
1

Adapting General Purpose Platform-as-a-

Service for Customized Product Deployment

Damith A. Senanayake
Department of Computer Science and Engineering

University of Moratuwa, Sri Lanka

Email: damith.10@cse.mrt.ac.lk

Abstract— The web services industry has evolved to a
point where a lot of services are provided for free or a
free tier of services is offered, most of the times. An
attempt of trying to exploit this situation is to try and
implement a game server based on completely free and
open-source technologies or at least not exceeding the
free tiers of commercial technologies.

Index Terms— Game Server, Platform as a Service

(PaaS), Open-Source-Software

I. INTRODUCTION

Platform-as-a-Service (PaaS) has become a common

place concept in modern computing due to the advent

of the web. Pioneered by commercial service

providers such as Amazon, PaaS has been quickly

gaining popularity as an alternative to restricted web

hosting technologies provided by hosting servers.

PaaS along with more general counterpart IaaS

(Infrastructure as a Service), account for more flexible

and versatile variations of web services.

The project discussed herewith has made use of PaaS

to implement a game server. The game is a simple

turn-based implementation of the infamous game

“tanks”. However this version is meant to be played

by automated clients rather than human players. The

server was originally designed as a part of a course

module
 [1]

 where students were expected to develop

clients that could play the game as an introductory

module for artificial intelligence and networking. The

original version of the server was written in C#.NET
[1]

 and set up on a local area network to which

multiple players were to connect and play the game.

However, the limitations of this version were evident

due to the predominantly local specifications of the

game. That is, players could not connect from behind

network address translations, routers or proxy servers

to this game server. This project was done as an

attempt to solve these problems and eliminate those

limitations by porting the server to be hosted in a

commercial PaaS.

II. RELATED WORK

The combination of technologies used in this project

was a unique one. Due to this, little or no formal study

of the particular technologies that is of relevance,

exist in the form of scholarly articles. The study

needed for this project was therefore done in the form

of collecting unsorted knowledge and compiling

useful information out of it. The major aspects in

which an extensive study was needed will be briefly

cited in the following sections.

A. Platform as a Service

Platform as a Service is a concept that has gained

popularity over the recent few years. In PaaS one can

develop, host and use web applications with relative

ease. However, most of the design decisions of the

architecture of these technologies are decided by the

providers of these platforms. For instance the platform

operating system, the application programmer

interfaces (APIs) etc. are fixed to the choice of the

service provider
[2].

Also they are becoming quite

affordable and formidably more powerful due to the

sharing of expensive resources
[3]

.

B. Bidirectional Communications over the Web

The conventional methods of communications in web

applications to emulate bidirectional data transfer was

a usage of high-frequency polling. This is a very

inefficient method to employ. Therefore with the

advent of HTML5 the Websocket standards have

provided a realization of actual two-way data

transmission
[4]

. There are many commercial push-

notifications services that make use of the Websocket

standard.

III. TECHNOLOGY OVERVIEW

The following sections will discuss the technologies

used in the development of this project.

A. Openshift by Redhat

The PaaS of choice for this project was Openshift, a

commercial PaaS provided by Redhat
[5].

 Openshift

comes with different cartridges – a collection of

coherent technologies widely used in web

applications. Note that these are especially aimed at

web applications as opposed to web sites. An instance

would be a cartridge consisting of a Python “django”

implementation – a widely used python based web

application framework. And there are other such

popular cartridges such as phpMyAdmin, MySQL,

PHP, JBOSS and several others. For the purpose of

this project however, the do-it-yourself (DIY)

cartridge was used
 [6].

 The DIY comes only with a

2

Linux installation to which you can login remotely

using SSH and use this to your advantage.

Before choosing Openshift, the original

consideration was to use the Google app-angine

(GAE) for development. However, due to the

restrictions in thread support in the GAE this was

abandoned
 [7]

. Also some other alternatives such as

Heroku, App-Fog, CloudControl were considered (and

tried) but none of them provided the ease of

implementation, the variety of available technologies

and seamless integration between development and

deployment environments that Openshift provided. As

this was done solely for academic purposes, an

attempt was made to make full use of the free-tier of

these technologies. Due to this fact, Amazon elastic

cloud (EC2) was not considered. However, it is note-

worthy that App-fog and CloudControl use the

Aamazon EC2 infrastructure underneath their

platform
[8]

. However, the free-tier of Openshift was

reasonably sufficient for the scope of this project.

