NATURAL AND WASTE MATERIALS AS ADSORBENTS IN OIL POLLUTION MANAGEMENT

W.A.J.ANURANGI

(8044)

Degree of Master of Science

Department of Chemical and Process Engineering

University of Moratuwa Sri Lanka

March 2011

NATURAL AND WASTE MATERIALS AS ADSORBENTS IN OIL POLLUTION MANAGEMENT

W.A.J.ANURANGI

(8044)

Thesis Submitted in Partial Fulfillment of the Requirements for the Degree Master of Science

Department of Chemical and Process Engineering

University of Moratuwa Sri Lanka

March 2011

DECLARATION OF THE CANDIDATE & SUPERVISORS

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any University or other institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Signature:

Date:

w.A.J.Anurangi	
I hereby grant the University of Moratuwa the right to archive	and to make available
my thesis in whole or part in the University Libraries in all form	ns of media, subject to
the provisions of the current copyright act of Sri Lanka. I retrain	n all proprietary rights,
such as patent rights. I also retain the right to use in future workbooks) all or part of this thesis. Www.lib.mrt.ac.lk	rks (such as articles or
Signature: Date:	:
W.A.J.Anurangi	
I have supervised and accepted this thesis for the award of the de	gree
Signature of the supervisor: Date	
Prof. (Mrs.) B.M.W.P.K.Amarasinghe	
Signature of the supervisor: Date	
Prof. A.A.P.De Alwis	

Abstract

In this research, oil pollution management using natural and waste materials as adsorbents was studied. Most of the oil based industries emit oily wastewater rich in heavy oil particles. Therefore, this study was mainly focused to investigate a solution to the oily wastewater. Oil pollution management was achieved in two ways as oil recovery and oil treating using two different adsorbents in two stages.

In recovery stage, human hair was used as the adsorbent and experiments were carried out in two ways; as batch wise using hair pieces and continuously using a belt skimmer. Experiments revealed that human hair can recover 70.5% of oil from oily water and 1.35 mL of oil was recovered per gram of hair. The skimmer belt was prepared using human hair and the unit was used for continuous oil recovery. Skimmer Experiments showed that 75% of oil recovery after 30 rotations of the belt.

The dissolved and emulsified oil amount in wastewater was not reduced in recovery section. Therefore, in treatment stage, treating the dissolved and emulsified oil is the main objective and adsorption of oil onto carbonized rice husk was studied. Though carbonized rice husk was the main adsorbent in treatment stage other adsorbents, raw rice husk and saw dust, were also tested. The optimum carbonization temperature, 600°C and optimum carbonization period, 3 hours were used to prepare the carbonized rice husk. Batch experiments showed that carbonized rice husk has capability to adsorb 84% of dissolved and emulsified oil from aqueous solutions within 30 minutes when adsorbent dosage is 5g/L.

Batch experiments were examined in detail for carbonized rice husk to determine the factors affecting the oil adsorption. Experiments showed that Initial solution pH, initial oil concentration, contact time, adsorbent dosage and particle size affect on oil adsorption.

The adsorption kinetics of oil onto carbonized rice husk followed second order kinetic model confirming the chemisorption of oil particles onto carbonized rice husk and equilibrium data were satisfactorily fitted to Langmuir isotherm confirming monolayer oil adsorption onto the carbonized rice husk. Monolayer oil adsorption capacity of 2.24 mg of oil/ g of carbonized rice husk was observed.

Tests on oily wastewater samples from a service station showed that combination of these two units can be used effectively for treating the oily wastewater.

Key words: Oily wastewater, human hair, rice husk, oil recovery, oil adsorption

DEDICATION

I dedicate this thesis to my parents with gratitude for their patience and dedication of their entire life for my education.

ACKNOWLEDGEMENTS

I make this an opportunity to express my gratitude to everyone who helped me in various ways to complete my research project successfully. First of all, I would like to thank Prof. (Mrs.) B M W P K Amarasinghe and Prof. A A P De Alwis, for being the supervisors of my M.Sc research project and guiding me in the correct path to make it a success.

I would be thankful to all the academic staff and special thank goes to Dr. Jagath Premachandra, Former Head of Department of Chemical & Process Engineering for giving the opportunity to carry out my M.Sc research in the Department of Chemical & Process Engineering. Then my thanks are given to Prof. Suren Wijekoon and Dr Shantha Walpolage for the valuable comments given during my progress reviews.

I am very much grateful to the Post Graduate Studies Division, University of Moratuwa for approving my research project and University Research Grants for allocating the funds for my research project.

My great gratitude is given to all staff of Marine Pollution Prevention Authority (MPPA) for their assistance and especially my thanks go to Mr. Jagath Gunasekara, operation manager of MPPA.

