DEVELOPMENT OF A DYNAMIC RISK ASSESSMENT FRAMEWORK FOR LPG TRANSPORTATION PIPELINES

Galagedarage Don Mihiran Pathmika

(149260E)

Degree of Master of Science

Department of Chemical and Process Engineering

University of Moratuwa

Sri Lanka

December 2017

DECLARATION

I declare that this dissertation is my own work, and it does not contain any material previously submitted for a degree or diploma at any other university or institute of higher learning without acknowledgment, and it does not contain any material previously published or written by another person, except where acknowledgement is made in the text.

In addition, I offer University of Moratuwa the non-exclusive right to reproduce and disseminate my dissertation in whole or in part in print, electronic, or other media. I maintain the right to incorporate this content into future works in whole or in part (such as articles or books).

Signature: UOM Verified Signature Date: 25/07/2021

The above candidate has carried out research for the master's thesis under my supervision.

UOM Verified Signature Signature of the supervisor: Date: 2021-07-25

Name of the supervisor (s): Prof. Mahinsasa Narayana / Mr. Tissa Dodangoda

ABSTRACT

The present study introduces an innovative methodology for dynamic risk assessment of a hypothetical Liquid Petroleum Gas (LPG) offloading pipeline. The study mainly focuses on the determination of the probability of a catastrophic event dynamically, which is a major component in risk assessment. The output of this study is an open model for dynamic risk assessment of an LPG offloading pipeline with the potential of adopting it in any other application.

The developed model presents the identification of the site and an analysis of the surrounding land uses, design, and related operations. Then it identifies the potential hazards. The traditional Bow-Tie diagram is created based on the identified risks and safety barriers. The Bow-Tie Diagram is then converted to a Bayesian network. The Bayesian network uses conditional probability tables which can be further improved for better reliability by introducing updated knowledge and experience.

The method was trialled using a hypothetical scenario followed by a consequence analysis. A jet fire simulation is done using FLACS[®], which is an industrial Computational Fluid Dynamics (CFD) code, to support the risk analysis. Financial losses connected with environmental damage, cleanup, evacuation, and lost output are among the consequences.

The dynamic risk assessment framework presented in this study facilitates systematic decision-making on the LPG pipeline at almost any probable event. Further, it can be trained with experience and expert judgement.

Keywords: Dynamic Risk Assessment, LPG offloading Pipeline, Bayesian network, FLACS[®], CFD

DEDICATION

To my loving parents, Somapala Galagedara and Indrani Kolambage, who brought me up to this level, and to my loving wife, Lekshika, for all the support given.

ACKNOWLEDGMENT

My foremost sincere gratitude is expressed to my supervisor (s), Professor Mahinsasa Narayana and Mr. Tissa Dodamgoda, who gave me the opportunity to carry out this research work and for the immense help and guidance given throughout the project work.

I would also like to thank Dr. Manisha Gunasekara, and Mr. Samith Rathnayake (former student at Memorial University of Newfoundland, Canada) for helping me by providing correct guidance through the project work.

In addition to that, I like to express my thanks to all the academic staff members of the Department of Chemical and Process Engineering, University of Moratuwa for their assistance and contribution to my research work.

In conclusion, I would like to express my pardon if I have inadvertently omitted the name of those to whom thanks is due.

G.D. Mihiran Pathmika

TABLE OF CONTENTS

Declar	ation	i
Abstra	act	ii
DEDI	CATIO	Niii
Ackno	wledgn	nentiv
List of	Figure	s viii
List of	Tables	ix
List of	Abbre	viationsx
Chapt	er 1 : Ir	ntroduction1
	1.1	Rationale1
	1.2	Aim and objectives
Chapt	er 2 : L	iterature Review3
	2.1	Current risk assessment techniques used in the field for LPG pipelines
	2.2	Dynamic risk assessment and its applications
	2.3	Safety analysis techniques
	2.3.1	Hazard and Operability Study (HAZOP) 6
	2.3.2	The conventional Bow-Tie model 6
	2.3.3	Bayes rule and Bayesian networks7
	2.3.4	Mapping algorithm of Bow-Tie diagram to a Bayesian network 8
	2.3.4.	1 Fault Tree mapping to a Bayesian network
	2.3.4.2	2 Event Tree mapping
	2.3.4.3	3 Bow-Tie mapping
	2.4	Software packages

