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 ABSTRACT  

To ensure sustainability of buildings, detection of building defects is crucial. 
Conventional practices of defects detection from building inspection data are mostly 
manual and error prone. With the advancements in computer vision, imaging technology 
and machine learning-based tools have been developed for real-time, accurate and 
efficient defects detection. Deep learning (DL), which is a branch of ML is more robust 
in automatically retrieving elements’ semantics to detect building defects. Although DL 
algorithms are robust in object detection, the computational complexities and 
configurations of these models are high. Therefore, this study presents a process of 
developing a computationally inexpensive and less complicated DL model using transfer 
learning and Google Colab virtual machine to improve automation in building defects 
detection. Cracks is one of the major building defects that constraint the safety and 
durability of buildings thus hindering building sustainability. Building cracks images 
were sourced from the Internet to train the model, which was built upon You Only Look 
Once (YOLO) DL algorithm. To test the DL model, inspection images of five (05) 
buildings collected by the Facilities Management department of a University in Sydney 
city were used. The DL model developed using this process offers a monitoring tool to 
ensure the sustainability of buildings with its’ ability of detecting cracks from building 
inspection data in real time accurately and efficiently. Although the current model is 
built to detect cracks, this process can be employed to automated detection of any 
building defect upon providing the training images of defects. 

Keywords: Computer Vision; Deep Learning; Defects; Google Colab; Sustainability. 

1. INTRODUCTION  
Since the performance of buildings degrades over time, monitoring of defects is 
imperative to ensure sustainability of buildings (Mishra, et al., 2022). Crack formation, 
deformation, dampness, staining, settlement, and rebar corrosion are the most common 
building defects (Hauashdh, et al., 2021; Mishra, et al., 2022). In the operational stage of 
a building, the major share of the maintenance budget is allocated for preventing or 
repairing building defects (Ekanayake, et al., 2018; Hauashdh, et al., 2021).  

Conventional approaches of detecting defects typically require facility managers or 
maintenance engineers conducting manual inspections of the building (Kong, et al., 
2018). When the building is a mid to high-rise structure, collecting inspection data 
becomes cumbersome and can even pose safety hazards (Kung, et al., 2021). With the 
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advancements in computer vision (CV), unreliable access to inspection data and the time-
consuming, labourious, erroneous manual methods of detecting defects have been 
improved (Lundkvist, et al., 2014; Şimşek, 2022). Computer vision involves acquiring, 
processing, and understanding image data with the use of high-definition cameras and 
machine learning (ML) algorithms (Szeliski, 2010) to replicate human vision for object 
detection. 

The automated visual recognition ability of ML has been leveraged for defects detection 
in some pioneering studies such as Kwon, Park and Lim (2014); Lundkvist, Meiling and 
Sandberg (2014); Sankarasrinivasan, et al. (2015). However, traditional ML algorithms 
relying on manual feature extraction for object detection and classification are sensitive 
to input images, background noise and visual quality (Ying and Lee, 2019; Ekanayake, 
et al., 2021). Among the advances in CV, the use of deep learning (DL), which is a branch 
of ML is notable (Wang, et al., 2021). DL models automatically learn features by training 
data (Nanni , et al., 2017). Although the DL-based defects detection studies such as Chen 
and Jahanshahi (2017); Dizaji and Harris (2019); Kung, et al. (2021); Munawar et al. 
(2022) are emerging, the computational difficulties associated with developing and 
training DL models have not been fully addressed (Ekanayake, et al., 2021; Wang, et al., 
2021). 

Although DL performs far better than traditional ML algorithms, expensive hardware 
requirements, DL model training and configurations are constraining the application of 
DL models to their full potential (O’Mahony, et al., 2019; Wang, et al., 2021). Transfer 
learning is a solution to develop DL models using pre-trained networks without having 
to build the DL algorithm from the scratch (Pan and Yang, 2009; Liu, et al., 2021). With 
the proliferation of cloud computing, cloud providers offer inexpensive services for cloud 
enabled virtual machines (VM) such as Google Colab for training DL models (Pal and 
Hsieh, 2021). Therefore, this study presents a process of developing a computationally 
inexpensive and less complicated DL model using transfer learning and Google Colab 
virtual machine to improve automation in building defects detection. The DL models 
require a large amount of training images. Since this paper only intends to provide 
guidance on the process, it is not practical to train the DL model for all the defects. Among 
the defects, cracks are prominent (Mishra, et al., 2022). If the cracks are not properly 
detected at early stages, they can hinder the safety and durability of buildings thus 
threatening the building sustainability (Şimşek, 2022). Therefore, to demonstrate the 
process of the DL-based tool, building cracks images sourced from the Internet were used 
to train the DL model and inspection images of 5 buildings collected by the Facilities 
Management department of a University in Sydney city were used to test the model.  

