Methodology to Identify the Optimum Network for an Urban Rail System

Malkanthi L.P.S.

09/8089

Thesis submitted in partial fulfillment of the requirements for the degree Master

of Science

Department of Civil Engineering

University of Moratuwa

Sri Lanka

June 2010

Declaration of the candidate

"I declare that this is my own work and this thesis/dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any University or other institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text"

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Signature:

Date:

Declaration of the supervisor

"I have supervised and accepted this thesis for the submission of the degree"

Signature of the supervisor:

Date:

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Dedication

To my loving parents.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Acknowledgements

I gratefully acknowledge my sincere gratitude to my supervisor, Prof. J.M.S.J. Bandara, University of Moratuwa for giving me the opportunity to undertake this research study and providing valuable advice and support throughout the research study. I would like to acknowledge and appreciate the advice given by Prof. Priyan Dias, University of Moratuwa and Dr. W.K. Mampearachchi, University of Moratuwa while acting as the examiners in my progress reviews.

I owe a very special gratitude to research students at the Transportation Engineering Division of the Department of Civil Engineering University of Moratuwa for giving me the support throughout the research.

I would like to take this opportunity to extend my heartfelt appreciation to all the academic and non academic staff of Department of Civil engineering, University of Moratuwa, who has assisted me in numerous occasions.

Finally I offer my sincere gratitude for my colleagues, who supported me in various ways to complete my research study successfully.

Malkanthi L.P.S.

Abstract

Planning of railway systems is very important in situations of urban Light Rail Transit (LRT) and Mass Rapid Transit (MRT) network development because, these transportation systems not only provides for the mobility of people and goods, but also affect public policy concerns such as air quality, environmental resource consumption, social equity, land use, urban growth, economic development, safety, and security. Only a reasonable rail system network, which fit to urban features and urban development, has been well planned, each rail line can be implemented efficiently. If not, it's very easy to lead to duplicate construction and waste.

The broad objective of a railway network development is minimizing the total cost that includes both construction and operation costs, maximizing social welfare and profit and minimizing travel time and negative environmental impacts. The question in transport network design is to determine a network that has an optimal performance given a specific set of design objectives. The network design problem becomes complicated due to its multi-objective nature and the non-linearity of the objective function that represents the total cost.

Many studied have been conducted on optimization of transport networks. Wirasinghe and Seneviratne have done a study on determination of optimal rail line length considering the less complex many to one travel demand pattern (Wirasinghe and Seneviratne 1986 cited in Wirasinghe et al 2002). Van Oort and Van Nes (2004) have done a study on a network structure which reduces the number of transfers. Chien and Schonfeld have developed a model for optimization of a rail transit line and its feeder bus system (Chien and Schonfeld, 2007). According to previous research studies, a methodology has been developed to identify the optimum railway route between two given stations using Geographic Information System (GIS) by considering the engineering, environmental and socio-economical factors (Vinoth et al., 2008). Another study has been carried out on identifying the optimum railway network, by considering the factors related to the construction cost and the passenger demand (Ansaf et al, 2009). It is observed that the latter two studies have considered on optimizing the rail network in the construction stage and the previously mentioned studied have considered some of the factors related to the operational stage of the

network. Operational stage is also very much important in a transport network because it will be very much costly or difficult to operate successfully if the cost components under operational stage are not considered in the planning stage. Although the network can be optimized by considering the construction stage, it is not completed until the operational stage costs are considered. Therefore it is very much important to consider the operational costs in developing methodologies to identify the optimum railway network.

This study is to develop a methodology to find the optimum rail road network considering the operational conditions in addition to the construction and user cost. Objectives considered in optimization are categorized under two main sectors as operator and the user. Objectives to be optimized in operators' view are minimizing fleet cost, operational cost and infrastructure and maintenance costs while objectives related to in users' view are minimizing in vehicle cost, waiting time cost and transfer cost.

At first stage of this study, ten locations in the Colombo metropolitan region are selected locations for station development and two networks are identified based on two different scenarios. First scenario is to generate a primary route network considering the demands between station locations. Routes are assigned to highest demands until all the nodes are connected at least by one route. In second scenario, all demand between node pairs are assigned along their possible shortest paths and add them up to calculate the total demand for each link. Primary network is generated by linking the highest demand links until all the nodes are connected. Routes are assigned for the network considering the highest demand for both cases.

The two route networks are checked for the above mentioned six cost components. Route networks are fine-tuned using a set of algorithms for route merging, adding links and route sprouting. Fine-tuned route networks are also checked for cost components and compare the values between the two networks. Network with least cost values and least sensitivity to cost values with route network changes is selected as the best network and the method to generate that network is considered as the methodology to find the optimum network. Sensitivity analysis is done to check the behavior of the selected network with varying passenger demand. The stage wise development of the network with time is also identified.

