MANUAL INSPECTION AND ASSESSMENT METHOD OF HIGHWAY BRIDGES

Karthika.M

(09/8082)

Department of Civil Engineering

University of Moratuwa Sri Lanka

February 2011

DECLARATION

I hereby, declare, that the work included in this thesis in part or whole, has not been submitted for any other academic qualification at any institution.

.....

Karthika. M (Author)

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Certified by

Dr. Baskaran. K Supervisor/ Senior Lecturer Division of Building & Structural Engineering Department of Civil Engineering University of Moratuwa Sri Lanka

ABSTRACT

"Inspection and Assessment of bridges" plays an important role, because the resources being spent in keeping existing bridges functioning to the standards for which they were designed are no longer sufficient. There is serious risk of reducing the investment necessary for rebuilding these structures. Since maintenance budgets are always limited, this involves setting priorities and defining maintenance strategies based on real condition of each bridge determined by periodic and proper inspection and assessment.

In Sri Lanka we can see several types of bridges. Some of them are more than hundred years old. To decide whether the bridges need to be demolished or used for next few years, proper inspection methods and assessment techniques are needed. Based on the results maintenance can be carried out effectively. Not only for old bridges but new coming bridges also have to be inspected and evaluated on a regular basis and should be maintained to reduce the major repair cost.

Current methods of inspection performed by Road Development Authority (RDA) of Sri Lanka are only visual inspection and it depends only on the personnel and it leads to some misjudgment.

So, this research is made to improve the existing manual inspection method, with guideline and manual and propose new assessment method.

The improvements on the newly developed manual inspection method consists new inspection sheets for condition inspection of concrete and steel bridges and guideline and manual for the manual inspection. This is basically an independent inspection method while comparing the existing method.

The new assessment method for the condition assessment technique deals with equations to assess the component of bridges and main part of the bridges separately and overall assessment of the bridges. For the strength assessment of concrete deck slab "YIELD" software is validated. As there is no guideline for the assessment of bridges, assessment guideline also discussed.

It is also recommended to carry on some additional work along the lines of present study.

ACKNOWLEDGEMENT

Giving guidance, making advices and correcting through comments are valuable things and very important for a researcher. Therefore I must thank all the people who involved in this research project.

First of all I would like to express my gratitude and deep appreciation to my supervisor **Dr. K. Baskaran**, Department of Civil Engineering, University of Moratuwa, the project supervisor who always motivated and kept me on the right track. He gave me an excellent guidance during my research, sacrificing his valuable time.

Also I want to offer my thanks to **Prof. R. A. Weerasekara**, the examiner, **Prof. J.M.S.T. Bandara** the research coordinator for their guidance on my research and also the **Senate Research Committee of University of Moratuwa** should be thanked for supporting and financing my research.

Then my thanks are due to the staffs working at Road Development Authority of Sri Lanka, who helped me in several ways to carry out my research project. Electronic Theses & Dissertations

Finally my sincere and kind gratitude to our staff of the Department of Civil Engineering and to my friends who provide all the facilities and help for me to successfully complete this research.

CONTENTS

CHAP	ГER 01			1		
INTRO	DUCTIO			1		
1.1	Overvie	/		1		
1.2	Objecti	2		2		
1.3	Outline	f the report		2		
CHAP	TER 02			3		
LITER	ATURE S	RVEY		3		
2.1	Introdu	Introduction				
2.2	Inspect	Inspection method of Highway Bridges				
2.3	Assessi	Assessment methods of highway bridges				
2.	3.1 An	ysis types for th	he Strength Assessment of Bridges	11		
2.	3.2 Yi	d line analysis		12		
CHAP	TER 03	University.o	f.Moratuwa, Sri Lanka	14		
METH	ODOLOC	Electronic T	heses & Dissertations	14		
3.1	Introdu	tion	t.ac.llc	14		
3.2	Under	anding the curre	ent manual inspection method used by I	Road		
Deve	elopment	uthority (RDA)	of Sri Lanka	14		
3.3	Identif	ing the problem	s relating to the existing method	16		
3.4	Propos	d improvements	s on the current manual inspection meth	nod for		
conc	rete and s	el bridges		20		
3.4	4.1 Brid	e Guideline and	l Manual	20		
	3.4.1.1	Bridge inspectio	on policy	20		
		A. Routine Ma	aintenance Inspection	20		
		B. Bridge Con	dition Inspection	21		
		C. Detailed En	gineering Inspections and analysis	22		
	3.4.1.2	dentification of	common defects found in Reinforced	Concrete		
Bridges due to material23						
	3.4.1.3	dentification of	common defects found in Steel Bridge	s due to		
	material			26		
	3.4.1.4	Causes of deterio	oration not related to bridge material	29		