2. LITERATURE REVIEW 
Understanding the impacts of defects on building sustainability, nature of cracks and the 
application of CV to enable automated visual recognition of defects are discussed in the 
subsequent subsections. 

2.1 BUILDING DEFECTS AND THEIR IMPACTS ON SUSTAINABILITY 
A building defect is characterised as a “failing or shortcoming in the function, 
performance, statutory or user requirements of a building and might manifest itself within 
the structure, fabric, services or other facilities of the affected building” (Watt, 2009). 
The growth of aged buildings has caused a surge in repair costs associated with building 
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defects (Park, et al., 2019). While the old buildings with defects are typically 
unsustainable, in major cities, some newly built high-rise buildings have also proved to 
be unsustainable. Evidently, in early 2019, occupants were evacuated from two (02) 
newly built apartment complexes in Sydney due to building collapse risk caused by 
structural cracks (Crommelin, et al., 2021).  

Explaining the relationship between the defects and building sustainability, Hauashdh, et 
al. (2021) pointed out that defects prevent the buildings from performing their functions, 
reducing the building life span, and impacting the building occupants’ health and safety. 
Therefore, the social aspect of sustainability is immensely affected. On the other hand, 
the costs allocated for detecting, repairing, and preventing defects are escalating to create 
a negative impact on economic sustainability (Park, et al., 2019). The degradation of 
structural elements because of defects, generates waste and emissions making the 
buildings environmentally unsustainable (Lee, et al., 2018). Therefore, defects have a vast 
impact on the sustainability of buildings.  

2.2 BUILDING CRACKS 
Building cracks can be divided in to structural and non-structural cracks. The cracks in 
columns, beams, slabs, and footing are considered as structural cracks and may endanger 
the safety of a building over time (Mishra, et al., 2022). Structural cracks occur due to 
incorrect design and defective construction of structural elements. They can also be a 
result of overloading (Kunal and Killemsetty, 2014). Non-structural cracks mostly result 
from internally induced stresses in building material due to moisture variations and 
temperature variations. Cracks on walls and parapet walls are some examples. Even 
though non-structural cracks usually do not compromise safety of the building, they are 
not aesthetically appealing and can create impression of instability (Thagunna, 2014; 
Nama, et al., 2015). According to IS: 456 2000 Code of practice on plain and reinforced 
concrete, cracks are classified based on their width as follows (BIS, 2000). 

• Thin cracks - less than 1mm in width  
• Medium cracks - 1mm to 2mm in width  
• Wide cracks - more than 2mm in width 

Figure 1 illustrates the types of cracks. 

 

 

 

 

 

 

   

Figure 1: Types of cracks - a) thin crack, b) medium crack and c) wide crack 

Source: Kunal and Killemsetty (2014) 

a)                       b)                                  c) 
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There have been some studies related to defects analysis, which focussed on visual 
inspection of defects using the automated visual recognition ability of algorithmic 
approaches in CV.  

2.3 AUTOMATED VISUAL RECOGNITION 
Visual recognition by traditional ML approaches encompasses performing object 
detection in images by manual feature extraction, which is also referred to as handcrafted 
feature extraction (Ekanayake, et al., 2021). A feature extraction algorithm like Canny 
edge detector extracts edges that can be used to classify objects detected using edges. The 
inspection of a wall crack using Canny edge detector, which is further processed by 
hyperbolic tangent detector is displayed in Figure 2.  