I can never forget the helping hand of all the laboratory staff members and especially Ms Dinusha Martino, Ms Amali Wahalathantri and Mr Masskorala while carrying out my laboratory experiments. Then my thanks go to the hair dresser Ms Niroshi Karunarathne for providing hair throughout my research works and I would like to thank Nawajeewana Industries for fabricating the pilot plant skimmer.

Then I would like to thank Ms.Gayani Jayathunga and Ms Sharmili Premkumar and all post graduate friends for all the support and encouragement given to make the project successful.

And at last, but not least, I am thankful to my parents and two sisters who were patient, with all the neglects I have made when I was busy with the project.

W.A.J.Anurangi

TABLE OF CONTENTS

Declaration of the Candidate & Supervisors	i
Abstract	ii
Dedication	iii
Acknowledgements	iv
Table of Contents	v
List of Figures	ix
List of Tables	X
List of Abbreviations	хi
Chapter 1: Introduction	1
1.1 Background	1
1.2 Objective	3
Chapter 2: Literature Review	4
2.1 Overview	4
2.2 Oily Water. University of Moratuwa, Sri Lanka.	4
2.2.1 Free oil	4
2.2.2 Emulsified oil	5
2.2.2.1 Mechanically emulsified oil	
2.2.2.2 Chemically emulsified oil	5
2.2.3 Dissolved oil	5
2.3 The Test Methods for Oil and Grease	6
2.3.1 Conventional methods	6
2.3.2 COD removal method.	6
2.4 Oil Pollution	7
2.5 Sources of Oil Pollution	8
2.5.1 Wastewater from petroleum related industry	8
2.5.2 Service stations and workshop wastewater	9
2.5.3 Transportation losses	9
2.5.4 Accidental oil spills.	10
2.5.4.1. Deepwater Horizon oil spillage in Gulf of Mexico	10

2.5.4.2 The behavior of spilled oil	12
2.6 Importance of Oil Removal from Oily Water	13
2.7 Oil Pollution Control Technologies	14
2.7.1 Chemical methods	14
2.7.2 In situ burning	15
2.7.3 Bio remediation	16
2.7.4 Physical separation	16
2.7.4.1. Dissolved air flotation (DAF)	16
2.7.4.2. Skimmers	17
2.7.4.2.1 Belt skimmers	18
2.7.4.2.2 Weir skimmers	18
2.7.4.2.3 Disc skimmers	19
2.7.4.2.4 Suction skimmers	20
2.8 Recovery Section.	21
2.8.1 Human hair	21
2.8.1.1 Structure of the hair	22
2.8.1.2 The properties of the hair.	22
2.8.2 Recovered oil (disposal of oil recovered)	23
2.8.2.1 Recycling or reuse of recovered oil	25
2.9 Treatment Section.	25
2.9.1 Rice husk.	26
2.9.1.1 Preparation of carbonized rice husk	28
2.9.2 Adsorption.	29
2.9.2.1 Adsorbent	30
2.9.2.2 Adsorption capacity	31
2.9.2.3 Adsorption kinetics	31
2.9.2.3.1 The first order kinetic model	31
2.9.2.3.2 The second order kinetic model	32
2.9.2.4 Adsorption isotherms	32
2.9.2.4.1 Langmuir adsorption isotherm	33
2.9.2.4.2 Freundlich adsorption isotherm	34
2.9.2.4.3 Tempkin adsorption isotherm	34

2.10 Significance of the Project	35
Chapter 3: Methodology	41
3.1 Recovery Section.	41
3.1.1 Batch experiments	41
3.1.1.1 Preparation of hair pieces	41
3.1.1.2 Preparation of synthetic wastewater	42
3.1.1.3 Effect of initial oil concentration for oil recovery	42
3.1.2 Belt type skimmer	42
3.1.2.1 Design of the belt type skimmer	42
3.1.2.2 Operation of the belt type skimmer	43
3.1.2.3 Experiments using belt type skimmer	44
3.1.2.3.1 Analytical procedure	44
3.2 Treatment Section	45
3.2.1 Facilities	45
3.2.2 Preparation of synthetic wastewater	45
3.2.3 Preparation of adsorbents	46
3.2.4 Analytical procedure. 3.2.4.1 COD removal method.	46 46
3.2.4.2 Testing procedure	47
3.2.5 Characterization of adsorbents	47
3.2.6 Batch experiments	47
3.2.6.1 Effect of adsorbent dosage of carbonized rice husk	48
3.2.6.2 Oil treating ability of raw rice husk	48
3.2.6.3 Oil treating ability of saw dust	48
3.2.6.4 Effect of contact time	49
3.2.6.5 Effect of initial oil concentration	49
3.2.6.6 Effect of particle size	49
3.2.6.7 Effect of solution pH	49
3.2.6.8 Adsorption isotherms	50
3.3 Service Station Wastewater Treatment	50
Chapter 4: Result and Discussion	51
4.1 Recovery Section	51

