DEVELOPMENT OF AN OPTIMIZED INTEGRATED RAINWATER HARVESTING MODEL FOR MULTISTOREY HOUSES

THESIS SUBMITTED TO THE DEPARTMENT OF CIVIL ENGINEERING IN FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF Doctor of Philosophy

By Sisuru Sendanayake

DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA SRI LANKA

SEPTEMBER 2010

Abstract

Rain Water Harvesting (RWH) is an ancient civil practice of more than 4000 years, drawing attention among scientists in recent decades, in the light of potable water shortages and water based natural disasters such as draughts and flash floods. It is noted that much focus has been on optimizing the sizes and operation of individual components, in relation to increased Water Saving Efficiency (WSE), in order to minimize he overall capital investment. However, if RWH is to proliferate, it should function on par with centralized service water supply, particularly in delivering water to service points reliably. This is most relevant in urban, multi story scenarios, where not only service reliability but optimized utilization of space and aesthetic aspects is also important. Taking in to consideration that pumping of collected rain water is energy consuming and therefore against the principles of sustainability, a Cascading Multi Tank Rain Water Harvesting (CMTRWH) system is introduced for multi story situations, where the energy requirement on pumping is much less compared to the conventional models University of Moratuwa, Sri Lanka.

Even though the CMTRWH model is energy efficient, unless an alternative, renewable power source is introduced to operate an efficient pump with total reliability, the system will have to depend on costly grid power, not only negating the positive impact of using RWH on sustainable development, but also depriving water security to vast communities of people without access to grid power. Sri Lanka being a tropical country, solar power option is pursued as the most desirable alternative energy source. Acknowledging the importance of a storage battery for the reliable operation of the power supply system, sizing curves are developed to select optimally matching pair of PV generator and battery for a given load, at a given location. In order to overcome the difficulty of obtaining measured incident solar radiation at remote locations, a methodology is developed to calculate solar radiation using easily obtainable rainfall data.

Key Words: Cascading, Rainwater, Multi-Tank, Harvesting, Stand-Alone, Photo-Voltaic

Declaration

I, Sisuru Sendanayake, hereby declare that the work contained in this thesis has not been previously submitted for a degree or diploma at any other higher education institution. To the best of my knowledge and belief, the thesis contains no material previously published or written by another person except where due reference is made.

University of Moratuwa, Sri Lanka. Sisuru Sendanayake WWW.lib.mrt.ac.lk

Acknowledgements

This thesis is the result of an interdisciplinary research under the Mechanical and Civil Engineering departments of University of Moratuwa, and I thank the respective Heads of Department for their support and encouragement for me to undertake a research on a subject of national importance.

It is my profound duty to thank Professor M.T.R. Jayasinghe the supervisor for the research, for his guidance and direction. A special word of thanks should go to Professor Jayasinghe, for without his insight and encouragement in bringing me back from the industry and commerce to the worthy process of academic research, this thesis would not have seen the light of the day, once again amply demonstrating Professor Jayasinghe's unstinted dedication to his sphere of work, the university and to the nation.

I wish to take this opportunity to thank Professors R.A Attalage and J. Bandara who as panel members of the research progress review committee have given valuable advice.

www.lib.mrt.ac.lk

A special word of appreciation should also go to the National Meteorological Department of Sri Lanka for their support in providing with solar radiation and weather data.

Sisuru Sendanayake September, 2010

CONTENTS

Abstract	i
Key words	i
Statement of Authorship	ii
Acknowledgements	iii
Table of Contents	iv
List of Tables	xii
List of Figures	xiii
List of Charts	XV

Chapter 1

INTRODUCTION		1
1.1	General	4
1.2	Objectives	4
1.3	Research methodology ity of Moratuwa, Sri Lanka.	4
1.4	Main findings lectronic Theses & Dissertations	5
1.5	An overview of chapters mit ac.lk	7

