CHARACTERIZATION OF WELD DEFECTS IN SINGLE V-BUTT WELDED MILD STEEL PLATES USING ULTRASONIC A-SCAN TECHNIQUE

Dissertation submitted in partial fulfillment of the requirements for the degree of MASTER OF PHILOSOPHY

IN

MATERIALS SCIENCE AND ENGINEERING

T.M.R. TENNAKOON

B.SC (PHYSICS SPECIAL), M.SC (NUCLEAR SCIENCE.)

DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING

UNIVERSITY OF MORATUWA

SRI LANKA

March 2010

DECLARATION

I hereby declare that this dissertation is my own work and that, to the best of my knowledge and behalf, it contains no material previously published or written by another person nor material which, to substantial extent, has been accepted for the award of any other academic qualification of a university or other institute of higher learning except where an acknowledgement is made in the text.

Authors name; T.M.R. Tennakoon

Date; 01.03.2010

Signature ;-----

This is to certify that this dissertation is based on the work carried-out by Mr.T.M.R.Tennakoon under my supervision. This dissertation has been prepared according to the format stipulated and is of acceptable standard.

Certified by; Dr.R.G.N.De.S.Munasinghe (Supervisor)

Department of Materials Science and Engineering Faculty of Engineering University of Moratuwa. Sri Lanka.

Signature

Date-----

ACKNOWLEGEMENT

I gratefully acknowledge Dr. R. G. N. De. S. Munasinghe, Senior Lecturer and my Supervisor for his enthusiastic guidance and encouragement in my research. My special thanks are due to his superior knowledge about the subject. His contribution to this thesis is many-folded, thus inseparable and mainly responsible for its successful conclusion.

I wish to express my deepest gratitude to Dr. S. U. Adikari, Head of Materials Science and Engineering Department for his inspired guidance and suggestions, proposals and advice in successfully completing this research.

I am deeply grateful to Prof. M. P. Dias, Prof. R. Hewamanna, Prof. B. M. A. O. Perera, Dr W. Abeyewickreme - former Chairmen of the Atomic Energy Authority for their guidance, support, and advice with superior knowledge and allowing me to use equipments and receive other benefits via Atomic Energy Authority (AEA).

University of Moratuwa, Sri Lanka.

I thank all the staff members of the AEA and Materials Science and Engineering Department who greatly supported me by providing all necessary facilities such as equipment, computers, stationeries etc. through out my whole research.

I should appreciate specially my collogues of the AEA for their good support and encouragement provided to me to complete the research successfully.

My deepest gratitude to my wife and two sons for their support, understanding and encouragement that they have provided to complete this degree successfully.

T.M.R. Tennakoon.

Abstract

In Ultrasonic A-Scan technique the depth and the size of the defects in a material can be determined by the position and amplitude of the reflected echo on the CRT screen. However the main difficulty in ultrasonic testing is that the precise recognition of the defect type.

In conventional ultrasonic A-scan methods recognition of the defect type (porosity, slag, crack etc.) is ascertained by a series of movement of the probe as rotational, orbital, lateral and transverse to observe the echo pattern. Here the human eye perceives many facts simultaneously by moving a transducer in infinite increments in 3D to seek out additional information-the mind sorts and processes the accumulated real-time facts and combines them with empirical data from experience and case history before making final decision on the defect. These uultrasonic echo patterns are quite complex since those may contain many signals other than defect echoes, same defect may display different echo patterns, different defects may display similar echo patterns and the amplitude and shape of the signal may change due to slight movement of the testing probe.

Therefore the interpretation of defects using this technique is very complicated and totally depends on the experience of the operator who carries out the testing. Hence only well-experienced NDT personnel can identify defect type using this method. This is one of the main drawbacks related to Ultrasonic A-scan technique.

The objective of this research is to study the relationship between type of defect and echo amplitude in single-V butt welded steel plates and to propose a new concept to identify defect type with the help of a self developed software which will be cheep, portable and simple to understand by the operator. To achieve this objective initially a mathematical relationship between echo amplitude and defect type was developed for common weld defects in single-V butt welded steel plates (slag, porosity, crack etc.) using newly derived mathematical equations for above defects.

Since the amplitude of the echo signal affects by the defect size this parameter alone can not be used to identify the type of defect. As such the possibilities of using few other features such as width of defect echo, position of defect and change of probe angle also were considered.