 

 

 

 

 

 

Figure 2: Detection of a crack - a) original image, b) Canny edge detector and c) Hyperbolic tangent 
detector 

Source: Sankarasrinivasan, et al. (2015) 

The main drawback of this traditional approach is that it is necessary for the programmer 
to decide which features are important in each image (O’Mahony, et al., 2019). For 
example, as in Figure 2, edge is the important feature to be extracted when detecting 
cracks. In addition to the information on shape, texture and edges of objects, a substantial 
level of manual pre-processing using algorithms is necessary to remove background noise 
such as unnecessary data in the image and to enhance visual quality. Instead of applying 
a single object detection algorithm, the handcrafted feature extraction necessitates 
conducting additional steps of pre-processing to make the region of interest in the image 
easily detectable (Ying and Lee, 2019). In recent years, CV-based DL, which is a branch 
of ML has been evolving rapidly and adopted in the facility inspection and defect analysis 
context (Marzouk and Zaher, 2020; Liu, et al., 2021). DL models, which are referred to 
as deep neural networks leverage input-to-target mapping by means of a deep sequence 
of layers to extract features from input data (LeCun, et al., 2015; Chollet, 2017). While 
the traditional ML algorithms use a shallow structure, DL network architecture learns the 
features of an image using a cascade of hidden layers and weights (Slaton, et al., 2020).  

In supervised DL, a large amount of annotated data is trained so that the DL model can 
automatically learn features reducing the manual feature extraction. Objects are detected 
with rectangular bounding boxes (Wang, et al., 2018). The convolution neural networks 
(CNNs) are the widespread type of DL neural networks used for image processing 
(LeCun, et al., 2015; Chollet, 2017). The frameworks of DL-based CNN object 
recognition methods can mainly be categorised into two types. In one type, region 
proposals are generated initially, and each proposal is classified into different object 
categories. Region-based convolutional neural networks (R-CNN) belong to this category 
(Zhao, et al., 2019). The other type treats object detection as a regression problem, 

a)                             b)                              c) 
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adopting a unified framework to achieve the outcomes. You Only Look Once (YOLO) 
(Redmon, et al., 2016) algorithm is the best example. Because of the unified framework 
approach, YOLO models are relatively fast, accurate and simple (Redmon, et al., 2016; 
Zhao, et al., 2019). 

There have been few studies on CNN-based building defects detection. Lin, et al. (2017) 
built a CNN-based structural damage locations identification system. To facilitate crack 
detection in nuclear power plant components, Chen and Jahanshahi (2017) presented a 
CNN framework. Dizaji and Harris (2019) launched a CNN model for detecting surface 
cracks in concrete columns. In Kung, et al. (2021) and Munawar, et al. (2022), unmanned 
aerial vehicles (UAVs) were used to capture the defects in mid to high-rise buildings and 
CNN frameworks were developed for cracks detection. 

3. RESEARCH METHODS 
The aim of this study is to present a process to develop a computationally inexpensive 
and less complicated DL model using transfer learning and Google Colab VM for defects 
detection. This solution is built upon YOLO DL model and tested on cracks images. The 
subsequent sub sections provide details on preparing the training image database and 
mechanism behind transfer learning and Google Colab VM. 

3.1 PREPARING THE IMAGE DATASET  
Since this paper focusses on presenting a process, images were only required to train the 
DL model. When the number of diversified images is higher, DL model has sufficient 
features to learn and the accuracy increases (Wang, et al,. 2018). To create a diverse and 
large dataset of building cracks, publicly available 2000 online images were sourced. The 
label used was “crack” to annotate each image containing a building crack. To test the 
DL model developed using the process, inspection images of five (05) buildings collected 
by the Facilities Management department of a University in Sydney city were used.  

3.2 TRANSFER LEARNING 
There are two methods to build a DL model. It can either be developed from the scratch 
or a pretrained model which uses existing networks such as GoogleNet, AlexNet, ResNet 
(Simonyan and Zisserman, 2014) can be used. In this second approach, a mechanism 
called transfer learning is adopted to refine the pre-trained model to introduce previously 
unknown object classes and train the custom model (Torrey and Shavlik, 2010). A DL 
model can be pre-trained on large dataset of object classes such as Common Objects in 
Context (COCO) dataset. Using transfer learning, a new model with custom parameters 
is introduced to produce new weights corresponding to the new object classes. Transfer 
learning approach is not as much as prolonged and manually intervened as creating a 
model from the scratch (O’Mahony, et al., 2019). Programmers employ transfer learning 
to reuse many pre-trained DL models because of the competitive advantages in speed and 
accuracy (Nalini and Radhika, 2020). 