B. Java

As mentioned above, the original server was

implemented in C#.NET. The need of porting this into

another language arose with the initial plan of using

the Google App-Engine, as it only provided the use of

a limited number of languages. Initially, Python was

chosen as the go-to language. The reason for this was

based on the following facts.

• Python has been the most mature language

used in Google App-Engine development,

meaning more community support

• Conceptual overhead of coding in python is

quite low compared to other scripting

languages and provides a good object

orientation framework

• Accounts for light-weight programs,

although efficiency may be at somewhat of a

loss

However, as the development progressed, it was made

evident that without a mature object model for

specific aspects of this project, the implementation

would prove to be more than a trivial task. For

instance, the lack of a proper efficient and optimized

model for handling events and object-dependency

made it difficult to port the game server which was by

large event-driven.

Because of this, the use of Python had to be

abandoned and Java was chosen as the language for

implementation. Java has an extensive library base

which can eliminate the work by a large amount if one

knows where to look. And due to the similarities in

the languages C# and Java, the porting process was

rendered a trivial task. However, the communication

component of the project had to be completely

reinvented and redesigned due to the requirement of

communicating over the internet and thus an

additional set of technologies and thereby

dependencies were added to the program

implementation. Because of this Maven was used as a

build tool to help manage dependencies and to make

the build process more convenient.

C. Pubnub

Part of the major challenge of implementing the new

server was due to the difficulties in communications.

The structure of the Openshift infrastructure used is

largely responsible for this.

Openshift usually allows its users to bind their

applications to the port 8080 for HTTP traffic. And

this is bound through their load-balancing servers to

the port 80 of the public URL of their applications.

Refer to Fig. 1 for a clarification of the concept. Due

to this continuation of a TCP socket connection for

bidirectional data transmission was an impossibility.

A method was needed to push notifications to the

clients from the server. This plainly means that the

server has to trigger an event in the client over the

Internet through possible proxies or sub-networks.

Keeping in mind that this is already made possible

with the use of web-sockets standard provided by the

HTML5 framework, an easier implementation was

needed and preferred. Therefore several commercial

push-notification services were considered. Among

them, most important were Pusher and Pubnub. But

when it came to the ease of implementation and the

community support, Pubnub was by far the rational

choice.

Fig. 1. The architecture of an Openshift Application with respect

to network

3

For the Java implementation of the server, the Pubnub

Java libraries were added as a dependency and used to

push the notifications to the clients.

Although it is of trivial importance, a mention should

be made as to the development environment itself.

D. Development Environment

1) Eclipse IDE-Openshift Integration

 The Eclipse IDE supports Openshift development to a
great extent. One only needs to make the necessary
changes in the code in their own computers using the
eclipse IDE, and when they commit the changes to the
remote repositories, the build process and deployment
process can be automatically completed. The use of
IDEs for making the web application deployment an
easy task has been extended in the notion of special
IDEs such as the JBOSS Developer
Studio(JBDevStudio) provided by Redhat where a
direct integration exists between the JBOSS cartridges
of Openshift and the JBDevStudio.

2) Version Control

Openshift uses Git repositories by default for version

control. Git can be easily integrated into an IDE such

as Eclipse which was used in the development of this

project. With the combination of these two

development environments the deployment was made

astronomically easy.

IV. DESIGN AND IMPLEMENTATION

The architecture of the system is more or less the

same as the original design of C# implementation.

The major alterations have been done to the event

handling model to make it simplistic and the

communications model to allow for extended

communication capabilities newly added to it.

The primary components of the design are as follows.

A. Game Engine

The Game Engine is the component responsible for

keeping track of the players’ status, positions, health

and as such. It is also responsible of generating

events, decoding and validating incoming messages

from players, updating status according to messages,

and also generating messages to be sent to the players.

The messages will then be sent at regular intervals (1

second) to all clients.

