REAL-TIME DETECTION AND TRACKING OF VEHICLES WITH LANE DETECTION

MASTER OF PHILOSOPHY

WADUGE SHEHAN PRIYANGA FERNANDO

UNIVERSITY OF MORATUWA SRI LANKA

FEBRUARY 2011

REAL-TIME DETECTION AND TRACKING OF VEHICLES WITH LANE DETECTION

The thesis was submitted to the Department of Electrical Engineering, University of Moratuwa in fulfillment of the requirements for the Degree of Master of Philosophy

By University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations WADUGE SHEHAN PRIYANGA FERNANDO

> Supervised by: Prof. Lanka Udawatta Prof. Pubudu Pathirana

Department of Electrical Engineering University of Moratuwa, Sri Lanka

February 2011

DECLARATION

The work submitted in this dissertation is the result of my own investigation, except where otherwise stated.

It has not already been accepted for any degree, and is also not being concurrently submitted for any other degree.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk Waduge Shehan Priyanga Fernando

14 - February - 2011

I endorse the declaration by the candidate,

Prof. Lanka Udawatta

ABSTRACT

In this research, a computer vision based procedure for navigating an autonomous vehicle safely in a sub-urban road under an unstructured environment was described. This was analyzed in two main areas. Namely; an on road object detection method, where we are only concerned of detecting cars, and a novel method in detecting road lane boundaries. For the detection of vehicles (cars) from an on-road image sequence taken by a monocular video capturing device in real time and an algorithm of multi resolution technique based on Haar basis functions were used for the wavelet transform, where a combination of classification was carried out with the multilayer feed forward neural network. The classification is done in a reduced dimensional space, where Principle Component Analysis (PCA) dimensional reduction technique has been applied to make the classification process much more efficient.

Then, the other approach used is based on boosting which also yields very good detection rates. In general, boosting is one of the most important developments in classification methodology. It works by sequentially applying a classification algorithm to reweighed versions of the training data, followed by taking a weighted majority vote of the sequence of classifiers thus produced. For this work, a strong classifier was trained by the discrete adaboost algorithm and its variants.

www.lib.mrt.ac.lk

In this thesis, a novel algorithm for detection of lane boundaries was presented. Initially, the method fits the CIE L*a*b* transformed road chromaticity values (that is a* and b* values) to a bi-variate Gaussian model followed by the classification of road area based on Mahalanobis distance. Then, the classified road area acts as an arbitrary shaped region or a mask in order to extract blobs resulting from the filtered image by a two dimensional Gabor filter. This is considered as the first visual cue. Another visual cue of images was employed by an entropy image. Moreover, the results from color based visual cue and visual cue based on entropy were integrated following an outlier removing process. Finally, the correct road lane points are fitted with Bezier splines which act as control points that can form arbitrary shapes. The algorithm was implemented and experiments were carried out on sub-urban roads.

ACKNOWLEDGEMENT

I would first like to thank Prof. Lanka Udawatta and Prof. Pubudu Pathirana for giving me the opportunity to work on a very interesting research project which I have dreamt of. More importantly for their encouragement, excellent guidance and kind support throughout my graduate education.

My sincere gratitude goes to Dr. G.L.D. Wickramasinghe and Dr. Sandun Fernando, present and former Heads of Department, Department of Textile and Clothing Technology, and Dr. T.S.S. Jayawardane, Mr. S.N. Niles Senior Lecturers of the same Department for their generous support and encouragement given from the beginning to the end of the research.

Dr. J.P. Karunadasa (Head - Dept. of Electrical Engineering), Prof. R.A. Attalage (Director - Postgraduate Studies) and Dr. Harsha Abeykoon (Postgraduate Research Coordinator, Dept. of Electrical Engineering) are acknowledged greatly for their kind assistance.

I would like to express my deepest gratitude to Mr. T.M.J.A Cooray and Dr. T.S.G. Peiris Senior Lecturers of the Department of Mathematics for their advice and encouragement as they had been invaluable throughout my studies.

Also, my sincere thanks go to rest of the staff of the Departments of Textile & Clothing Technology and Mathematics.

Last but not least, I will always be grateful for my family members.