3.3 VIRTUAL MACHINES: GOOGLE COLAB 
High computational resources such as graphical processing units (GPUs), high 
performing memory, processors, and storage are essential for training DL models 
(O’Mahony, et al., 2019; Wang, et al., 2021). In addition to the hardware requirements, 
compute unified device architecture (CUDA), and CUDA-based deep neural networks 
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(cuDNN) should be configured for GPU enabled DL model training (Jian, et al., 2013; 
Jorda, et al., 2019). With the advancements in modern computing systems, GPU-enabled 
gaming computers, embedded edge computing devices of single board have been used as 
training platforms for DL models (Pal and Hsieh, 2021). However, the hardware 
requirements are still expensive, and the configurations are complicated and time 
consuming. Generally, a functional computer with such hardware requirements costs 
approximately USD 2000. 

With the proliferation of cloud computing and virtualisation, dedicated ML platforms and 
development environments are available to overcome the hardware and configuration 
issues (Carneiro, et al., 2018; Canesche, et al., 2021). Among them, Colaboratory (Colab) 
by Google, Azure Machine Learning by Microsoft and Watson Studio by IBM are 
prominent. Virtualisation using cloud computing creates a virtual version of the physical 
computer with a dedicated amount of processer, memory and GPU borrowed from a cloud 
providers’ server. As a result of this, VMs remain independent of the local physical host 
computer (Rahman, et al., 2022). Colab is the most popular and cost-effective solution to 
be used as a VM (Pal and Hsieh, 2021). The working mechanism of Colab is illustrated 
in Figure 3. 

 
Figure 3: Working mechanism of Colab 

Colab is a free-of-charge web-based Jupyter notebook accessed using a Google account 
to run Python codes. Colab notebooks are stored in Google Drive. Therefore, Google 
Drive acts as the storage unit accessed from any web browser (Ohkawara, et al., 2021). 
Colab enables setting up VM as runtime by connecting to GPUs hosted by Google or 
through Google cloud platform services (Google Research, 2022). Since zero 
configuration is required and most of the ML libraries are already installed, DL models 
can be trained in Colab with a few lines of code. Data can be uploaded from the local 
computer and downloaded to the local computers’ hard drive through Google Drive (Pal 
and Hsieh, 2021).  

3.4 THE YOLO VERSION 4 (YOLOV4) ALGORITHM 
At the time this paper was written, YOLOv4 (Bochkovskiy, et al., 2020), which was 
introduced in 2020 has been the most stable and accurate version of YOLO with the 
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optimal speed of detection. Since transfer learning was employed to build the DL model, 
understanding the mechanism of the YOLOv4 is important to identify the parameters to 
customise using transfer learning and training in Colab. In YOLOv4, the CNN backbone 
for object detection is Darknet53 (Bochkovskiy, et al., 2020). The original YOLOv4 
model was trained on COCO dataset which comprises of day-to-day general objects of 
80 different classes and weights were generated to detect and classify images containing 
those objects. In the current study, using transfer learning, new weights were trained in 
Colab for the object class of “crack”. 

4. PROCESS OF DEVELOPING THE DEEP LEARNING -
BASED TOOL 

An overview of the process is demonstrated in Figure 4. Initially, the annotated image 
dataset was prepared with the class label “crack”. Next, YOLOv4 were customised using 
transfer learning followed by DL model training implemented in Colab. To test the cracks 
detection solution built upon a DL model, test images of building inspection data obtained 
from a University in Sydney were introduced.  

 
Figure 4: Steps of developing the DL-based solution to detect building cracks 

Following are the detailed steps involved in the process of developing the DL-based 
solution. 

• Step 1: Annotating the training images 

To annotate the images of building cracks sourced from the Internet, an online annotation 
tool called “Makes sense” was used. The label used was “crack”. As per the requirements 
of the YOLO model, a text file was generated with the details of the annotation for each 
of the image. Accordingly, 2000 images have corresponding 2000 text files in the training 
dataset. 

• Step 2: Configuring Darknet architecture 

To customise the detector backbone of the original YOLOv4 model, the yolov4 
configuration file “yolov4-custom.cfg” was downloaded from the GitHub repository for 
YOLOv4, AlexeyAB (Bochkovskiy, et al., 2020). The batch size was changed to 64 
images for one iteration and subdivisions were changed to 16, indicating the splitting of 
batch into 4 mini-batches, such that 64/4 = 16 images per mini-batch. The resolution size 
chosen for the current model is 416x416 such that the training images were resized to 
416x416 pixel resolution. The maximum number of batches was set to 6000.  
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The parameters of the YOLO layers and the convolutional layers were modified to match 
the number of object classes. Before each of the YOLO layers, there are three (03) 
convolutional layers in Darknet architecture. The original Darknet used 255 filters 
depending on the number of classes of 80. The number of filters were calculated using 
the formula: (number of classes + 5) x 3. The number of classes were changed to 1 and 
number of filters were adjusted as 18. 

