AGE STRUCTURAL TRANSITIONS AND INFLATION DYNAMICS IN SELECTED SOUTH ASIAN COUNTRIES

Palaveni Arachchige Himash Rashmika Ariyarathna

(178102T)

Degree of Master of Science

Department of Mathematics

University of Moratuwa

Sri Lanka

September 2020

AGE STRUCTURAL TRANSITIONS AND INFLATION DYNAMICS IN SELECTED SOUTH ASIAN COUNTRIES

Palaveni Arachchige Himash Rashmika Ariyarathna

(178102T)

Dissertation submitted in partial fulfillment of the requirement for the degree Master of Science in Financial Mathematics

Department of Mathematics

University of Moratuwa

Sri Lanka

September 2020

DECLARATION OF THE CANDIDATE & SUPERVISOR

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:	Date:
P.A.H.R. Ariyarathna	

The above candidate has carried out research for the Masters Dissertation under my supervision.

Signature of the supervisor:	Date:
Ms. Kumuthini Sivathas	
Researcher	
Verite Research Pvt. Ltd, Colombo.	
	5

 Signature of the supervisor:
 Date:

 Mr. Rohana Dissanayake
 Senior Lecturer,

 Department of Mathematics, University of Moratuwa.
 Date:

ACKNOWLEDGEMENTS

Immeasurable appreciation and deepest gratitude for the help and support are extended to the following persons who in one way or another have contributed in making this study possible.

First I would like to express my sincere gratitude to my main supervisor Ms. Kumuthini Sivathas, Researcher in the Verite Research Pvt. Ltd. Colombo; without her continuous guidance, support and reviews this study would not be successful.

Secondly I would like to express my sincere gratitude to my co-supervisor Mr. Rohana Dissanayake, Senior Lecturer, Department of Mathematics, University of Moratuwa and Mr. Cooray, Senior Lecturer, Department of Mathematics, University of Moratuwa.

Finally I would like to express my sincere gratitude to my mother and my friend giving me support to fulfill this dissertation.

ABSTRACT

The aim of this study is to find out whether there is significant effect from age structural transitions on inflation dynamics in some selected South Asian countries such as Sri Lanka, India and Bangladesh. It has been shown that the age structural transitions can disrupt macroeconomic equilibriums of countries, if unattended. Sri Lanka is facing a decreasing youth dependency ratio growth and increasing elderly dependency ratio growth phase as a result of age structural transitions. This poses serious concerns in terms of obvious factors such as health budget and social security payments to elders in future. In this thesis, I endeavor to study whether age structural transition has an implication on an important macroeconomic indicator which is inflation. A structural VAR model has been constructed to answer this issue. Elderly dependency ratio growth, youth dependency ratio growth, real interest rate and output gap growth are the selected variables from 2003 to 2018 for these models. Cholesky decomposition and structural decomposition used to check the robustness of the models. The empirical results showed that the growth of youth dependency ratio is inflationary for Sri Lanka. But for India and Bangladesh growth of youth dependency ratio does not have any significant effect on inflation. Growth of elderly dependency ratio does not have any significant effect on inflation for Sri Lanka, India and Bangladesh. But the magnitude of the impact from elderly and youth dependency ratio growth on inflation is around 5% over the period of 10 months as the variance decomposition reveals for Sri Lanka and for India and Bangladesh it is around 2%.

TABLE OF CONTENTS

Declaration of the candidate & supervisor	i
Acknowledgements	ii
Abstract	iii
Table of contents	iv
List of figures	vi
List of tables	viii
List of abbreviations	ix
List of appendices	х
1. Introduction	01
1.1. Introduction	01
1.1.1. Demographic Variables	01
1.1.2. Inflation	02
1.1.3. Consumer Price Index	03
1.1.4. Gross Domestic Product	04
1.1.5. Real Interest Rate	04
1.1.6. Output Gap	05
1.2. Research Problem	05
1.3. Objective of the research	06
1.4. Significance of the study	06
1.5. Organization of the study	06
2. Literature review	08
2.1. Introduction	08
2.2. Related researches	08
3. Methodology	13
3.1. Introduction	13
3.2. Data	13
3.3. Theoretical background	14
3.3.1. Phillips curve	14