	2.4.1	Computational Fluid Dynamics (CFD) and Acceleration Simulator (FLACS [®])	11
	2.4.1.1	Pre-processor	11
	2.4.1.2	Solver 1	11
	2.4.1.3	Post-processor	11
	2.5	Risk assessment	11
	2.5.1	Individual risk	11
	2.1.1	Societal risk	12
	2.6	Selection of techniques	13
Chapte	er 3 : M	ethodology1	13
	3.1	Case study	15
	3.1.1	Accident scenario	17
	3.2	Identification of potential hazards involved with LPG pipelines 1	17
	3.3	Determination of the failure probability using the static approach	22
	3.3.1	Assigning the probabilities	22
	3.3.2	The left-hand side of the Bow-Tie diagram	22
	3.3.3	The right-hand side of the Bow-Tie diagram	25
	3.4	Determination of the failure probability using the dynamic approac 27	h
	3.4.1	Mapping FT and ET into Bayesian network	27
	3.4.2	Development of conditional probability tables	29
	3.5	Determination of dynamic failure probability for the defined accident scenario using Bayesian network approach	30
	3.6	Quantification of consequence	32
	3.6.1	Determination of the quantity of leaked products	32
	3.6.2	Leak rates	32
	3.6.3	Duration	33
	3.7	The consequences in terms of monetary values	34

	3.7.1	Loss due to leaked products	34	
	3.7.2	Loss due to pipeline replacement	34	
	3.7.3	Cost of the evacuation of people from the affected area	34	
	3.7.4	Lost production cost (LPC)	35	
	3.7.5	Costs associated with environmental consequences	35	
	3.8	Quantification of temperature effects and air pollution	36	
	3.9	Summary of consequences	37	
	3.10	Quantification of risk	38	
Chapter 4 : Results and Discussion 39			39	
Chapter 5 : Conclusion 47				
REFERENCES			48	
Annexurexi				

LIST OF FIGURES

Figure 1.1: Milford pipeline explosion	1
Figure 2.1: A Model Bow-Tie diagram	9
Figure 2.2: Mapping algorithm from BT into BN	10
Figure 3.1: The methodology	14
Figure 3.2: Pipeline route	16
Figure 3.3: Population density distribution over the length - Census, 2011	16
Figure 3.4: Fault Tree diagram (Left-hand side of the Bow-Tie diagram)	24
Figure 3.5: Event Tree diagram (i.e. Right-hand side of the Bow-Tie diagram)	26
Figure 3.6: Bayesian network for the defined scenario Using GeNIe software	28
Figure 3.7: Sample section of Bayesian network	29
Figure 3.8: Application of the defined accident scenario to the Bayesian network	31
Figure 3.9: Surface diagram of the temperature distribution due to jet fire	37
Figure 4.1: Bayesian network with introduced evidence	39
Figure 4.2: Cost of failure vs. time	42
Figure 4.3: Pressure vs. time	44
Figure 4.4: Fuel content vs. time	44
Figure 4.5: Velocity vs. time	44
Figure 4.7: Iso-surface diagram for equivalent ratio	45
Figure 4.8: FMOLE_ Propane	45
Figure 4.9: Velocity distribution	45
Figure 4.10: Velocity distribution in 3D space	45

LIST OF TABLES

Table 3.1: Design and failure information	17
Table 3.2: Identified potential hazards involved in LPG pipelines	18
Table 3.3: Assumed probabilities on respective event	23
Table 3.4: Sample calculation of conditional probability based on assumptions	29
Table 3.5: Results of leak rate calculation Image: Comparison of the second	33
Table 3.6: Leak rate	33
Table 3.7: Summary of consequences	37

LIST OF ABBREVIATIONS

BN	Bayesian network
BT	Bow-Tie
CFD	Computational Fluid Dynamics
COF	Consequence of Failure
CPT	Conditional Probability Tables
DRA	Dynamic Risk Assessment
DyPASI	Dynamic Procedure for Atypical Scenarios Identification
EC	Environmental consequence Cost
ETA	Event Tree Analysis
FT	Fault Tree
HAZID	Hazard Identification
HAZOP	Hazard and Operability Study
IC	Inspection Cost
ΙΟ	Integrated Operations
LDS	Leak Detection System
LNG	Liquefied Natural gas
LOP	Lost Production Cost
LPG	Liquefied Petroleum Gas
MLV	Main Line Valve
OREDA	Offshore and On shore Reliability Data
PCA	Principle Component Analysis
QRA	Quantitative Risk Analysis