IN-RUSH CURRENT MITIGATION ON TOROIDAL TRANSFORMERS WITH SLOTTED CORE

Minura Gayan Karapitiya Pathirana

(168624K)

Degree of Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

April 2020

IN-RUSH CURRENT MITIGATION ON TOROIDAL TRANSFORMERS WITH SLOTTED CORE

Minura Gayan Karapitiya Pathirana

(168624K)

Dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Installation

Department of Electrical Engineering

University of Moratuwa Sri Lanka

April 2020

DECLARATION OF THE CANDIDATE AND SUPERVISORS

I declare that this is my own work and this dissertation does not incorporate without acknowledgment any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

.....

Signature of the candidate (M.G.K.Pathirana)

Date

The above candidate has carried out research for the Masters dissertation under my supervision.

.....

Signature of the supervisor (Prof. J.P. Karunadasa)

Date

ACKNOWLEDGEMENT

First of all, I would like to express my sincere thanks to my supervisor, Professor J. P. Karunadasa, who gave me great support and guidance so that I can continue this research with motivation, enthusiasm and his extensive knowledge to be successful.

Furthermore, I would like to thank all the lecturers who participated in the Master's degree program who broadened our horizons, and provided us with opportunities to improve knowledge in various fields.

Next, I would like to thank the company that I'm currently works at, Noratel International (Pvt) Ltd., which provides the research materials and facilities necessary to complete this research.

A sincere thanks to the prototyping department of the company for supporting me and giving me the support of sampling, which helped me a lot to collect the required data.

Also, I thank my friend Sameera for the help in my workplace and continued encouragement throughout the career.

Finally, I would like to thank my wife, mother, father and sister for their unwavering love and support in this difficult period.

M.G.K.Pathirana.

ABSTRACT

When it comes to transformer industry, toroidal transformers plays a major role, especially in high-tech applications, as they outperform traditional laminated transformers. However, toroidal transformers have a much higher inrush current, especially compared to laminate transformers, which will be a major drawback at the high power applications.

Currently there are many options available outside the toroidal transformer to avoid this inrush problem, but reliability issues will still there when using external inrush controlling mechanisms. Traditional inrush current mitigation methods on transformers are not sufficient for toroidal transformers. These methods tend to reduce good performance as well as inrush current.

The proposed inrush current mitigation method using a transformer-based slotted core, significantly reduces the inrush current while protecting the excellent performance characteristics which is typical for toroidal transformers. In addition, it offers better control of the inrush current than traditional methods.

The proposed method is a slotted core which has a slot in the outer periphery.

That controls the saturation inductance and hence the inrush current.

At the end, the slotted core maintains high performance without compromising normal operation.

This document includes a practical development of slotted cores and as well as experimental tests of inrush current, and finally a new design tool for the optimized deigns.

TABLE OF CO	ONTENTS
-------------	---------

DECLARATION OF THE CANDIDATE AND SUPERVISORS	. i
ACKNOWLEDGEMENT	. ii
ABSTRACT	. iii
LIST OF FIGURES	vi
LIST OF TABLES	. vii
LIST OF ABBREVIATIONS	viii
LIST OF APPENDICES	ix
Chapter 1 – INTRODUCTION	
1.1 Toroidal transformer construction	. 2
1.2 Motivation to the research	. 4
1.3 Objective of the research	. 5
Chapter 2 - INRUSH CURRENT IN TOROIDAL TRANSFORMERS	•
2.1 Theoretical background of inrush current	6
2.2 Toroidal core	9
2.2.1 Silicon steel	9
2.2.2 Silicon steel on toroidal core	10
2.3 Saturation inductance and inrush current	11
Chapter 3 - RESEARCH DESIGN	
3.1 Existing inrush current mitigation methods	13
3.1.1 NTC thermistor in primary winding	13
3.1.2 Use of NGOSS	15
3.1.3 Cut core toroidal transformers	18
3.2 Proposed slotted core concept for inrush current mitigation	. 20
3.2.1 Scope of research	. 20
3.2.2 Methodology	. 20
3.2.3 Simulation of flux distribution	. 21
3.2.4 Development of slotted core	. 22
3.2.5 Transformer winding	. 23