3.3.2. IS curve	14
3.3.3. Interest rate response function	14
3.3.4. Life cycle hypothesis	15
3.3.5. Hodrick-Prescott filtering	15
3.3.6. Unit root test	15
3.3.6.1. Augmented Dickey Fuller unit root test	15
3.3.6.2. Kwiatkowski-Phillips-Schmidt-Shin unit root test	16
3.3.7. Polynomial regression model	16
3.3.8. VAR model	16
3.3.9. VMA model	17
3.3.10. Cholesky decomposition	17
3.3.11. Model selection criteria	18
3.3.11.1. Akaike information criteria	18
3.3.11.2. Schwarz information criteria	18
4. Results and Discussion	19
4.1. Introduction	19
4.2. Descriptive statistics	19
4.3. Unit root test	22
4.4. VAR model	23
4.5. VAR model for Sri Lanka	25
4.6. VAR model for India	28
4.7. VAR model for Bangladesh	32
4.8. Impulse response & variance decomposition (Cholesky decomposition)	35
5. Conclusion	43
5.1. Conclusion	43
5.2. Policy implications	45
5.3. Limitations of the research	45
Reference List	46
Appendix	48

LIST OF FIGURES

Figure 1.1: Youth population growth	01
Figure 1.2: Elderly population growth	02
Figure 1.3: Consumer Price Indexes	03
Figure 1.4: GDP Growth	04
Figure 1.5: Real Interest Rate	05
Figure 4.1: Youth population growth	20
Figure 4.2: Elderly population growth	20
Figure 4.3: Consumer Price Indexes	21
Figure 4.4: GDP Growth	21
Figure 4.5: Real Interest Rate	21
Figure 4.6: Root circle for VAR model 1 (youth dependency ratio model)	25
Figure 4.7: Root circle for VAR model 2 (elderly dependency ratio model)	25
Figure 4.8: Correlogram for the VAR model 1 (youth dependency ratio model)	26
Figure 4.9: Correlogram for the VAR model 2 (elderly dependency ratio model)	26
Figure 4.10: Root circle for VAR model 3 (youth dependency ratio model)	29
Figure 4.11: Root circle for VAR model 4 (elderly dependency ratio model)	29
Figure 4.12: Correlogram for the VAR model 3 (youth dependency ratio model)	29
Figure 4.13: Correlogram for the VAR model 4 (elderly dependency ratio model)	30
Figure 4.14: Root circle for VAR model 5 (youth dependency ratio model)	32
Figure 4.15: Root circle for VAR model 6 (elderly dependency ratio model)	32
Figure 4.16: Correlogram for the VAR model 5 (youth dependency ratio model)	33

Figure 4.17: Correlogram for the VAR model 6 (elderly dependency ratio model)	33
Figure 4.18: Impulse response of VAR model 1 (SL youth dep.)	36
Figure 4.19: Impulse response of VAR model 2 (SL elderly dep.)	38
Figure 4.20: Impulse response of VAR model 3 (India youth dep.)	39
Figure 4.21: Impulse response of VAR model 4 (India elderly dep.)	40
Figure 4.22: Impulse response of VAR model 5 (Bangladesh youth dep.)	41
Figure 4.23: Impulse response of VAR model 6 (Bangladesh elderly dep.)	42

LIST OF TABLES

Table 4.1: Descriptive statistics of Sri Lanka	19
Table 4.2: Descriptive statistics of India	19
Table 4.3: Descriptive statistics of Bangladesh	19
Table 4.4: Unit root test for Sri Lanka	22
Table 4.5: Unit root test for India	22
Table 4.6: Unit root test for Bangladesh	22
Table 4.7: Serial Correlation test for VAR model 1 (youth dep. ratio model)	27
Table 4.8: Serial Correlation test for VAR model 2 (elderly dep. ratio model)	27
Table 4.9: Heteroscedasticity test for VAR model 1 (youth dep. ratio model)	27
Table 4.10: Heteroscedasticity test for VAR model 2 (elderly dep. ratio model)	28
Table 4.11: Serial Correlation test for VAR model 3 (youth dep. ratio model)	30
Table 4.12: Serial Correlation test for VAR model 4 (elderly dep. ratio model)	30
Table 4.13: Heteroscedasticity test for VAR model 3 (youth dep. ratio model)	31
Table 4.14: Heteroscedasticity test for VAR model 4 (elderly dep. ratio model)	31
Table 4.15: Serial Correlation test for VAR model 5 (youth dep. ratio model)	34
Table 4.16: Serial Correlation test for VAR model 6 (elderly dep. ratio model)	34
Table 4.17: Heteroscedasticity test for VAR model 5 (youth dep. ratio model)	34
Table 4.18: Heteroscedasticity test for VAR model 6 (elderly dep. ratio model)	35