4.1.1 Batch experiments	51
4.1.1.1 Effect of oil amount on oil recovery	51
4.1.2 Belt type skimmer tests	53
4.2 Treatment Section.	54
4.2.1 COD calibration curve	55
4.2.2 Characteristics of adsorbents	55
4.2.3 Batch experiments	57
4.2.3.1 Effect of adsorbent dosage	57
4.2.3.2 Effect of contact time	59
4.2.3.3 Effect of initial oil concentration	59
4.2.3.4 Effect of particle size	60
4.2.3.5 Effect of solution pH	62
4.2.3.6 Adsorption kinetics	62
4.2.3.7 Adsorption isotherms	64
4.3 Combination of Recovery & Treatment Sections	66
4.3.1 Service station wastewater treatment	66
4.3.2 Scale up	67
	67
Chapter 5: Conclusions & Future work	68
5.1 Recovery Section	68
5.2 Treatment Section	68
5.3 Integrated System	69
5.4 Future Work	69
5.4.1 Skalar Fluo-Imager analyzer	70
References	72
Appendix	74

LIST OF FIGURES

Figure 2.1:	Deepwater Horizon Oil Spillage.	10
Figure 2.2:	The Behavior of Spilled Oil	13
Figure 2.3:	Belt Skimmer	18
Figure 2.4:	Weir Skimmer	19
Figure 2.5:	Disc Skimmer	19
Figure 2.6:	Suction Skimmer	20
Figure 2.7:	Acid -Clay Re-refining Process Flow Diagram	25
Figure 2.8:	Carbonizing Process of Rice Husk.	28
Figure 2.9:	Research Path	35
Figure 2.10:	Grease and Oil Interceptor with Two Compartments	36
Figure 2.11:	Inside View of a Compartment.	37
Figure 2.12:	Conceptual Drawing of the Completed Port	37
Figure 2.13:	Blocks Offered Sri Lanka's First Licensing Round – 2007	39
Figure 3.1:	Design of Belt Skimmer.	43
Figure 3.2:	Design of Belt Skimmer. University of Moratuwa, Sri Lanka. Belt Skimmer. Discording Theses & Dissertations	44
Figure 3.3:	Batch Experimental Setup	47
Figure 4.1:	Oil Recovered by Human Hair	52
Figure 4.2:	COD Calibration Curve	55
Figure 4.3:	Effect of Adsorbent Dosage on Oil Adsorption Capacity onto Carbonized	
	Rice Husk	57
Figure 4.4:	Effect of Adsorbent Dosage on Oil Adsorption Capacity onto Raw Rice	
	Husk, Carbonized Rice Husk and Saw Dust	58
Figure 4.5:	Effect of Contact Time on Oil Adsorption Capacity onto Carbonized Rice	
	Husk	59
Figure 4.6:	Effect of Initial Oil Amount on oil adsorption capacity onto carbonized	
	rice husk	60
Figure 4.7:	Effect of Particle Size on Oil Adsorption Capacity onto Carbonized Rice	
	Huck	61

Husk	62
Figure 4.9: First Order Kinetic Plot for Oil Adsorption on Carbonized Rice Husk	63
Figure 4.10: Second Order Kinetic Plot for Oil Adsorption on Carbonized Rice Husk	63
Figure 4.11: Langmuir Isotherm Plot for Oil Adsorption on Carbonized Rice Rusk	65
Figure 4.12: Freundlich Isotherm Plot for Oil Adsorption on Carbonized Rice Husk	65
Figure 4.13: Tempkin Isotherm Plot for Oil Adsorption on Carbonized Rice Husk	66
LIST OF TABLES	
Table 2.1: Typical Composition of Rice Husk	26
Table 2.2: Chemical Composition of Ash from Rice Husk	26
Table 2.3: Reported Characteristics of Rice Husk	27
Table 4.1: Adsorbed and Recovered Oil Amount by Human Hair	52
Table 4.2: Recovered Oil Amount using 150 g Hair Belt	53
Table 4.3: Recovered Oil Amount using 300 g Hair Belt	53
Table 4.4: Recovered Oil Amount using 450 g Hair Belt	54
Table 4.5: Characteristics of Adsorbents	56
Table 4.6: Particle Size Distribution	56
Table 4.7: First and Second Order Parameters	64
Table 4.8: Experiments Results	66
Table 4.9: Pilot Scale Parameters for Batch Operation	67

Optimum Values of Process Parameters.....

Table 5.1:

Figure 4.8: Effect of Solution pH on Oil Adsorption Capacity onto Carbonized Rice

69

LIST OF ABBREVIATIONS

Abbreviation	Description
API	American Petroleum Institute
BOD	Biochemical Oxygen Demand
CEA	Central Environmental Authority
CEB	Ceylon Electricity Board
COD	Chemical Oxygen Demand
CPC	Ceylon Petroleum Corporation
DAF	Dissolved Air Floatation
TDS	Total Dissolved Solid
TOC	Total Organic Carbon
TSS	Total Suspended Solids