	3.2.6 Theoretical inrush calculation	24
3.3	Calculation of saturation inductance Ls	27
3.4	Calculation of inrush current	29
Chapter 4	- EXPERIMENTAL DATA COLLECTION	
4.1	Inrush current measurement on samples	33

Chapter 5 - ANALYSIS OF DATA

5.1	Theoretical inrush calculation	37
5.2	Optimum slot depth calculation for specified inrush current	38
5.3	Development of design tool for slotted core	39
5.4	Design tool validation	41
5.5	Comparison of electrical performance with conventional	
	inrush mitigation method	43
5.6	Comparison of manufacturing cost with conventional	
	Cut core method	44

Chapter 6 - CONCLUSION AND SUGGESTIONS FOR FUTURE

RESEARCH

6.1	Conclusion	46
6.2	Suggestions for future research	47

Reference List	48
Appendices	49

LIST OF FIGURES

Figure No.	Description	Page
Figure 1.1:	Inrush current transient waveform	2
Figure 1.2:	Toroidal transformer	3
Figure 1.3:	EI laminated transformer	4
Figure 2.1:	Graphical interpretation of inrush current with remanence	8
Figure 2.2:	Silicon steel mother coils	9
Figure 2.3:	BH characteristics for AISI M-5	13
Figure 3.1:	Typical characteristic curve for NTC	14
Figure 3.2:	Magnetization characteristics for GOSS-AISI Grade M5	15
Figure 3.3:	Core loss curve for GOSS-AISI Grade M5	16
Figure 3.4:	Magnetization characteristics for NGOSS 35H300	16
Figure 3.5:	Core loss curve for NGOSS 35H300	17
Figure 3.6:	BH loops before and after core cut	18
Figure 3.7:	Slotted core	20
Figure 3.8:	No load condition	21
Figure 3.9:	Inrush condition	21
Figure 3.10:	Machine modification for slot cutting	22
Figure 3.11:	Slotted core	22
Figure 3.12:	Different slot sizes	23
Figure 3.13:	Sample windings	23
Figure 3.14:	1.6T flux sample test results	25
Figure 3.15:	0.9T flux sample test results	25
Figure 3.16:	Sample test results	26
Figure 3.17:	BH loops at different air-gaps	30
Figure 3.18:	BH loop at deep saturation	31
Figure 4.1:	Test setup for inrush current measurement	33
Figure 5.1:	Flow chart of Design tool	40
Figure 5.2:	Design tool	41

LIST OF TABLES

Table No.	Description	Page
Table 4.1:	1.6T sample test results	34
Table 4.2:	1.5T sample test results	34
Table 4.3:	1.4T sample test results	35
Table 4.4:	1.3T sample test results	35
Table 4.5:	1.2T sample test results	35
Table 4.6:	1.1T sample test results	35
Table 4.7:	1.0T sample test results	35
Table 4.8:	0.9T sample test results	36
Table 5.1:	Electrical parameters comparison	43
Table 5.2:	Conventional cut core costing	44
Table 5.3:	Slotted core costing	45

LIST OF ABBREVIATIONS

Abbreviation	Description
AC	Alternative Current
AISI	American Iron and Steel Institute
DC	Direct Current
EMI	Electro Magnetic Interference
GOSS	Grain Oriented Silicon Steel
Н	Height
ID	Inner Diameter
IEC	International Electrotechnical Commission
MMF	Magneto Motive Force
MPL	Magnetic Path Length
NC	Nano Crystalline
NGOSS	Non Grain Oriented Silicon Steel
NTC	Negative Temperature Coefficient
OD	Outer Diameter
RMS	Root Mean Square

LIST OF APPENDICES

Appendix	Description	Page
Appendix A:	Design simulations with ToroidEZE programme with	
	1.6T to 0.9T flux density	49
Appendix B:	Test equipment details	57