Experimental results show that any individual defect in single-V butt welded mild steel plates produces echo signals with unique pulse width and range of amplitude levels. In addition the results show that lack of penetration can be identified using a second probe angle in addition to single probe angle as use in conventional methods. Lack of side-wall fusion can be identified by using position of probe with respect to weld center line. Theses & Dissertations

vw.lib.mrt.ac.lk

These individual characters of defects, which are inherent to those defects, were used to predict the type of unknown defects using a self developed software programme named "ULTRASL1".

The significance of this work is that the introduction of a specialized procedure with a software programme to identify type of defect, so that Non-Destructive Testing personnel with any level of experience can share the expertise of the best operators in the industry. Hence it will support to reduce one of the main problems concerning ultrasonic testing i.e. the difficulties in recognition of defect type.

The work was limited for defects like slag(volumetric), isolated pore, porosity, lack of inter-run fusion, lack of side-wall fusion, crack and lack of penetration in single-V butt welded mild steel plates.

List of Tables

	PAGE
Table 1: Modelling of natural flaws in single-V butt welded plates	39
Table 2: Type of defects created artificially	74
Table 3: Echo amplitudes for different couplant thicknesses.	75
Table 4: Roughness of surfaces of test samples	77
Table 5: Variation of echo amplitude with defect depth and Probe angle for equipment USK7B and USK 7	78
Table 6: Average amplitudes for different depths and probe angles	79
Table 7: Echo amplitudes from defects containing air and Welding slag	80
Table 8: Flaw echo amplitude with and without welding slag	81
Table 9: Echo amplitude for different diameters-Test 1	82
Table 10: Echo amplitude for different diameters-Test 2 Sri Lanka.	83
Table11: Echo amplitude for different diameters-Normal beam probe	84
Table12: Echo height with respect to each probe angle-artificial blocks	85
Table 13: Echo height with respect to each probe angle –natural defects	86
Table 14: Set of data obtained from defects in fabricated welded specimens	89
Table 15: Set of data obtained from defects in welded specimens in-situ	91
Table 16: Comparison of test results-Laboratory testing	97
Table 17: Comparison of test results- Measurements taken in-situ	98
Table 18: Set of data obtained from defects in fabricated weldedSpecimens usingDigital Ultrasonic Flaw Detector.	103
Table 19: Comparison of data obtained using Digital Flaw Detector and Analogue Flaw Detector	104
Table 20: A summary of the results of the entire experiment	111

List of Figures

PAGE

Figure 1:	Ultrasonic A-scan presentation	03
Figure 2:	Echo patterns of various defects	07
Figure 5:	Eleve short to determine the type of defect as nor US 7 2060	10
Figure 4:	Flow chart to determine the type of defect as per JIS Z 3060	10
Figure5:	Graphical correlation between defect type, ecno amplitude and	12
Figure6	Sound pressure from an ultrasonic probe	13
Figure7:	Reflection of ultrasound from a spherical reflector	20
Figure8:	Variation of defect echo amplitude with beam path distance	20 24
Figure0:	Reflection and transmission at air steel interface	26
Figure 10.	Transmission of sound waves in to steel through a couplant	20
Figure 11.	Reflection of ultrasound at steel – air interface	29
Figure12.	Reflection of ultrasound at steel $- slag$ interface	20
Figure13:	An enlarged profile of surface finishes	30
Figure14:	Measurement of Roughness average	31
Figure15:	Effects of surface roughness on echo amplitude	31
Figure16:	Reflection of ultrasound at a defect surface	34
Figure17:	Portion of sound pressure received by the probe	35
Figure18:	Different probe positions to obtain maximum echo	35
Figure19:	Comparison of amplitude values of common defects	40
Figure20:	Width of an echo signal from a defect	41
Figure21:	Echo signal from back wall or flat circular reflector	42
Figure22:	Echo signal from isolated porosity	43
Figure23:	Echo signal from a slag	44
Figure24:	Position of the probe with respect to the weld center line	45
Figure25:	Reflection, refraction and mode conversion	48
Figure26:	Sound pressure of reflected waves vs. angle of incidence	48
Figure27:	Reflected and transmitted sound pressure at an interface	49
Figure28:	Reflection of shear waves at a right angled corner by a 70 [°] probe	49
Figure29:	Reflection of shear waves at a right-angled corner by 45 [°] and	50
U	60° angle probes.	
Figure30:	Comparison of percentages of echo amplitude from probe angles 45° , 60° and 70°	51
Figure31:	Schematic Diagram of an Ultrasonic Flaw Detector	53
Figure32:	Cross section of typical contact transducer	54
Figure33:	Cross section of an angle beam probe	56
Figure34:	Possible defects in single-V butt welded plates	61
Figure35:	Defects considered in the research work	61
Figure36:	Plate to plate butt joint and pipe to pipe butt joint	62