TABLE OF CONTENTS

Declaration	i
Abstract	V
Acknowledgement	vi
List of Abbreviations	vii
List of Figures	viii
List of Tables	Х

Chapters

1. Introduction	1
1.1 Autonomous Vehicles	1
1.2 Background and Motivation	2
1.3 Vision for Autonomous Ground Vehicle Navigation	5
1.4 Research Objectives	5
1.5 Outline of the Thesis	6

2. Literature Review and Research Moratuwa, Sri Lanka.	7
2.1 Complexity of an Autonomous Vehicle	7
2.1 Preliminary Developments	8
2.2 Carnegie Mellon University Navlab Project	9
2.3 AGV's in Military Applications	11
2.4 Winner of 2005 DARPA Grand Challenge	12
2.5 Autonomous Vehicles by CMU's Red Team for DARPA	13
2.6 Vision Guided Heavy Vehicles	14
3. Vehicle Detection with PCA-MLFFNN	15
3.1 Introduction	15
3.2 System Overview	16
3.3 Multiresolution Analysis (MRA)	17
3.3.1 Haar Basis Functions	17
3.4 Principle Component Analysis	19
3.5 Multilayer Feed-forward Neural Network	22
3.5.1 Biological Neurons	22
3.5.2 Artificial Neurons	23
3.5.3 MLFFNN	26

3.6 Characteristics of Multi-Layer Perceptrons	28
3.7 The Learning Rate	28
3.8 Momentum	29
3.9 Experimental Results	29

Page No.

. Cascaded Classifiers	31
4.1 Introduction	31
4.1.1 Choice of the method	31
4.1.2 Why boosting algorithms?	31
4.1.3 Overview of the detection	32
4.2 Features and Integral Image	32
4.2.1 Haar-like features	32
4.2.2 Integral image	34
4.3 Learning with AdaBoost	36
4.3.1 Introduction	36
4.3.2 The weak classifiers	38
4.3.3 From features to weak classifiers	38
4.4 AdaBoost	38
4.5 Cascaded Classifier	40
4.6 Training a Cascade of Classifiers	41
4.7 Experimental Results	41
4.7.1 Data set	43
4.7.2 Learning results	43
4.7.3 Experiments on real-world test set	46

5. Empirical Evaluation of Classifiers	47
5.1 Introduction lectronic Theses & Dissertations	47
5.2 Experiments of PCA-MLFFNN	47
5.2.1 Image downscaling	48
5.2.2 Peak signal to noise ratio (PSNR)	48
5.2.3 Selecting the eigen space	50
5.2.4 Training MLFFNN	53
5.3 Experiments of Cascaded Classifier	57
5.3.1 Training data	57
5.3.2 Testing configurations	57
5.3.3 Features in cascaded classifiers	58
5.3.4 Comparing Area Under Curve (AUC)	75
6. Findings	78
6.1 Improving Accuracy of a Cascaded Classifier	78
6.2 ROC Curve Comparison	80
6.3 Road Boundary Detection	84
6.3.1 Methodology	85
6.3.2 Preprocessing	87
6.3.3 Application of CIE L*a*b* Color space	88
6.3.4 Approximated Bi-Variate Gaussian Model for a* and b*	90
6.3.5 Line or Strip feature Detection	91
6.4 Application of Entropy	93
6.5 Multiple Visual Cue Integration	94
6.6 Fit lane Markings with Bezier Splines	96

6.7 Experimental Set up 6.8 Experimental Results	97 98
7. Conclusions and Future work 7.1 Conclusions	101 101
7.2 Future work	102
References	103
Appendices	109
Appendix A MATLAB Programs	
Appendix B Proof of adaboost training error	120

Jniversity of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF FIGURES

1.1 Some of the successful competitors of the 2007 DARPA Urban	
Challenge	3
1.2 NASA's Mars Rover "Opportunity"	4
2.1 Stanford Cart	8
2.2. The first Navlab mobile vehicle developed at CMU	9
2.3.The Navlab 2	10
2.4.The Navlab 5	11
2.5 The Demo III	11
2.6.Stanley by Stanford Racing Team	12
2.7.Sandstorm by CMU Red Team	13
2.8.Highlander by CMU Red Team	13
2.9 TerraMax	13
3.1 System Overview	16
3.2 Creating an image pyramid	16
3.3 Haar Scaling Function	18
3.4 Haar Wavelet Function	18
3.5 Image at different resolutions which forms an image pyramid	19
3.6 First 10 eigen images corresponding to largest eigen values	22
3.7 Simplified diagram of a biological neuron	22
3.8 Generalized McCulloch-Pitts neuron	23
3.9 The Heaviside unit step function	24
3.10 A piecewise linear function combining a ramp with a unit step	25
3.11 The logistic function	25
3.12 The hyperbolic tangent	26
3.13 Architecture of the MLFFNN prepared for object detection	
used in the system	27
3.14 Schematic Diagram for Training Phase	27
3.15 Matlab Result of the training error curve trained with	
Back-propagation algorithm with gradient descent	30
3.16 Vehicle detection results with the MLFFNN	30
4.1 Feature prototypes of simple Haar like features. (a) Edge features	
(b) line features (c) Center-Surround features	33
4.2 Haar features applied to a sub-window	34
4.3 Integral image	35
4.4 Feature value computation	35
4.5 Basic Function of AdaBoost	36
4.6 Outline of the object detection with a cascaded classifier	40
4.7 Example Error curve for the 21 st stage of a Cascaded classifier	
with different boosting Algorithms	44
4.8 Test results of the Cascaded Classifier trained with Gentle	