Chapter 2

LITERATURE REVIEW

2.1	General	8
2.2	Water and Energy: Global crisis and emerging trends	8
2.3	Optimization of rain water harvesting systems	12
2.3.1	Rain water harvesting	12
2.3.2	Optimization of system components	12
2.3.2.1	Optimization techniques	12
2.3.2.2	Performance of RWH Systems using Behavioral model	13
2.3.2.3	Predicting the performance of RWH System using behavioral model	14
2.3.2.4	Optimization of storage size using water saving efficiency curves	18
2.3.2.5	Important observations with regard to generic curves on WSE	19

2.3.2.6 Validation of water saving curves for Sri Lanka	22
2.3.3 Overflow quantities in rain water harvesting systems	27
2.3.3.1 Relating overflow to specific volume and specific demand	27
2.4 Solar pumping	28
2.4.1 Pump types	28
2.4.2 Centrifugal pumps	28
2.4.2.1 Characteristic curves of a centrifugal pump	29
2.4.2.2 Affinity laws for centrifugal pumps	33
2.4.2.3 System load curve-Batch transferring	33
2.4.3 Positive displacement pumps	34
2.4.3.1 Characteristic curves of PD pumps	35
2.4.4 Sizing of battery assisted SAPV systems wa, Sri Lanka	38
2.4.4.1 Stand Alone Photo Voltaic (SAPV) systems Sectlations	38
2.4.4.2 Solar cell www.lib.mrt.ac.lk	39
2.4.4.3 Electric load circuit of a simple cell	41
2.4.4 Performance characteristics of a solar cell	42
2.4.5 Sizing methods	44
2.4.5.1 Intuitive methods	44
2.4.5.2 Numerical methods	44
2.4.5.3 Analytical methods	45
2.4.6 Development of Cs charts	45
2.4.6.1 Numerical-Analytical approach to SAPV sizing	46
2.5 Correlations to predict incident solar radiation	48
2.5.1 Estimating incident solar radiation	50

2.5.2	Estimating incident solar radiation using satellite images	50
2.5.3	Estimating incident solar radiation using spatial interpolation techniques	51
2.5.4	Estimating incident solar radiation using predictive numerical correlations	51
2.5.5	Commonly used correlations	52
2.5.5.1	Correlation 1 – Angstrom Method	52
2.5.5.2	Correlation 2 – Akinoglu and Ecevit model	54
2.5.5.3	Correlation 3 – Hargreaves-Samani equation	55
2.5.6	Correlations based on cloud cover data	56
2.5.6.1	Predicting mean sky transmittance of clear days (K _T) _C	57
2.5.6.2	Predicting mean sky transmittance of overcast days (K _T) _O	58
2.5.7	Impact of tilt angle on incident solar radiation	60
2.6	Summary	63

Chapter 3 University of Moratuwa, Sri Lanka. RAIN WATER HARVESTING SYSTEM DESIGNORS

3.1	General	68
3.2	Rain water harvesting	69
3.2.1	Needs of RWH	69
3.2.2	Benefits accrued from RWH	70
3.2.3	Global use of rain water harvesting	71
3.3	Conventional RWH models and their limitations	72
3.3.1	Fundamental types of RWH systems	72
3.3.2	Global RTRWH systems	73
3.3.3	Main types of global RTRWH systems	73
3.3.4	RWH systems in Sri Lanka	77
3.3.4.1	RTRWH system with above ground ferro-cement tank	77
3.3.4.2	RTRWH system with partial underground tank	77
3.3.4.3	RTRWH system with below ground brick tank	78