Figure37:	Measurement of echo amplitude vs. thickness of couplant	64
Figure38:	Measurements of echo amplitudes with respect to 20% DAC	65
Figure.39	Variation of echo amplitude with defect area	67
Figure40:	Mild steel stepped test block	68
Figure41:	15 mm thick single-V butt steel plate	68
Figure42:	Echo amplitudes for probe angles 46° , 61° and 73°	62
Figure43:	Variation of echo amplitude with couplant thickness- 45°	76
Figure44:	Variation of echo amplitude with couplant thickness- 60^0	77
Figure45:	Variation of echo amplitude with couplant thickness- 70^0	78
Figure46:	Graph of depth of hole vs. echo amplitude	79
Figure47:	Echo amplitudes from defects containing air and slag	80
Figure48:	Correlation graph of amplitude with and without welding slag.	81
Figure49:	Graph of echo amplitude verses diameter-Test 1	82
Figure50:	Graph of echo amplitude verses diameter-Test 2	83
Figure51:	Graph of echo amplitude verses diameter- Normal beam probe	84
Figure52:	Correlation graph between experimental and theoretical values	87
	of stand-off distances	
Figure53:	Radiographic Testing Technique	93
Figure54:	A radiograph of the fabricated test specimen-T1	94
Figure55:	Experimental set up of an ultrasonic test	100
Figure56:	Measurement of defect parameters	100
Figure57:	Echo Pattern of a Slag Inclusion Sm Lanka	101
Figure58:	Echo Pattern of a Crack	101
Figure59:	Echo Pattern of a Lack of Penetration	102
Figure60:	Echo Pattern of an Isolated Pore	102
Figure61:	Echo Pattern of a Lack of Fusion	103
Figure62:	Correlation graph between data obtained using Digital Flaw	104
	Detector and Analogue Flaw Detector	
Figure63:	Comparison of theoretical and experimental echo heights	109
Figure64:	Identification of lack of fusion in double-V butt plates	120
Figure65:	Identification of lack of penetration in double-V butt plates	121
Figure66:	Reflection of shear waves at the inside surface of a curved specimen	122
Figure67:	Skip distances multiplying factor ' f_n ' for curved surfaces	123
Figure68:	Beam path multiplying factor 'fs' for curved surfaces	123
0		

Abbreviations

- **NDT** -Non Destructive Testing
- UT -Ultrasonic Testing
- **RT** -Radiographic Testing
- MT -Magnetic Particle Testing
- **PT** -Liquid Penetrant Testing
- **ET** -Eddy Current Testing
- **CRT** -Cathode Ray Tubersity of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF CONTENTS

Decla Ackno Abstr List o List o Abbro	ration owledgen act of Tables of Figures eviations	nent		PAGE ii iv vi vi ix
1.0	Introd	uction		
	1.1 1.2 1.3	Backgr 1.1.1 1.1.2 1.1.3 Object Metho	round Non-Destructive testing of materials Ultrasonic testing of materials Advantages and limitations of UT ives of the research dology	1 2 3 5 5
2.0	Litera	ture Re	view	
3.0	2.1 2.2 2.3 Theore	Conve Recent Recogn Recognetical Ba	ntional method of defect identification t development of defect identification methods nition of defect type using echo height asis	6 8 12
	3.1 3.2 3.3	Sound Sound Factors 3.3.1	pressure at a finite distance from a probe pressure received by the probe from a reflector s which influence the received sound pressure Effect of couplant type and thickness on received sound pressure	14 18 25 26
		3.3.2	Effect of impurities within the defect on received sound pressure	28
		3.3.4	received sound pressure Effect of probe parameters on received sound	30
			Pressure 3.3.4.1 Probe angle 3.3.4.2 Frequency of wave 3.3.4.3 Size of probe	32 32 32 32
		3.3.5	Effect of defect orientation on received sound pressure	34
		3.3.6	Effect of roughness of defect surface on received sound pressure	36
		3.3.7	Affect of depth of defect on received sound Pressure	37
		3.3.8	Affect of defect area on received sound Pressure	37