3.4.1.5 Problems relating to the main components of Concrete bridges32
3.4.1.6 Problems relating to the main components of Steel bridges
3.4.2 Inspection sheets for concrete and steel bridges
3.5 Evaluation on New Inspection Method
3.6 Bridge Assessment Based on the Condition inspection40
3.7 Proposed strength assessment method of Reinforced Concrete bridge decks
based on the detailed inspection42
3.7.1 Methodology of assessment
3.7.2 YIELD Software
3.7.2.1 Validation of this program
3.7.2.2 Data collection in detail inspection
3.7.2.3 Assessment guidance
1. Material Properties
2. Load Calculation53
3. Modelling62
4. Analysis and Assessment for the reinforced concrete bridges
((C)) Electronic Theses & Dissertations
www.lib.mrt.ac.lk
CHAPTER 04
<i>FUTURE DEVELOPMENTS</i> 66
4.1 Future Developments in Manual Inspection Method
CHAPTER 05
CONCLUSION
REFERENCES70
ANNEX-A
ANNEX-B

LIST OF FIGURES

Figure 2.1:	Condition rating statistics as reported by inspectors for a reinforced
	Concrete bridge06
Figure 3.1:	Toppling of abutment17
Figure 3.2:	Major vertical cracks at abutment through weep holes17
Figure 3.3:	Demolition of abutment due to misjudgement17
Figure 3.4:	Ruwanwella steel bridge18
Figure 3.5:	Failure of deck due to overlays without assessment19
Figure 3.6:	Scaling of concrete
Figure 3.7:	Cracking of concrete
Figure 3.8:	Spalling25
Figure 3.9:	Corrosion of reinforcement
Figure 3.10:	Corrosion of steel
Figure 3.11:	Loose connection
Figure 3.12:	Damage due to inefficient drainage
Figure 3.13:	Excessive growth of vegetation on an abutment
	Electronic Theses & Dissertations
Figure 3.14:	Input menulib.mrt.ac.lk
Figure 3.15:	One way slab details45
Figure 3.16:	Slab Test 1 Program results46
Figure 3.17:	End Condition for the tested slab –Fixed46
Figure 3.18:	Two way slab details47
Figure 3.19:	Slab arrangement
Figure 3.20:	Loading
Figure 3.21:	Cracking Pattern
Figure 3.22:	Yield line48
Figure 3.23:	Program results of Slab test -249
Figure 3.24:	Core cut for tested slab50
Figure 3.25:	Cover meter test
Figure 3.26:	HA Loading - UDL Load57
Figure 3.27:	Overlay Asphalt Concrete

LIST OF TABLES

Table 3.1:	Rating criteria used by RDA in the inspection of bridge			
	components	15		
Table 3.2:	Weighted factor used by RDA in the overall evaluation of bridge			
	Components	16		
Table 3.3:	Description about Variables	40		
Table 3.4:	Values of Υ_{fL}	54		
Table 3.5:	Number of Notional lanes	55		
Table 3.6:	Single Axle Load	60		
Table 3.7:	Single Wheel Load	60		

Jniversity of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk