POST EVALUATION OF OPERATIONAL PERFORMANCE OF COMPOST PROJECTS OF LOCAL AUTHORITIES FUNDED BY PILISARU NATIONAL SOLID WASTE MANAGEMENT PROJECT

L.G.T DINUSHIKA

(168879U)

Degree of Master of Science

Department of Civil Engineering

University of Moratuwa

Sri Lanka

August 2021

POST EVALUATION OF OPERATIONAL PERFORMANCE OF COMPOST PROJECTS OF LOCAL AUTHORITIES FUNDED BY PILISARU NATIONAL SOLID WASTE MANAGEMENT PROJECT

L.G.T DINUSHIKA

(168879U)

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Environmental Management

Department of Civil Engineering

University of Moratuwa

Sri Lanka

August 2021

DECLARATION

"I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

L.G.T Dinushika

Date:

The above candidate has carried out research for the Degree of Master of Science in Environmental Engineering and Management under my supervision.

Name of the supervisor: Prof. Mahesh Jayaweera

.....

Prof. Mahesh Jayaweera

Date:

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my research supervisor Prof. Mahesh Jayaweera, senior professor, Department of Civil Engineering at University of Moratuwa, Sri Lanka for his unweaving support, encouragement and guidance throughout the research period. And also his guidance and advices were always moving me towards the right path while completing and that makes success of this research.

Furthermore, I also convey my sincere gratitude to Mrs. Sarojinie Jayasekara, Director Solid Waste Management, Central Environmental Authority, Sri Lanka one of the supervisors of this research for giving me an opportunity to conduct this research, giving support to gather accurate data and information, sharing experience on waste management sector during her work period and motivate me to complete the entire research.

The contribution given by the officials in Pilisaru National Solid Waste Management Project, Central Environmental Authority and officials and workers in solid waste management sites at Pradeshiya Sabhas, Urban Councils and Municipal Councils for making available data.

My special thanks to my dear parents and brother for giving unconditional support and stay always with me in any uncomfortable situations.

Abstract

The highest percentage (80%) of organic waste generation was recorded in Sri Lanka compared to the other Asian region countries with higher moisture content and low calorific value (Waste Management Outlook, 2017). Total waste generation in the country is about 8,700 Tons/Day and from that 4,480 Tons of waste has been collecting per day (NSWMSC,2019). Considering the waste composition and prevailing socio-economic parameters, composting can be considered as a most convenient technology that can be applied for organic waste having high moisture content.

Pilisaru National Solid Waste Management project has been initiated as a long term solution for solid waste management in the country towards zero waste in 2030. Considering the necessity and suitability, Pilisaru Project provides financial and technical assistance to the requested local authorities in the country to initiate compost projects and other requirements to manage solid waste in a sustainable manner. According to the Pilisaru data, majority of compost plants are in operational stage (83%) and 17% of sites are not in operational states either those sites were totally ended or inactive due to many reasons. The cumulative financial progress of the Pilisaru project is Rs. 2629.74 Million by 31.12.2018. Compost yards implemented under the Pilisaru Project produce about 386 Tons/month of compost and it is about 67% of the total designed capacity.

This study aims to evaluate the performance of projects implemented by Pilisaru National Solid Waste Management Project in Southern and Western part of Sri Lanka based on analyzing data and information through field visits, questionnaire survey, formal and informal discussion and expert interviews.

According to the findings sites were failed due to poor waste management such as inadequate financial assistance and technical expertise in waste management, failures in site selection and design considerations, low institutional commitment and community involvement, produced compost in poor quality and no regular monitoring of composting process and quality of produced compost etc. Furthermore, gaps identified by analyzing existing solid waste management practices conducted by the local authorities at a significant level and this study proposed practices that can be used by local authorities to rectify the identified gaps. Therefore, best practices in solid waste management need to be practiced further to overcome issues related to waste management in the country.

This revealed that out of 20 selected sites, 07 sits show over 75% performance level, 08 sites show 75% - 50% performance level and only 5 sites show below 50% lower performance level.

Keywords

Waste management, compost, projects, waste, Pilisaru, compost yards, local authorities, pradeshiya sabha

TABLE OF CONTENTS

DECLARATIONi				
A	ACKNOWLEDGEMENTSii			
A	bstrac	et		.iii
L	LIST OF FIGURESvi			
L	IST O	F AP	PENDICES	.ix
L	IST O	FAB	BREVATIONS	X
1	IN	INTRODUCTION 1		
	1.1	Was	ste management: A country overview	1
	1.2	Was	ste generation, collection, treatment and final disposal	8
	1.3	"Pil	isaru" - National Solid Waste Management Project	15
	1.3	8.1	Implementation of the project- Main Activities	16
2	LĽ	ΓERA	TURE REVIEW	26
	3.1	Con	nposting as a solution for managing organic waste	26
	3.2	Fact	ors need to be considered when composting	31
	3.3	Proc	cessing technologies of composting	38
3	OE	BJECT	TIVES	42
4	MI	ETHO	DOLOGY	42
5	RE	ESULT	ΓS AND DISCUSSION	48
	5.1	Mur	nicipal solid waste generation, segregation and Collection	49
	5.2	Proc	cess of composting	54
	5.3	Ope	rations during composting process	54
	5.3	8.1	Feedstock inspection and preparation	55
	5.3	8.2	Piling	57
	5.3	3.3	Turning of compost piles	59
	5.3	8.4	Maintaining parameters	61
	5.3	8.5	Leachate management	62
	5.3	8.6	Odor and fly density	63
	5.3	3.7	Sieving produced compost	65
	5.3	3.8	Final disposal	66
	5.4	Qua	lity of produced compost	68
	5.5	Woi	ckforce availability and use of Personnel Protective Equipment (PPE)	69

