
17

Creating Soft Input Methods for natively

Unsupported Languages in Android Operating

System

Tharindu Amila Perera,
Department of Computer Science and Engineering, University of Moratuwa

Sri Lanka
amilastbmmv@gmail.com

Abstract—The need for native language support for

any hand-held communication device is a must. But

Android operating systems do not give much

freedom when altering system fonts which require many

advanced steps that needs to be carried out by a

user. The proposed solution is for developers of

applications who use native languages to create their

own in-app input methods and rendering.

I.INTRODUCTION

If you have tried using any IME (Input Method)

that supports languages not in the Android operating

system there is the issue of not being able to view the

characters of the keyboard. And the UI views of the

text may not render the characters of the language if

the support has not being built into the application

being used.

And if you wanted any keyboard that is not

currently in the system you will need to download

and separately install the keyboard in need and then

setup the system to use that keyboard as the default

input method.

The alternative proposed to this is to develop the

keyboard needed as a built-in feature of the

application. This will give the convenience of having

the needed functionalities right after installing the

application that is needed.

II. RELATEDWORK

Android is an operating system based on the Linux

kernel
[1]

. The operating system has been developed

primarily for touch screen phones, tablets and

computers. Android is now owned by Google and

developed by the company as well.

Android is open source and Google releases the

code under the Apache License
[1]

. This allows

developers to freely alter and freely distribute the

Android System.

There are only 3 fonts available as part of Android;

normal (Droid Sans), serif (Droid Serif), and

monospace (Droid Sans Mono). Android uses the

system fonts to render the keyboard view of an input

method limiting the options for a developer.

This does not allow a developer to display native

language characters in the view in a normal and

convenient manner.

III. D E S I G N AND IMPLEMENTATION

The main feature of this proposed solution is to

create built in input methods that is customized for the

application rather than create a common system IME

which greatly reduces the flexibility needed. The

design targets to reduce the effect of adding the new

input method from disrupting the normal

functionality of the application. So the design is

completely separated from the application objects and

only adds a view component to the UI.

The proposed method uses the views and UI

libraries that are designed for creating separate IMEs.

The view mainly used would be the keyboard view

which will create the UI of the keyboard by using a

XML file (Fig 1) which has to be defined according to

the keyboard needs.

To overcome the issue with not being able to show

non system font characters can be solved using gif

18

pictures of the characters used as the key symbol to be

shown. This method will fail if gifs are not created

for separate resolutions. This is the only method to

show the characters of a font that is needed by an

application on a keyboard view which is not a system

font. To create the fonts, a java program can be used

that will reduce the effort needed and formatting of

the pictures.

To handle input events (Fig. 2) a separate class

extended from the OnKeyboardActionListener class is

used. This class is also used in the normal IME

creation thus reducing the need of implementing the

keyboard functionality from the scratch.

To implement a separate keyboard for an

application, adding a keyboard view holder in the

existing UI of the application is needed.

The other classes of the keyboard do not have any

effect on the functionality of the application. This

allows code reuse that will allow for very flexible

input method creation for applications.

The event handler will not disrupt the functionality

of the existing application because the keyboard that

is added into the application will be viewed as the

normal input method of the Android operating system.

This means that the addition to the application is

completely separate from the functionality of that

application. To implement the event handler all keys

and its functionality will be bind through the values

sent by the key according to the keyboard XML

definition. The event handling class then maps the

function according to the received event code.

Default keys like new line and shift have specific

codes and using them will ensure special events fired

by the operating system will occur without breaking

them.

In addition to the main requirement this method has

allowed adding a custom suggestion view to give

better usability to the keyboard. This was achieved by

adding another view named a candidate view (Fig. 3)

and supporting suggestions through natively

supported SQLite database. This allowed better

performance with virtually no hanging time of the

keyboard. To further ensure better performance,

retrieval of suggestions was done via an AsyncTask

which was a separate thread running alongside the

main application thread.

Fig. 1 Keyboard Layout Definition

Fig. 2 User input work flow

Fig. 3 Suggestion View

Fig. 4 Developed Keyboard View

19

IV. RE S U L T S

The method described above has been successfully

integrated into a twitter client. The client

named Kichibichiya had Sinhala rendering support to

view tweets made using Sinhala but no method of

creating Sinhala tweets. For this a Sinhala keyboard

was required in the standard Wijesekara layout (Fig.

4).Including the keyboard view and the event

handling classes, the new Sinhala keyboard was

added to the arsenal of the application with relative

ease and success. The UI of the application did not

change instead the new input method was shown to

give the input (Fig. 5).

V. ACKNOWLEDGMENT

I acknowledge the fact that the initial idea for this

project was given by Mr. Nisansa Dilushan de Silva

for whom I must thank for. Then I must equally

thank Mr. Pahan Sarathchandra who is the developer

and owner of the project Kichibichiya which is an

open source project and gave invaluable advices

and shared his vast domain knowledge on

Android which made it possible to complete this

project.

REFERENCES

[1] “Android Overview". Open Handset Alliance. Retrieved
2012-02-15.

[2] “Android Developers” [Online] Available:
http://developer.android.com/

[3] “Android development: Custom keyboard” [Online]

Available:
http://www.fampennings.nl/maarten/android/09keyboard/index

.htm

[4] “Rendering of Unicode Sinhala Characters” [Online]
Available:
http://www.ucsc.cmb.ac.lk/ltrl/publications/uni_sin_rndr.pdf

Fig. 5 Completed Application View

http://developer.android.com/
http://www.fampennings.nl/maarten/android/09keyboard/index.htm
http://www.fampennings.nl/maarten/android/09keyboard/index.htm
http://www.ucsc.cmb.ac.lk/ltrl/publications/uni_sin_rndr.pdf

