MODELLING OF MAGNETIC HYSTERESIS OF A THREE PHASE TRANSFORMER UNDER DYNAMIC CONDITIONS

M.P.D.N. Gunasinghe

(168511L)

Degree of Master of Science in Electrical Engineering

Department of Electrical Engineering

University of Moratuwa Sri Lanka

May 2022

MODELLING OF MAGNETIC HYSTERESIS OF A THREE PHASE TRANSFORMER UNDER DYNAMIC CONDITIONS

Munasinghe Pathirathnalage Dilini Nimasha Gunasinghe

(168511L)

Dissertation submitted in partial fulfillment of the requirements for the Degree Master of Science in Electrical Engineering

Department of Electrical Engineering

University of Moratuwa Sri Lanka

May 2022

Declaration of the Candidate and Supervisor

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature: UOM Verified Signature

Date: 19. 05. 2022

The above candidate has carried out research for the Masters Dissertation under my supervision.

Name of the supervisor: Prof. J.P. Karunadasa

Signature of the supervisor: *UOM Verified Signature* Date: 20. 05. 2022

Abstract

The phenomenon of magnetic hysteresis effect of the core material of a transformer plays an important role when representing the transformer in a simulated environment.

Input-output behavior of a transformer is critically correlated with the magnetic properties of the core material which is influenced by the magnetic hysteresis effect. To analyze the magnetizing characteristics of the core material of a transformer, it is required to develop a mathematical model for simulating the hysteresis phenomenon.

As the outcome of this research, reliable representation of magnetizing characteristics of a three-phase transformer core, without considering any core material related parameters, a test based mathematical model is simulated. Mathematical model, which capable of producing magnetic characteristics for any given voltage level is designed by conducting two tests separately for a single phase transformer and three limbs of a three phase transformer.

In the scope of this research, magnetizing characteristic model is developed using Matlab Simulink. Test data required to develop the proposed model is obtained using single phase and three transformer. Results obtained from the developed model is validated with the practically obtained outputs. Practical tests executed on transformer show close connectivity with simulated results evidencing the extensiveness of the designed model.

Acknowledgement

I would like to express my truthful appreciation to those who were behind me in completing my research project.

I am deeply appreciative to my supervisor Pro. J.P. Karunadasa, for his continuous support, supervision, guidance and encouragement all over the period.

I would also like to express my gratitude to academic staff members of the Department of Electrical Engineering for their encouragements and insightful comments during progress review sessions.

My sincere thanks go to Electrical Machines Laboratory staff for supporting me in conducting laboratory experiments successfully.

Last but not least, I would express my heartiest gratitude to my husband, my parents and my siblings for their continuous support, motivation and encouragement which assisted me to complete this research study in challenging situations.

Table of Contents

Declaration of the Candidate and Supervisor i
Abstractii
Acknowledgement iii
Table of Contentsiv
List of Figures
List of Abbreviations
1 INTRODUCTION
1.1 Daekground
1.2 Problem Statement
1.5 Troblem Statement
1.4 Objectives of Study
1.5 Motivation
1.6 Methodology
2 LITERATURE REVIEW
3 IESTING AND DATA ANALYSING
3.1 Research Overview
3.2 Testing Methodology
3.3 Tests Conducted
3.3.1 Test on Single Phase Transformer
3.3.2 Test on Three Phase Transformer
4 DESIGNING AND SYSTEM MODELLING
4.1 Mathematical Modelling of Magnetic Hysteresis
4.1.1 Method 01 – When Magnetizing Characteristic Data Available Only for
Rated Voltage
4.1.2 Method 2 – When Magnetizing Characteristic Data Available for Any
Voltage32
5 RESULTS AND DISCUSSION
5.1 Mathematical Model – Method 01
5.1.1 Test Results and Modelled Results for 300V40
5.1.2 Test Results and Modelled Results for 200V40
5.1.3 Test Results and Modelled Results for 100V41
5.2 Mathematical Model – Method 0241

5.2.1	Test Results and Modelled Results for Limb A (400V)	42
5.2.2	Test Results and Modelled Results for Limb B (400V)	43
5.2.3	Test Results and Modelled Results for Limb C (400V)	44
5.3 Dis	scussion	45
5.4 Tes	st Procedure and Outcome	47
6 CONCLU	SION AND RECOMMENDATIONS	51
REFERENC	CES	52