	5.6	Environmental protection license (EPL) for the waste management site	.71
	5.7	Institutional and community involvement for waste management	.72
	5.8	Waste input into the compost yard for the compost production	.73
	5.9	Compost production and sales of compost	.76
	5.10	Compost utilization ratio	. 79
	5.11	Price of compost	. 80
	5.12	Rate of waste reduction by composting	. 81
	5.13	Potential reduction of waste disposal	. 82
	5.14	Overall performance of selected sites implemented by Pilisaru Project	. 83
	5.15	Gap identification with the current situation	. 88
	5.15.1	Site location and design considerations	. 88
	5.15.2	Waste segregation	. 89
	5.15.3	Waste collection and transportation	. 89
	5.15.4	Composting process	. 90
	5.15.5	Workforce engage in solid waste management	. 91
	5.15.6	Data collection	. 92
	5.15.7	Protests and health issues	. 92
	5.15.8	Poor utility facilities	. 93
	5.15.9	Poor regulatory framework	. 93
	5.15.1	0 Limited budget allocation for waste management activities	. 93
	5.15.1	1 Lack of monitoring and evaluation system	. 94
6	Rec	ommendations - Strategies adopted for solid waste management	. 95
7	CON	ICLUSION	100
R	REFERENCES		
A	APPENDICES		

LIST OF FIGURES

Figure 1:Composition of municipal solid waste in Asian countries2
Figure 2: Degradable waste generation, collection and available facilities in district
wise
Figure 3: Recyclable waste generation and available facilities in the country7
Figure 4: Waste generation in Sri Lanka district level
Figure 5: Waste collection in Sri Lanka district level9
Figure 6: Composition of waste generation in Sri LankaFigure 5: Waste collection in
Sri Lanka district level
Figure 7: Spatial distribution of waste collectors and recyclers in Sri Lanka
Figure 8: Number of vehicles used in waste collection province wise
Figure 9:Compost production in Sri Lanka provincial Level
Figure 10: Compost yards in Sri Lanka provincial Level
Figure 11: Spatial distribution of waste management facilities in Sri Lanka
Figure 12: Gross and net GHG emissions from various treatment options in 2005- for
IPCC 2006 compared with EPA WARMFigure
Figure 13: optimum levels of parameters used in composting process
Figure 14: Spatial distribution of solid waste management centers in southern
province
Figure 15: Spatial distribution of solid waste management centers in western
province
Figure 16: Waste segregation bins distribute by Pilisaru Project
Figure 17: Method of waste segregation with respective to their capacitiesCapacity of
compost yards
Figure 18: Four-wheel tractor with trailer distributed by Pilisaru Project
Figure 19: Number of vehicles available for waste collection in selected sites
Figure 20: Compost Yards implemented by the Pilisaru Project
Figure 21: Variations in feedstock preparation
Figure 22: Feedstock preparation at the site
Figure 23: Piling at compost sites – open to sky area
Figure 24: Piling at compost sites - under cover piling area

Figure 25: Methods use to identify piles at the site	58
Figure 26: Use method to identify piles	58
Figure 27: Turning method of compost piles	59
Figure 28: Turning frequency of compost piles with duration of compost produc	ction
	60
Figure 29: Maintaining optimum levels of parameters	61
Figure 30: Variation in leachate management method	63
Figure 31: Odor spreading around the site with the distance	64
Figure 32: Packed compost for selling	65
Figure 33: Sieving method and sieved compost	65
Figure 34: Sieving method applied at the compost site	66
Figure 35: Variation in final disposal methods	67
Figure 36: Measuring quality of produced compost	68
Figure 37: Use of PPE during operation	70
Figure 38: Status of the EPL	71
Figure 39: Contribution from LA / Institutional level and Community involvem	ent in
waste management	72
Figure 40: Utilization of compost yards at present situation	75
Figure 41: Compost production and sales of compost	78
Figure 42: Waste utilization ratio as compost	79
Figure 43: Variations of price of produced compost	80
Figure 44: Rate of waste reductionUtilization ratio	81
Figure 44: Rate of waste reduction	81
Figure 45: Potential reduction of waste disposal	82
Figure 46: Performance of selected compost sites	87

LIST OF TABLES

Table 1:Waste management projects implemented by Pilisaru Project in district wise	
	. 23
Table 2: Summary of Solid Waste Management projects implemented by Pilisaru	
Project	. 24
Table 3: Selected small scale compost sites	. 44
Table 4: Waste generation and collection of selected sites	. 49
Table 5: Optimum utilization of the compost yards	. 74
Table 6: Sales recors of produced compost	. 77
Table 7: Overall performance of compost sites	. 84
Table 9: Performance Level of the compost yards	. 86

LIST OF APPENDICES

Appendices 1: Summary of compost projects funded by Pilisaru Project	106
Appendices 2: Questionnaire	116

LIST OF ABBREVATIONS

ADB	-	Asian Development Bank
CEA	-	Central Environmental Authority
EPL	-	Environmental protection license
ISWM	-	Integrated Solid Waste Management
JICA	-	Japan International Cooperation Agency
KOICA	-	Korea International Cooperation Agency
LA	-	Local Authority
MC	-	Municipal Council
MENR	-	Environment and Natural Resources
MMDE	-	Ministry of Mahaweli Development and Environment
MSW	-	Municipal Solid Waste
NEA	-	National Environmental Act
NSWMSC	-	National Solid Waste Management Supporting Center
PPE	-	Personnel Protective Equipment
PS	-	Pradeshiya Sabha
SLLRDC	-	Sri Lanka Land Reclamation and Development Cooperation
TEC	-	Technical Evaluation Committee
UC	-	Urban Council
USEPA	-	United States Environmental Protection Agency