PAGE

	3.4	Acoustic energy equations of spherical, cylindrical	20
	25	and flat circular reflectors	38
	3.5	Comparison of echo amplitudes from	20
	2.6	defects in single-V butt welded plates	39
	3.6	Relationship of defect type to width of echo signal	40
		3.6.1 Back wall or flat circular reflector	42
		3.6.2 Crack and lack of sidewall fusion	42
		3.6.3 Isolated pore and porosity	43
	27	3.6.4 Slag	43
	3.7	Relationship of defect type to its position	44
		3.7.1 Identification of lack of sidewall fusion	44
	2.0	3.7.2 Identification of defects in weld root	47
	3.8	Usage of different probe angles to identify defect type	47
4.0	Equip	nent and Accessories used	
	4.1	Ultrasonic Flaw Detector	52
	4.2	Ultrasonic Probe	53
		4.2,1 Contact Transducers	55
		4.2.2 Dual Element Transducers	55
		4.2.3 Angle Beam Transducers	55
5.0	Recea	rch Methodology of Moratuwa, Sri Lanka.	
5.0	Kesea	Flectronic Theses & Discertations	
	51	Fabrication of test specimens	57
	5.2	Effect of couplant thickness on defect echo amplitude	63
	53	Effect of test surface roughness on defect	05
	5.5	echo amplitude	64
	54	Effect of denth of defect on echo amplitude	65
	55	Effect of impurities within the defect on echo amplitude	66
	5.5	Effect of defect area on echo amplitude	66
	5.0	Identification of lack of penetration by change	00
	5.1	of probe angle	67
	58	Identification of lack of sidewall fusion	70
	5.0	Development of a relationship between defect type	70
	5.7	echo amplitude echo width defect position and probe angle	70
		5.9.1 Experimental Procedure	70
		5.9.2 Development of a Computer Programme	73
		5.5.2 Development of a compater Programme	15
6.0	Results	`	
	6.1	Fabrication of test specimens	74
	6.2	Effect of couplant thickness on defect echo amplitude	75
	6.3	Effect of test surface roughness on defect	
		echo amplitude	77
	6.4	Effect of depth of defect on echo amplitude	78
	6.5	Effect of impurities within the defect on echo amplitude	79

79 82 6.6 Effect of defect area on echo amplitude

PAGE

6.7	7 Identification of lack of penetration by change		
	of prob	e angle.	85
6.8	Identifi	cation of lack of sidewall fusion	87
6.9	Develo	pment of a relationship between defect type,	
	echo ar	nplitude, echo width, defect position and	
Probe angle		88	
	6.9.1	Set of data obtained from identified defects	
		in fabricated welded specimens	88
	6.9.2	Set of data obtained from defects in-situ	90
6.10	Verifica	tion of test results	
	6.10.1	Verification of results by RT	92
	6.10.2	Verification of results by conventional methods	94
	6.10.3	Comparison of test results	96
	6.10.4	Set of data obtained using Digital Ultrasonic	
		Flaw Detector	99

7.0 Discussion

	7.1	Fabrication of test specimens	106
	7.2	Effect of couplant thickness on defect echo amplitude	106
	7.3	Effect of test surface roughness on defect	
	7.4 7.5 7.6. 7.7 7.8 7.9	echo amplitude Effect of depth of defect on echo amplitude Effect of impurities within the defect on echo amplitude Effect of defect area on echo amplitude Identification of lack of penetration by change of probe angle. Identification of lack of sidewall fusion Development of a relationship between defect type, echo amplitude, echo width, defect position and	107 108 108 108 109 110
		probe angle	11/
8.0	Conclu	usions	110
9.0	Const	rains	119
10.0	Future	e work	121
11.0	References		
12.0	Annexure 1 (Computer programme)		130
	12.1	Input and output data module	
	12.2	Flow chart of the computer programme	
	12.3	Software of the computer programme	