List of Figures

Figure 1: Magnetizing Characteristic Curve
Figure 2: Modified JA Model Measured and Modelled Inner B-H Loops7
Figure 3: Comparison between Hysteresis Loops of Simulated and Measured Data of
Grain Oriented Electrical Sheet
Figure 4: Hysteresis Curve Upper Quadrants of Metglass10
Figure 5: Hysteresis Curve Upper Quadrants of Surahammer10
Figure 6: Points Used to Model of Hysteresis Cycle
Figure 7: Comparison of Measured and Modelled Hysteresis Curves12
Figure 8: Single Phase Transformer Open Circuit Test Setup14
Figure 9: Single Phase Transformer - Rated Voltage Waveform (Yellow) and Current
Waveform (Green) Plotted in Oscilloscope
Figure 10: Rated Voltage Waveform with Noise Obtained from Matlab Plotting16
Figure 11: Rated Current Waveform with Noise Obtained from Matlab Plotting16
Figure 12: Magnetizing Characteristic Curve at Rated Voltage with Noise16
Figure 13: Noise Filtered Magnetizing Characteristic Curve at Rated Voltage17
Figure 14: Single Phase Transformer - 75% of Rated Voltage Waveform (Yellow) and
Current Waveform (Green) Plotted in Oscilloscope17
Figure 15: Noise Filtered Magnetizing Characteristic Curve at 75% of Rated Voltage
Figure 16: Single Phase Transformer - 50% of Rated Voltage Waveform (Yellow) and
Current Waveform (Green) Plotted in Oscilloscope

Figure 17: Noise Filtered Magnetizing Characteristic Curve at 50% of Rated Voltage
Figure 18: Single Phase Transformer - 25% of Rated Voltage Waveform (Yellow) and Current Waveform (Green) Plotted in Oscilloscope
Figure 19: Noise Filtered Magnetizing Characteristic Curve at 25% of Rated Voltage
Figure 20: Noise Filtered Magnetizing Characteristic Curves
Figure 21: Details of Three Limbs of the Three Phase Transformer
Figure 22: Test Setup of Test 0122
Figure 23: Three Phase Transformer Rated Voltage Waveform (Yellow), Magnetizing Current of Leg 1 (Green) and Magnetizing Current of Leg 3 (Purple)
Figure 24: Magnetizing Characteristic of Leg 124
Figure 25: Magnetizing Characteristic of Leg 3
Figure 26: Test Setup of Test 0225
Figure 27: Three Phase Transformer Rated Voltage Waveform (Yellow), Integrated Voltage Waveform (Red) and Magnetizing Current of Leg 2 (Green)
Figure 28: Magnetizing Characteristic of Leg 227
Figure 29: Magnetic Hysteresis Curve
Figure 30: Required Points of Rated Voltage Hysteresis Curve
Figure 31: Magnetizing Characteristic Curve with Co-ordinates of Six Points30
Figure 32: Obtained Values for 75% of Rated Voltage Curve
Figure 33: Maximum Loop Point and Coercivity Point of Hysteresis Curve

Figure 34: Mean Magnetizing Curve
Figure 35: Double Exponential Curves with varying 'K' Values
Figure 36: Double Exponential Curves with varying 'a' Values
Figure 37: Double Exponential Curves with varying 'b' Values
Figure 38: Magnetizing Characteristic Curve for 75% of Rated Voltage Using Method- 01
Figure 39: Comparison of Curves at 300V40
Figure 40: Comparison of Curves at 200V40
Figure 41: Comparison of Curves at 100V41
Figure 42: Magnetizing Characteristic of Limb A at Rated Voltage, Experimental Curve
(Blue), Modelled Curve Ascending Path (Red) and Modelled Curve Descending Path (Yellow)
Figure 43: Magnetizing Characteristic of Limb A at 300V42
Figure 44: Magnetizing Characteristic of Limb B at Rated Voltage, Experimental Curve
(Blue), Modelled Curve Ascending Path (Red) and Modelled Curve Descending Path (Yellow)
Figure 45: Magnetizing Characteristic of Limb B at 300V43
Figure 46: Magnetizing Characteristic of Limb B at Rated Voltage, Experimental Curve (Blue), Modelled Curve Ascending Path (Red) and Modelled Curve Descending Path (Yellow)
Figure 47: Magnetizing Characteristic of Limb C at 300V44

List of Abbreviations

В	Magnetic Flux
Н	Magnetic Field
JA	Jiles-Atherton
FE	Finite Element
PM	Preisach Model