boosting algorithm at different distances from the	
video capturing device	46
5.1 Analyzing the quality of an image at different downscale	
levels for different downscale techniques	49
5.2 Eigen Value Distribution	51
5.3 Amount of variance of the training data described in different spaces	52
5.4 Error curve for MLFFNN for No.7 in table 5.2	54
5.5 a & b ROC Curves for selected MLFFNNs listed in table 5.2	55
5.5 c & d ROC Curves for selected MLFFNNs listed in table 5.2	56
5.6 Example of an upright and 45° rotated rectangular feature	58
5.7 (a to f). Training error curves for variants of adaboost in a 25	59
stage cascaded classifier for image size of 10×10	62
5.8 (a to f). Training error curves for variants of adaboost in	62
a 25 stage cascaded classifier for image size of 20×10	65
5.9 (a to f). Training error curves for variants of adaboost in a	65
25 stage cascaded classifier for image size of 20×20	68
5.10 (a to f). Training error curves for variants of adaboost in a	68
25 stage cascaded classifier for image size of 25×20	71
5.11 (a to d).Receiver Operational Characteristic Curves	72
for test data.	74
5.12 Test results obtained with different classifiers	77
6.1 (a) Image smoothed with Gaussian Filter $\sigma_d = 5$. Sin Lanka	79
6.1 (b) Image filtered with a Bilateral Filter with $\sigma_d = 5$ and $\sigma_r = 25$	79
6.2 (a to c) ROC Curves for cascaded classifiers trained with 20×20	
images filtered with a Gaussian filter and a Bilateral filter	81
6.3 (a to c) ROC Curves for cascaded classifiers trained with 25×20	
images filtered with a Gaussian filter and a Bilateral filter	83
6.4 Detection of vehicles filtered with Bilateral filter, which were	
not detected with the Gaussian filter	84
6.5 The Offline and Online processes used in the system to detect	
road lane boundaries	87
6.6 Example of a the selected ROI	88
6.7 (a & b) CIE RGB & XYZ color matching functions	88
6.8 (a & b) Schematic diagrams for quadrature pairs	91
6.9 (a & b) Image filtered and the symmetrical kernel used	92
6.10 Set of enlarged images of the lane boundary image patches (11 (a, b, b)) The images show the result obtained for an entropy image	93
(12 The detection of a straight read lange boundary by the system	94
6.12 The detection of a surged read lang boundary by the system	98
6.14 The detection of a straight road lane boundary when other on road	98
objects are present	00
6 15 Test examples on detection of a road lane boundary curved road 1	00
6.16 Test examples on detection of a road lane boundary curved road 2	99 QQ
6.17 Test examples on detection of a road lane boundary curved road 3	90
6.18 Test examples on detection of a road lane boundary curved road 4	100
6.19 Test examples on detection of a road lane boundary in shadow	100

LIST OF TABLES

3.1 The largest 10 eigen values obtained from training data	21
4.1 The 25 stage cascaded classifier and the	
corresponding number of features used	45
5.1 Description of the number of eigen vectors for the eigen space	
and the percentage variance represented by them.	50
5.2 MLFFNN configurations and parameters	53
5.3 Different arrangements of window sizes used for training	
with different training algorithms	57
5.4 Number of Weak Classifiers selected in selected	
1,2,10,11,20 and 21 stages	59
5.5 Average Training time for 25-stage cascaded classifier	72
5.6. AUC values obtained for different MLFFNN classifiers	75
5.7. AUC values obtained for different Cascaded Classifiers	75
6.1: Analyzing area under curves for ROC curves	83
6.2 Different Sets of testing images for lane detection	97
6.3 Results for different Lane types Moratuwa, Sri Lanka	98
(Electronic Theses & Dissertations	
www.lib.mrt.ac.lk	

LIST OF ABBREVIATIONS

AGV	Autonomous Ground Vehicles
DARPA	Defense Advanced Research Projects Agency
PCA	Principle Component Analysis
MLFFNN	Multilayer Feed-forward Neural Network
MER	Mars Exploration Rover
ARL	Army Research Lab
LIDAR	Light Detection And Ranging
NavLab	Navigation Laboratory Moratuwa, Sri Lank
MRA	Multiresolution Analysis
ii	Integral Image
Adaboost	Adaptive Boost
DAB	Discrete Adaboost
RAB	Real Adaboost
GAB	Gentle Adaboost