3.4	Components of rain water harvesting systems	79
3.4.1	Collector surface	80
3.4.2	Conveyance system	81
3.4.3	Storage facility	81
3.4.4	Filtering devices in RWH systems	81
3.4.5	Draw-off devices used in RWH systems	83
3.5	Optimization of storage size	84
3.5.1	Space and weight restrictions	84
3.5.2	Alternative methods of storage tank positioning	85
3.6	Cascading multi tank model	90
3.6.1	Description of concept	90
3.6.2	Assumptions adopted in system operation	92
3.6.3	Advantages and limitations of CMTRWH systems Lanka	92
3.6.3.1	Advantages Electronic Theses & Dissertations	92
3.6.3.2	Limitations www.lib.mrt.ac.lk	92
3.7	System dynamics	93
3.7.1	Development of system algorithm for CMTRWH systems	93
3.7.2	Effective run-off and pumping requirement	94
3.7.3	System limits	95
3.7.4	System equations for equal loads at each floor level	95
3.8	Determining the validity of CMTRWH algorithm	95
3.8.1	Methodology	96
3.8.2	Calculation	96
3.8.3	Results and discussion	96
3.9	Limiting values of Demand (D) for total gravity feed	97
3.9.1	Calculation of limiting values	97
3.9.2	Operating phases of a CMTRWH model	100

3.10	Energy requirement in CMTRWH systems	103
3.10.1	Energy required in pumping harvested rainwater	103
3.10.2	Energy required in pumping rainwater with make-up water	106
3.11	Energy required in pumping rainwater with unbalanced load	107
3.12	Impact of variation of the storage volume in CMTRWH systems	109
3.13	Performance of a Two Tank cascading model – case study	111
3.13.1	System dynamics – Two Tank Model	112
3.13.2	System performance	113
3.13.2.	1 System performance with change in capture area (A)	113
3.13.2.	2 System performance with change in demand (D)	113
3.13.2.	3 System performance with change in rainfall (R)	113
3.13.2.	4 System performance with change in upper tank capacity (S_U)	113
3.13.2.	5 Pumping requirements for water security a. Sri Lanka.	115
3.13.2.	6 Make-up water requirement for water security realions	116
3.14	Control of overflow quantities 10.1k	117
3.14.1	Objective	117
3.14.2	Methodology	118
3.14.3	Calculations	118
3.15	Summary	120

Chapter 4

SELECTION AND SIZING OF BATTERY ASSISTED PV PUMPING SYSTEMS IN RWH

4.1	General	123
4.2	Types of pumps	126
4.2.1	Centrifugal pumps	126
4.2.1.1	Hydraulic output of a centrifugal pump	127
4.2.1.2	Losses and efficiencies of a centrifugal pump	127

4.2.1.	3 Advantages of centrifugal pumps over PD pumps	128
4.2.1.4	4 Limitations of centrifugal pumps	129
4.2.2	Positive Displacement pumps	129
4.2.2.	1 Hydraulic output of a PD pump	130
4.2.2.2	2 Losses and efficiencies	131
4.2.2.	3 Advantages of PD pumps over centrifugal pumps	131
4.2.2.4	4 Limitations of PD pumps	132
4.3	Photo Voltaic (PV) pumping	132
4.3.1	Characteristics of photo voltaic pumping systems	132
4.3.2	Direct coupled PV pumping	134
4.3.2.	1 Direct coupled centrifugal pumps	135
4.3.2.2	2 Direct coupled Positive Displacement pumps	137
	University of Moratuwa, Sri Lanka.	
4.3.3	System sizing in PV pumping leses & Dissertations	138
4.3.4	Performance comparison of pumps in PV pumping	139
4.4	Battery assisted PV pumping	139
4.5	Components of a SAPVP system	141
4.5.1	PV generator	141
4.5.2	Charge accumulator (Battery)	142
4.5.2.	1 Performance characteristics of a lead-acid battery	142
4.5.2.2	2 Cycles vs. Life	144
4.5.1.	3 Battery failure	146
4.5.2	Motor and pump	146
4.5.3	Inverter	146
4.5.5	Charge controller	147

4.6	SAPV system sizing	147
4.6.1	SAPV sizing for Sri Lanka	147
4.6.2	Deriving SAPV sizing curves for Sri Lanka	148
4.6.2.1	Selection of system components	148
4.6.2.2	Methodology	149
4.6.3	Developing CA vs. CS charts for Central Hills of Sri Lanka	152