Table of Contents

Declaration of the candidate	i
Declaration of the supervisor	ii
Dedication	iii
Acknowledgements	iv
Abstract	V
Table of Contents	vii
List of figures	ix
CHAPTER 1: INTRODUCTION	1
1.1 General	1
1.1.1 Transportation planning	
1.1.2 Railway System Planning Moratuwa, Sri Lanka Electronic Theses & Dissertations	3
1.2 Objectives	4
1.3 Significance of the Research	4
1.4 Study Area	6
1.5 Scope of the Report	8
Chapter 02: Literature Review	9
2.1 General	9
2.1.1 History of Rail Transportation	9
2.1.2 Rail transportation systems	10
2.1.3 Rail Transport in Sri Lanka	12
2.1.4 Need of LRT/ MRT for Sri Lanka	14
2.2 Transport Network Optimization	20
2.2.1 Design of Public Transportation Network	20
2.2.2 Selection of optimum routes between stations	20

2.2.3 Line Optimization in Public Transport Systems	22
2.2.4 Different Types of Networks	22
2.2.5 Optimum network considering the construction cost and the demand	
2.3 Optimum network considering the operational cost	27
2.3.1 Operator's Costs	
2.3.2 Passenger Costs	
2.3.3 Route Network Planning	35
CHAPTER 3: METHODOLOGY	37
3.1 General	37
3.2 Calculation of Costs	
3.3 Case Study	44
3.3.1 Generating the Optimum length Network (Network 1)	46
3.3.2 Generating Minimum Transfer Network	61
3.3.3 Comparison of Minimum Fleet Network and Minimum Trar	nsfer Network
	67
3.4 Sensitivity Analysis	69
3.5 Stage wise Development of the network	71
CHAPTER 4: Conclusion and Future Study	73
6.1 General	73
6.2 Future Study	75
Reference List	76

List of figures

Figure 1.1: The transportation planning process
Figure 1.2: Divisional Secretariat Divisions (DSD) of CMR7
Figure 2.1: Conventional Railway system10
Figure 2.2: Mass Rapid Transit (MRT) system11
Figure 2.3: Light Rail Transit System12
Figure 2.4: Rail network in Sri Lanka13
Figure 2.5: Land Use Pattern in CMR in 196015
Figure 2.6: Land Use Pattern in Surrounding Areas of Colombo in 198816
Figure 2.7: Weighted Overlay Map21
Figure 2.8: Six options for transport from origin (O) to destination (D) in a network of ten nodes
Figure 2.9: Optimum network considering network length and passenger demand27
Figure 2.10 Schematic presentation of maintenance of a railway line and associated costs
Figure 3.1: Fleet allocation for the routes
Figure 3.2 Station Locations
Figure 3.3 Link numbered network for finding the shortest paths
Figure 3.4 Link lengths
Figure 3.5: Primary route Arrangement for the Minimum Fleet Network
Figure 3.6: Optimum length network with numbered links
Figure 3.7: Primary Route Network
Figure 3.8 : After merging route R1 and R3
Figure 3.9 : Overlapping routes
Figure 3.10 Modified route arrangement for the optimum length network
Figure 3.11 Minimum Transfer Network
Figure 3.12 Primary route arrangement for minimum transfer network
Figure 3.11 Modified route arrangement for minimum transfer network

igure 3.12: Numbered links according to the importance for optimum length network
igure 3.13: Numbered links according to the importance for minimum transfer
etwork

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of tables

Table 2.1: Changes in Population and Land Extend in Urban Centers from 1981 to
200114
Table 2.2: Growth rates in Passenger Transport 17
Table 2.3: Vehicle Ownership Levels in Colombo Metropolitan Region 18
Table 2.4: Comparison of minimum spanning tree network and the complex network
Table 3.1 Passenger Demand Matrix 45
Table 3.2 : Shortest paths and Shortest Distances Matrix
Table 3.3: Number of train trips per hour for each link
Table 3.4: Details of the primary route arrangement to be adjusted
Table 3.5: Fleet size for the primary route arrangement for the minimum fleet network
Table 3.6: Calculation of lengths travelled 53
Table 3.7: Details of primary route arrangement for the optimum length network59
Table 3.8: Cost values of primary and modified route arrangements for Minimum
fleet network
Table 3.9: Relevant Demand values for the links 61
Table 3.10: Number of trips per hour for links
Table 3.11: Details of primary route arrangement for the minimum transfer network64
Table 3.12: Details of the modified route network for the minimum transfer network
Table 3.13: Cost values of primary and modified route arrangements for Minimum
transfer network
Table 3.14: Comparison of cost values of two networks