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Abstract 

 

On-time detection of possible adverse events a drug may have has been a critical issue for 

the pharmaceutical industry, although it undergoes rigorous clinical trials there still can be 

adverse effects once it reaches the market, this is known as post-market drug safety 

surveillance. The ordinary way to collect these was through physicians who prescribe the 

drug reporting back to the pharmaceutical company. But this process consumes time and 

has the risk of missing important drug adverse reactions. 

The recent popularity of social media has led people to communicate extensively about 

their aspects in day-to-day life, this includes the communications of the experience 

regarding the drugs and their adverse events. This makes social media a rich resource for 

monitoring drugs after they reach the market. 

In this research, we experiment with machine learning models including deep learning 

models using social media contents manually verified by health care professionals for the 

presence of drug adverse events. The Social media data has been acquired through popular 

health care social media channels from their respective APIs.  

Well-known Text classification algorithms such as SVM and Logistic Regression provide 

the best accuracy for ADR mining, CNN's which has recently shown high accuracy levels 

for text classification also shows high levels of accuracy for ADR classification tasks.    
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