4.7 Summary

152

Chapter 5

SOLAR RADIATION IN SRI LANKA

5.1	General	158
5.2	Objectives	162
5.3	Measuring incident solar radiation	163
5.4	Estimating incident solar radiation	165
5.5	Predicting solar radiation values for Sri Lanka entations	168
5.6	Effect of rainfall on incident solar radiation	176
5.7	Comparison of GSR data – Measured vs. RF Model	187
5.8	Estimating solar radiation on a tilted surface	188
5.8.1	Comparison of data from Collarez correlation with SWERA TMY values	193
5.8	Summary	199

Chapter 6

CASE STUDY

6.1	General	201
6.2	Pumping quantity required (Q)	202
6.3	Energy required for pumping	203
6.4	Selecting the matching PV Generator & Battery size	204
6.5	Summary	205

Chapter 7

CONCLUSIONS AND FUTURE WORKS

7.1	General	207
7.1.1.	Cascading Multi Tank RWH systems	208
7.1.2.	Improving retention volumes based on overflow	209
7.1.3.	PD pumps for RWH systems	210
7.1.4.	Correlation to calculate incident solar radiation	210
7.1.5	Calculating SR from rainfall data	211
7.1.6	Effect of tilt angle on incident solar radiation	212
7.1.7	Sizing of SAPV systems	212
7.2	Future work	213

REFERENCES

215

APPENDICES

Appendix 1

- 1.1 Data from prototype CMTRWHS (Yield and Rainfall)
- 1.2 Calculation of WSE values from prototype.
- 1.3 Calculation of Q/Qo for CMTRWH systems

Appendix 2

2.1 Data on overflow quantities from prototype RWHS

Appendix 3

- 3.1 Data from prototype battery assisted SAPV system (OCV values)
- Calculation of C_S and C_A values from prototype. 3.2

Appendix 4

4.1 Solar radiation data measured in Colombo, 2009 (Meteorology Dept.)

- 4.2 Solar radiation data measured at site Colombo and Anuradhapura
- 4.3 Calculation of monthly average daily solar radiation in Colombo,
- 4.4 Calculation of regression coefficients for K_{T(Clear)} and K_{T(Overcast)}
- 4.5 Calculation of incident solar radiation on a tilted surface.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of Tables

- TABLE 2.1Cf for different roof types
- TABLE 2.2
 Loss percentages in Silicon solar cell systems
- TABLE 2.3Regression for different solar heights
- TABLE 3.1Energy requirement % vs. Demand in Two Tank model
- TABLE 3.2
 Energy requirement % vs. Demand in Three Tank model
- TABLE 3.3
 Energy requirement % vs. Demand in 2 Tank model with make-up water
- TABLE 3.4
 Energy requirement % vs. Demand in 3 Tank model with make-up water
- TABLE 3.5
 Energy requirements for rain water pumping-unbalanced load
- TABLE 3.6WSE for 3 Tank unbalanced load model
- TABLE 3.7
 Energy requirements in pumping with variation in parent tank volume
- TABLE 3.8Annual OF quantities for given SD and SS
- TABLE 5.1
 Statistical error parameters for the correlations compared with measured

 data
 Electronic Theses & Dissertations
- TABLE 5.2
 % variation of predicted radiation from Angstrom model to measured data
- TABLE 5.3
 Percentage variation of mean radiation from Angstrom model to mean measured data
- TABLE 5.4
 Statistical error parameters for the two correlations
- TABLE 5.5
 Percentage deviation of Gm-h (ARF) from corresponding measured data
- TABLE 5.6Percentage deviations of mean wet & dry values of Gm-h from mean wet
& dry values of measured data
- TABLE 5.7Percentage variation of tilt factor R_m from 1.0 for the four stations
- TABLE 5.8 Statistical error parameters for D_{m-h}/G_{m-h}, Collarez vs MSR