• Step 3: Uploading files to Google Drive  

Google Drive was connected to Colab and uploaded with data files needed for transfer 
learning-based customisation. The customised “yolov4-custom.cfg” file and a zip folder 
containing the images and their corresponding text files with annotation details were 
uploaded. The Python script containing the instructions to split the dataset into two (02) 
parts as 90% for training and 10% for validation was uploaded. The names file with the 
instructions on the class name “crack” and the data file with the instructions on the paths 
were also uploaded.  

• Step 4: Linking the Google Drive and Colab notebook 

A Colab notebook was created from the same Google account and was saved in the 
Google Drive. The runtime was set to GPU and high memory capacity. The “mount 
drive” command was executed to link the Colab notebook and Google Drive. 

• Step 5: Cloning Darknet and enabling GPU 

Darknet was cloned to Colab from the GitHub repository AlexeyAB followed by GPU 
enabled in Colab environment. 

• Step 6: Building and customising the Darknet 

Through transfer learning Darknet was customised using the instructions in the files that 
were uploaded in Step 3. To facilitate this, the files were copied to the current Darknet 
directory.  

• Step 7: Training the customised DL model 

YOLOv4 weights pre-trained on COCO dataset were downloaded from AlexeyAB 
GitHub. Upon executing the “train custom detector” command, as per the changes made 
in Step 6, weights of the custom YOLOv4 model were generated in every 1000 iteration, 
until 6000 iterations.  

• Step 8: Testing the DL model 

After the training was completed, the DL model was tested with building inspection 
images. Figures 5a and 5b depict how the cracks in the building inspection images were 
automatically detected by the DL model. 

The robustness of the DL model was tested using mean average precision (mAP) and 
average loss. The metric, mAP is widely used to evaluate the detection accuracy of DL 
models. The loss value indicates how well a DL model behaves after each iteration. The 
reduction of loss after each or several iterations is an indication of the higher accuracy of 
the DL model (O’Mahony, et al., 2019). The mAP is portrayed in red colour and average 
loss is displayed in blue in Figure 6. The best weight of the DL model has a mAP of 76% 
and the average loss of the model is 1.14.  

 



Biyanka Ekanayake 

Proceedings The 10th World Construction Symposium | June 2022  10 

 
Figure 5: Test images of building inspection data 

 
Figure 6: Performance evaluation of the deep learning model 

It is noteworthy that these values are subjected to the visual quality of the images, which 
were sourced from the Internet. If the images are of high visual quality with less 
background noise, the mAP could be improved, and average loss could be reduced. On 
the other hand, this model was only trained and tested on images containing cracks to 
demonstrate the process. Since the process harnesses the DL model’s ability in detecting 
objects, it can be extended to automated detection of any building defect upon providing 
the training images of the defects. 

5. CONCLUSIONS AND RECOMENDATIONS 
This paper presents a process of developing a DL-based tool for automated building 
defects detection. This solution exploits the DL model’s ability in detecting objects in 
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images using automated feature learning through training images. Compared to 
traditional ML algorithms, which use manual feature extraction, DL models proved to be 
more robust and reduce the manual intervention of pre-processing images. YOLOv4 was 
used to develop the DL model. Since it was not practical to train the DL model for all 
types of building defects, this model was only trained on building cracks images. The 
steps in the process provide guidance on using transfer learning to build DL models from 
pre-trained networks and training DL models in Google Colab VM platform. Both 
transfer learning and Colab-based training ensure reducing the computational 
complexities and expensive hardware requirements associated with DL models.  

If defects are not properly detected at early stages, they can hinder the safety and 
durability of buildings. The DL model developed using this process offers an automated 
monitoring tool to ensure the sustainability of buildings. To improve automation, building 
inspection data can be captured using UAVs in mid to high-rise buildings. In terms of 
sustainable buildings, a step beyond defects detection would be to calculate the width and 
area of the defects to assess the damages using instance segmentation techniques. There 
is room for improving the performance of the current DL solution by introducing more 
training images and optimising the hyperparameters of the YOLOv4 algorithm in future 
studies.  
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