B. Communicator

The communicator component is responsible of

receiving, and sending messages from and to clients.

The implementation of it is vastly different from the

original design, whereas the functionality remains

roughly the same. It should be able to broadcast data,

and send individual messages to individual clients as

well. Also it must be able to receive clients' join

requests and handle them, as well as the registered

clients' updates.

This component encapsulates the functionality of

Pubnub as described above.

The communication sequence is as follows.

1. A client sends a join request on the public

'Join-request-channel'.

2. If a position is available, the communicator

will inform the player of the secure channel

which they must use to send updates to.

3. If no position is available, the client is sent a

denial of request.

4. The client, upon receiving the secure

channel, uses this to communicate to the

server.

5. The client also has to listen on the global-

update-channel, to which the server writes all

the global regular updates of the game.

Obviously there are security concerns. However, with

only a little amount of added effort, one can find a

secure public-key scheme to accommodate for all the

conceivable communication mishaps.

Fig. 2 shows the overview of the layout of channels

between a client and the server. However, the

channels, except for the global update channel and

join request channel are duplicated for each new

player.

Fig. 2. The communications channel layout between a single

client and a server

4

Fig. 3. Components of the main Game Server Program

C. Game Manager

The Game Manager component encompasses the two

components mentioned above. It is responsible for

creating instances of the game and maintaining and

terminating them. The following diagram, Fig. 3

shows this relationship.

V. RESULTS

The deployment of the project was done through an

automated maven build and the components are

currently operational. The minimalistic code accounts

for the improved performance, making the program

run fast even on the small provisioning of resources

offered by the free tier of Openshift.

Security functionality provided by Pubnub is flawed

however, and calls for a developer implementation of

a proper public-key schema for secure message

exchange.

VI. CONCLUSIONS

The current trends in shared computational resources

such as Platform as a Service and Infrastructure as a

Service provide developers with versatility of

developing and deploying versatile, multipurpose and

flexible web applications. The architectures of various

development strategies can be easily accommodated

with modern use of integrated development tools

along with the advent of the new technologies and

trends in communications, and network technologies.

ACKNOWLEDGMENT

The author thanks Nisansa De Silva, Lecturer of the

Department of Computer Science and Engineering of

University of Moratuwa for the guidance and support

given throughout the development of the project. Also

the open-source community has shown great help and

promise in completing this project.

REFERENCES

[1] Nisansa de Silva, “Classes:Programming Challenge II”

Available: http://www.cse.mrt.ac.lk/~nisansadds/

[2] Lawton, George. "Developing software online with platform-

as-a-service technology." Computer 41.6 (2008): 13-15.

[3] Keller, Eric, and Jennifer Rexford. "The “Platform as a

service” model for networking." Proceedings of the 2010

internet network management conference on Research on

enterprise networking. Vol. 4. No. 5. USENIX Association,

2010.

[4] P Lubbers, F Greco . “Html5 web sockets: A quantum leap in

scalability for the web” SOA World Magazine, 2010

[5] OpenShift “Platform as a Service”

Available:https://www.openshift.com/products

[6] Openshift “Extending Openshift”

Available:https://www.openshift.com/developers/do-it-

yourself

[7] Google App-Engine, “Dealing with DeadlineExceededErrors”

Available:https://developers.google.com/appengine/articles/de

adlineexceedederrors

[8] cloudControl “Platform Documentation”

Available:https://www.cloudcontrol.com/dev-

center/Platform%20Documentation

[9] Rothschild, Jeffrey Jackiel, et al. "Online gaming

architecture." U.S. Patent No. 6,152,824. 28 Nov. 2000

http://www.cse.mrt.ac.lk/~nisansadds/
https://www.openshift.com/products
https://www.openshift.com/developers/do-it-yourself
https://www.openshift.com/developers/do-it-yourself
https://developers.google.com/appengine/articles/deadlineexceedederrors
https://developers.google.com/appengine/articles/deadlineexceedederrors
https://www.cloudcontrol.com/dev-center/Platform%20Documentation
https://www.cloudcontrol.com/dev-center/Platform%20Documentation