List of Figures

- FIGURE 2.1 Access to improved water source in % of total population
- FIGURE 2.2 World fresh water resources per capita
- FIGURE 2.3 Generic configuration of a rainwater collection system
- FIGURE 2.4 Components of a rainwater collector sizing model
- FIGURE 2.5 Schematic drawing of a centrifugal pump
- FIGURE 2.6 Schematic diagram of a positive displacement pump
- FIGURE 2.7 A typical commercial silicon solar cell
- FIGURE 2.8 Electric load circuit of a simple cell
- FIGURE 2.9 Incident angles of solar radiation (a)
- FIGURE 2.10 Incident angles of solar radiation (b)
- FIGURE 3.1 Dry RTWHS
- FIGURE 3.2 Wet RTWHS
- FIGURE 3.3 The Total Flow type Moratuwa, Sri Lanka.
- FIGURE 3.4 The Diverter type
- www.hp.mrt.ac
- FIGURE 3.5 The Retention and Throttle type
- FIGURE 3.6 The Infiltration type RTRWHS
- FIGURE 3.7 RTRWHS with above ground Ferro-Cement tank
- FIGURE 3.8 RTRWHS with partial underground Ferro-Cement tank
- FIGURE 3.9 RTRWHS with below ground tank
- FIGURE 3.10a Typical RTRWHS for multi-story house

FIGURE 3.10b Typical RTRWHS for multi-story house (schematic drawing)

- FIGURE 3.11 A typical mesh filter
- FIGURE 3.12 A typical first flush device
- FIGURE 3.13 Plumbing configuration for RTRWHS scenario (a)
- FIGURE 3.14 Plumbing configuration for RTRWHS scenario (b)
- FIGURE 3.15 Plumbing configuration for RTRWHS scenario (c)
- FIGURE 3.16 Plumbing configuration for RTRWHS scenario (d)
- FIGURE 3.17 Plumbing configuration for RTRWHS scenario (e)

FIGURE 3.18 CMTRWH systems for a two storey house

- FIGURE 3.19 Schematic diagram of a CTTRWH system
- FIGURE 4.1 Batch transfer pumping with variable head
- FIGURE 4.2 Components of a PV pumping system
- FIGURE 4.3 Direct and In-direct solar pumping
- FIGURE 4.4 PVP system; B-Battery, M-Motor, P-Pump
- FIGURE 5.1 Weather stations in Sri Lanka under the SWERA program
- FIGURE 5.2 Annual average solar radiation on a tilted plate at tilt angle equal to latitude
- FIGURE 5.3 Climatic zones of Sri Lanka
- FIGURE 5.4 SR in Sri Lanka, map for flat plate tilted at latitude- NE monsoon
- FIGURE 5.5 SR in Sri Lanka, map for flat plate tilted at latitude- 1st Inter monsoon
- FIGURE 5.6 SR in Sri Lanka, map for flat plate tilted at latitude- SW monsoon
- FIGURE 5.7 SR in Sri Lanka, map for flat plate tilted at latitude- 2nd Inter monsoon

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of Charts

- CHART 2.1 Generic curves for Water Saving Efficiency (WSE) (Fewkes, 1999b)
- CHART 2.2 The sensitivity of WSE to rainfall loss (Fewkes, 1999a)
- CHART 2.3 Relationship between overflow and specific rainwater consumption for given specific storage volumes.
- CHART 2.4 Head vs. Discharge for different pump speeds
- CHART 2.5 Output power vs. Discharge for different pump speeds
- CHART 2.6 Efficiency vs. Discharge for different pump speeds
- CHART 2.7 Operating characteristic curves
- CHART 2.8 Constant efficiency curves for centrifugal pumps
- CHART 2.9 Constant Head and Constant Discharge curves
- CHART 2.10 Typical load curve in batch transfer process
- CHART 2.11 Indicator diagram for a single-cylinder, single-acting PD pump
- CHART 2.12 The modified indicator diagram showing the effect of acceleration
- CHART 2.13 The friction effect in the suction & delivery pipes on the indicator diagram ectronic Theses & Dissertations
- CHART 2.14 The typical current-voltage characteristics of the solar cell
- CHART 2.15 V-I curve with the variation of solar radiation
- CHART 2.16 V-I curve with the variation of cell temperature
- CHART 2.17 C_A against C_S curves for a few selected cities.
- CHART 3.1 Comparative WSE values obtained from prototype CMTRWHS
- CHART 3.2 Lower-limiting values for D/AR for different floor levels
- CHART 3.3 Upper-limiting values for D/AR for different floor levels
- CHART 3.4 Energy requirement % vs. Demand in Two and Three Tank models
- CHART 3.5 Energy requirement (E) % vs. Demand in 2 & 3 Tank models With make-up water
- CHART 3.6 Percentage pumping energy required for unbalanced load
- CHART 3.7 Percentage total energy required for unbalanced load
- CHART 3.8 Energy requirements in pumping with variation in parent tank volume
- CHART 3.9 Overflow % for different specific storage volumes