LIST OF ABBREVIATIONS

ADF	- Augmented Dickey Fuller
AR	- Autoregression
CPI	- Consumer Price Index
DEP1	- Youth Dependency ratio
DEP2	- Elderly Dependency Ratio
GDP	- Gross Domestic Product
GMM	- Generalized Method of Moments
IS	- Investment and Saving Equilibrium
KPSS	- Kwiatkowski Phillip Schmidt Shin
LCH	- Life Cycle Hypothesis
MA	- Moving Average
OECD	- Organization for Economic Co-operation and Development
OLS	- Ordinary Least Square
RR	- Real Interest Rate
SVAR	- Structural Vector Auto Regression
VAR	- Vector Auto Regression
VMA	- Vector Moving Average
WPI	- Wholesale Price Index
YGAP	- Output Gap

LIST OF APPENDICES

Table A1: VAR model for Sri Lanka (youth dependency ratio)	48
Table A2: VAR Lag length criteria for Sri Lanka (youth dependency ratio)	54
Table A3: Inverse roots of AR characteristic polynomial for the VAR model Sri Lanka (youth dependency ratio)	54
Table A4: VAR model for Sri Lanka (elderly dependency ratio)	56
Table A5: VAR Lag length criteria for Sri Lanka (elderly dependency ratio)	62
Table A6: Inverse roots of AR characteristic polynomial for the VAR model Sri Lanka (elderly dependency ratio)	63
Table A7: VAR model for India (youth dependency ratio)	64
Table A8: VAR Lag length criteria for India (youth dependency ratio)	70
Table A9: Inverse roots of AR characteristic polynomial for the VAR model India (youth dependency ratio)	71
Table A10: VAR model for India (elderly dependency ratio)	72
Table A11: VAR Lag length criteria for India (elderly dependency ratio)	78
Table A12: Inverse roots of AR characteristic polynomial for the VAR model India (elderly dependency ratio)	79
Table A13: VAR model for Bangladesh (youth dependency ratio)	81
Table A14: VAR Lag length criteria for Bangladesh (youth dependency ratio)	83
Table A15: Inverse roots of AR characteristic polynomial for the VAR model Bangladesh (youth dependency ratio)	84
Table A16: VAR model for Bangladesh (elderly dependency ratio)	85
Table A17: VAR Lag length criteria for Bangladesh (elderly dependency ratio)	91

Table A18: Inverse roots of AR characteristic polynomial for the VAR model	
Bangladesh (elderly dependency ratio)	91
Table A19: Variance decomposition of VAR model 1 (SL youth dep.)	93
Table A20: Variance decomposition of VAR model 2 (SL elderly dep.)	94
Table A21: Variance decomposition of VAR model 3 (India youth dep.)	96
Table A22: Variance decomposition of VAR model 4 (India elderly dep.)	97
Table A23: Variance decomposition of VAR model 5 (Bangladesh youth dep.)	98
Table A24: Variance decomposition of VAR model 6 (Bangladesh elderly dep.)	99
Table A25: Structural decomposition matrix Sri Lanka (youth dep.)	101
Table A26: Structural decomposition matrix Sri Lanka (elderly dep.)	102
Table A27: Structural decomposition matrix India (youth dep.)	103
Table A28: Structural decomposition matrix India (elderly dep.)	104
Table A29: Structural decomposition matrix Bangladesh (youth dep.)	105
Table A30: Structural decomposition matrix Bangladesh (elderly dep.)	107
Table A31: Variance decomposition of VAR model 1 (SL youth dep.)	108
Table A32: Variance decomposition of VAR model 2 (SL elderly dep.)	109
Table A33: Variance decomposition of VAR model 3 (India youth dep.)	110
Table A34: Variance decomposition of VAR model 4 (India elderly dep.)	111
Table A35: Variance decomposition of VAR model 5 (Bangladesh youth dep.)	113
Table A36: Variance decomposition of VAR model 6 (Bangladesh elderly dep.)	114
Figure A1: Impulse response of VAR model 1 (SL youth dep.)	116
Figure A2: Impulse response of VAR model 2 (SL elderly dep.)	116
Figure A3: Impulse response of VAR model 3 (India youth dep.)	117

Figure A4: Impulse response of VAR model 4 (India elderly dep.)	117
Figure A5: Impulse response of VAR model 5 (Bangladesh youth dep.)	118
Figure A6: Impulse response of VAR model 6 (Bangladesh elderly dep.)	118