be easily identified in

the component based architecture. The Figure 2 gives
a better illustration about their interactions.

Communicator does the basic communication

between the server and the word processor

application.

Fig. 1. Layered Architecture of the extension

Fig. 2. Component based Architecture of the extension

File Handler is responsible for retrieving files

from the server and persist them in defined locations

and retrieve them for use when needed. Query

converter converts the query typed in the document

into the server accepted format. Document Handler

controls the two parts where the typed data is passed

to the query converter and the results are printed in

the document. The result converter converts the result

received from the server to the general format which

is defined to coordinate with document handler. The

UI generator is responsible for generating two user

interfaces, the query input interface and the available

results interface.

The Document Handler interacts with the

document to get the query from document and pass it

to the query converter or if it is an older query pass it

to the UI generator. Query convertor coverts the

query according to the server protocol and passes it

to the communicator. The communicator pass the

formatted query into the server, then it receives a

result and then the result will be passed to the file

handler. Simultaneously it informs the UI generator

about the availability of the result. File Handler

manages the two way communication between

existing database and the repository. It sends the

retrieved data to generate the user interface to see the

availability of the data. The UI generator passes the

user interactions to the document handler component

and the file handler component

IV. IMPLEMENTATION

A. Description of the functionality

The described design was implemented using

Python Language and the UNO API. This was named
as EasyTuteLO as it was focused on building

39

mathematical tutorials easily. In that implementation
all the mathematical functionalities were not added.
Several functionalities such as Integration,
differentiation, differential equations etc. were
implemented. In the EasyTuteLO extension two basic
routines were defined. One routine is to retrieve the
details for the very first time. Once the user has typed
the required query, it is sent to the extension and the
execution of the extension is carried out. The Wolfram
Alpha Computational engine provides a web service
to communicate with it for computational purposes.
The retrieved data is stored in the specified locations
and they will be shown in an available data window.
Then the users can select whatever the data they need
and those can be added to the document.

The other routine handles the previously fetched
data. In that routine, the previously handled queries
are displayed. The user can select one of them and see
the available resources. Then the required data can be
selected. The selected items will be added to the
document as in the first case.

B. Implementation Process

The elements involved in developing the extension

were following.

 Coding and debugging

Eclipse IDE was used for implementation, the
testing and debugging of the code. The PyUNO
Bridge needs to be installed to access open office
components at the office run time. Once UNO
service is started, the code can be debugged using
the IDE.

 Testing

The test package python unit test was used to write
unit testing for the functionality implemented.
Since the coding does not need any other
modification apart from the PyUNO Bridge
configuration, the testing didn’t take any newer
approach.

Fig. 3. A generalized Architecture of the extension

 Compiling

Because python is an interpreted language,

compiling topic does not play a major role in the

implementation process.

 Packaging

Packaging involves loading several files and
packaging them into one file. Then the file will be
unpacked at the extension installation. The
extension details, licensing details and the
LibreOffice UI modifications, libraries and other
scripts are packaged here. There exists an
extension packager [7] which eases the life of the
developer. The extension packager creates the
extension setup file once the specifications are
given to the packager.

 Documentation

The documentation for the Libreoffice extension is
not sufficient in learning the extension
development. Many of them still refer to the
Apache Open Office development tutorials. At
first glance it seems somewhat confusing.
Moreover the documentation for building
extensions using Python was a very few number.
Due to this reason the code was written by looking
at the Java examples. At this point a very
important observation was noted which is the
python code is approximately 1/3 in length when
comparing to the respective java code.

V. FUTURE WORK

The architecture of the software can be

generalized in order for many services to be
integrated. As the experiment describes, the Wolfram
Alpha Computational Engine is capable of providing
various services. In this experiment only the
mathematical queries were used. Nevertheless it is
capable of providing knowledge on music, astronomy,
humor, news, geography, history etc. Here the
mentioned fields are not relevant to each other which
reflect the scope of the computational engine.

Therefore, the extension can be generalized to the

architecture described in Figure 3 enabling it to be

more helpful in word processor activities and

multipurpose.

The adaptor libraries to deal with servers are added

to the extension. The adaptor library should be
consisted with two parts; one is query conversion and
the other is result conversion. The target of the
adaptors here is ultimately matching the interfaces.
Hence the library's main task is to act as the interface
between that general format and the server specific
language.

VI. CONCLUSION

The word processor applications consist with
various features. Currently their trend moves towards
implementation as a cloud based application. In future

40

their trend may be to give more knowledge and
computational power to it. Currently the word
processors are capable of doing computations but the
user experience seems lower and because of that
reason the user has to do the computation and
information gathering separately in order to prepare
the document.

A. Evolution of word processors

With past experience everyone knows that the
word processors were gradually added new features.
At the beginning, they were capable of doing very
primitive operations such as editing text and storing
them. But the graphic and other element support,
macros and cloud based infrastructure were also
integrated gradually. Currently the word processors
fulfill the user needs to a certain extent where they
need to go a long way. The word processor evaluation
can be categorized into following according to their
paradigm shifts.

1) Basic Word Processor
2) Text format-able
3) Graphic and other element support
4) Macro enabled and extendable
5) Word Processor Software as a service (Cloud

based)
6) Has Knowledge and Computational Power

The text editors where only text editing and storing is
supported are categorized into Basic Word Processors.
The text editors which are capable of changing the
properties of characters can be included into the Text
format-able category. There are some word processors
where graphics, images, charts and other related
elements can be inserted into documents; such
software come into the third category. Some word
processors are capable of executing macros; they are
also capable of installing extensions. Openoffice
writer, Microsoft office word, Libreoffice writer word
processors come into this fourth category. Most
recently the cloud based word processors were
implemented; such as Google docs. Those can be
categorized into the 5

th
 category. The extensions

similar to the one described in this paper can be a
default feature in future word processors, in such a

scenario the most frequently used knowledge and
computational needs can be fulfilled by connecting
with servers. Such implementation can be categorized
into the 6

th
 category. If such functionality becomes a

default feature of the future word processors they can
be the next generation of Word Processors.

Moreover the services can be HCI (Human
Computer Interaction) related services in the future. If
HCI features such as voice are supported in word
processors, it can be categorized into another
generation.

ACKNOWLEDGMENT

The research paper was written based on the
project carried out for the Semester 5 module
Software Engineering Project of Department of
Computer Science & Engineering at University of
Moratuwa. The lecturers, instructors, evaluators and
the coordinators of the project gave numerous support
in succeeding with the project. The final year
undergraduates who have finished this module in the
previous year also gave a great help for the success of
the project. A hearty gratitude goes to everyone who
supported the project.

REFERENCES

[1] Python Software Foundation, Python v2.7.6 documentation,

http://docs.python.org/2/

[2] The Document Foundation, Libre Office Developer Guide,
http://www.libreoffice.org/developers/.

[3] Apache Open Office, PyUNO Bridge Wiki,
https://wiki.openoffice.org/wiki/PyUNO_bridge

[4] The Document Foundation, Libre Office Extensions,
http://extensions.libreoffice.org/

[5] Sun Micro Systems, Star Office Programmer’s Tutorial, USA,

May 2000

[6] Wolfram Alpha LLC, Wolfram Aplha Web Service API

Reference,
http://products.wolframalpha.com/api/documentation.html.

[7] Apache Open Office, Extension Packagers Wiki,
https://wiki.openoffice.org/wiki/Extensions_Packager