- CHART 4.1 Output characteristics of a PV module
- CHART 4.2 Characteristic curves for centrifugal pumps
- CHART 4.3 Characteristic curves for positive displacement pumps
- CHART 4.4 Battery life vs Depth of Discharge (DOD)
- CHART 4.5 12V Lead Acid Battery SOC vs. Voltage while under discharge
- CHART 4.6 SAPV sizing curves for the wet and dry regions of Sri Lanka
- CHART 5.1 Global SR in Colombo
- CHART 5.2 Global SR in N'Eliya
- CHART 5.3 Global SR in A'pura
- CHART 5.4 Global SR in H'tota
- CHART 5.5 Measured SR values (2008) against TMY data for Colombo, SL
- CHART 5.6 Radiation from measured data
- CHART 5.7 Radiation from Angstrom model
- CHART 5.8 Mean SR for wet and dry regions (measured data)
- CHART 5.9 Mean SR for wet and dry regions (Angstrom model)
- CHART 5.10 Measured wet against Angstrom wet Serial 1011S
- CHART 5.11 Measured dry against Angstrom dry
- CHART 5.12 Comparison of GSR for Colombo
- CHART 5.13 Comparison of GSR for N'Eliya
- CHART 5.14 Comparison of GSR for A'pura
- CHART 5.15 Comparison of GSR for H'tota
- CHART 5.16 Angstrom vs ARF model (Colombo)
- CHART 5.17 Angstrom vs ARF model (N'Eliya)
- CHART 5.18 Angstrom vs ARF model (A'pura)
- CHART 5.19 Angstrom vs ARF model (H'tota)
- CHART 5.20 Comparison of GSR(RF), (Colombo)
- CHART 5.21 Comparison of GSR(RF), (N'Eliya)
- CHART 5.22 Comparison of GSR(RF), (A'pura)
- CHART 5.23 Comparison of GSR(RF), (H'tota)
- CHART 5.24 Gm-h TMY for all locations
- CHART 5.25 Gm-h ARF for all locations

- CHART 5.26 Gm-h mean MD for all locations
- CHART 5.27 Gm-h mean ARF for all locations
- CHART 5.28 Comparison of RF model outcomes with TMY data for Colombo
- CHART 5.29 Tilt factor, Rm for Colombo, Wet zone
- CHART 5.30 Tilt factor, Rm for Nuwara Eliya, Wet zone-Central Hills
- CHART 5.31 Tilt factor, Rm for Anuradhapura, Intermediate zone
- CHART 5.32 Tilt factor, Rm for Hambantota, Dry zone
- CHART 5.33 GSR on a south facing surface tilted at an angle equal to latitude
- CHART 5.34 GSR on a south facing surface tilted at an angle equal to 30°
- CHART 5.35 Monthly averages Diffuse/Global SR on flat plate in Colombo
- CHART 5.36 Monthly averages Diffuse/Global SR on flat plate in N'Eliya
- CHART 5.37 Monthly averages Diffuse/Global SR on flat plate in A'pura
- CHART 5.38 Monthly averages Diffuse/Global SR on flat plate in H'tota

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk