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Abstract—Growing concerns over privacy invasion due to video
camera based monitoring systems have made way to non-invasive
Wi-Fi signal sensing based alternatives. This paper introduces
a novel end-to-end deep learning framework that utilizes the
changes in orthogonal frequency division multiplexing (OFDM)
sub-carrier amplitude information to simultaneously predict the
identity, activity and the trajectory of a user and create a
user profile that is of similar utility to a one made through
a video camera based approach. The novelty of the proposed
solution is that the system is fully autonomous and requires
zero user intervention unlike systems that require user originated
initialization, or a user held transmitting device to facilitate the
prediction. Experimental results demonstrate over 95% accuracy
for user identification and activity recognition, while the user
localization results exhibit a ±12cm error, which is a significant
improvement over the existing user tracking methods that utilize
passive Wi-Fi signals.

Index Terms—Activity Classification, Bidirectional Gated Re-
current Unit (Bi-GRU), Tracking, Long Short-Term Memory
(LSTM), User Authentication, Wi-Fi.

I. INTRODUCTION

USER identification, behaviour analysis, localization and
user activity recognition have become crucial tasks due

to the increasing popularity of fully automated facilities such
as cashierless stores, and many applications associated with
smart cities. Current state-of-the-art techniques for passive
user authentication [1], re-identification [2], activity classifi-
cation [3] and tracking [4], [5] are primarily based on video
feed analysis. Growing concerns on privacy invasion related
to video surveillance have made way to many non-invasive
alternatives. These alternatives utilize passive visible light
positioning and artificial potential fields [6], electric potential
changes in human bodies [7], body frequency absorption
signatures [8], acoustics [9], and kinect sensing [10]. However,
a better alternative is ambient Wi-Fi signals, due to the wide
availability and easy accessibility.
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In this paper, we introduce a fully autonomous, non invasive,
Wi-Fi based alternative, which can carry out user identifica-
tion, activity recognition and tracking, simultaneously, similar
to a video camera based approach.

A. Related Works

1) User Authentication: A majority of the wireless aided
user authentication systems in the literature require the user
to carry or wear a device to facilitate the authentication
process [11]. A device-free method which eliminates the
necessity of a user to carry a wireless transmitting device
for active user sensing is deemed more suitable practically.
Several device-free authentication mechanisms are popular
in the literature, including video for appearance-based user
authentication [1], gait pattern based user authentication, and
hybrid (appearance-based and gait pattern) models [12]. To
this end, WiWho [13] and Wi-Fi-ID [14] utilize conventional
signal processing techniques to create a gait profile for each
user, which is subsequently used for identification. Research
focus, however, has recently shifted towards learning based
techniques [15], [16], but being able to handle only registered
users is considered a major limitation in such systems, e.g.,
NeuralWave [15]. WiAU [16] focuses on alleviating this issue
by introducing a system that is robust to unauthorized users
via training their model with both authorized and unauthorized
(unregistered) user data. However, training a model for limit-
less potential unauthorized users is practically infeasible. Our
system focuses on providing a robust device-free solution for
this limitation.

2) Activity Recognition: Wireless-aided activity recogni-
tion is a well studied area in the literature [17]–[21]. It has
been already established that deep learning based techniques
do outperform the conventional signal processing based tech-
niques [17]–[19] with regards to activity recognition (see [20]
and references therein). However, the existing deep learning
based systems face difficulties in deployment due to their
omission of the constantly re-occurring periods without any
activities in their models. Thus, these systems require the user
to invoke the system by conducting a predefined action, or a
sequence of actions. This limitation is addressed in our work
to introduce a fully autonomous system.

3) User Tracking: Wi-Fi based localization systems that
utilize deep learning approaches are well studied in the lit-
erature [22]–[24]. However, most of these systems have the
compulsory requirement of user to carry a Wi-Fi capable
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device for active user sensing. Hence, existing device-free
Wi-Fi based approaches have attracted considerable research
interest [25]–[27]. Most existing deep learning based device
free localization systems can predict the position of the user
out of a set of pre-determined positions [9], but lack the ability
to continuously output user co-ordinates, which is mandatory
for continuous tracking. This is another gap in the literature
that is bridged in our paper.
B. Contributions of the Paper

We consider a distributed single-input-multiple-output
(SIMO) system that consists of a Wi-Fi transmitter, and a
multitude of fully synchronized multi-antenna Wi-Fi receivers,
placed in the sensing area. The samples of the received
signals are fed forward to a data concentrator, where channel
state information (CSI) related to all OFDM sub carriers are
extracted and pre-processed, before feeding them into the deep
neural networks. The key features of the proposed system are
as follows:
• The system is self-sustaining, device-free, non-invasive,

and does not require any user interaction at commence-
ment or otherwise, and can be deployed with existing
infrastructure.

• The system consists of a novel black-box technique that
produces a standardized annotated vector for authentica-
tion, activity recognition and tracking with pre-processed
CSI streams as the input for any event.

• With the aid of the three annotations, the system is able
to fully characterize an event, similar to a camera video.

State-of-the-art deep learning techniques are the key enabler
of the proposed system. With the advanced learning capabili-
ties of such techniques, complex mathematical modelling re-
quired for the process of interest can be conveniently learned.
To the best of our knowledge, this is the first attempt at
proposing an end-to-end system that predicts all these three in
a multi-task manner. Then, to address the limitations in already
available systems; firstly, for authentication, we propose a
novel prediction confidence-based thresholding technique to
filter out unauthorized users of the system, without the neces-
sity of any training data from them. Secondly, we introduce a
no activity (NoAc) class to characterize the periods without
any activities, which we utilize to make the system fully
autonomous. Finally, we propose a novel deep learning based
approach for device-free passive continuous user tracking,
which enables the system to completely characterize an event
similar to a camera video, but in a non-invasive manner.
The performance of the proposed system is evaluated through
experiments, and the system achieves accurate results even
with only two single-antenna Wi-Fi receivers.

The rest of the paper is organized as follows: in Sections
II, III and IV, we present the system overview, methodology
on data processing, and the proposed deep neural networks,
respectively. Subsequently, we discuss our experimental setup
in Section V, followed by results and discussion in Section
VI. Section VII concludes the paper.

II. SYSTEM OVERVIEW

Consider a distributed SIMO system that consists of a
single-antenna Wi-Fi transmitter, and M Wi-Fi receivers

Fig. 1. Generic Wi-Fi transmitter and receiver configuration for the proposed
system, where Rx and Tx refer to receivers and transmitters, respectively.

Fig. 2. The system architecture, where at time t, At is the predicted activity,
Pt is the predicted person and (Xt,Yt) are the Cartesian coordinates of the
location.

having N antennas each. The transmitter and the receivers
are placed in the sensing area, and an example scenario is
illustrated in Fig. 1. The receivers are fully synchronized,
with a sampling frequency of fs, and connected to a data
concentrator for centralized processing. The received signal at
the n-th antenna of the m-th receiver, where n ∈ {1, . . . , N}
and m ∈ {1, . . . ,M}, is given by

ym,n(t) =
S∑

i=1

hm,n,i,t xi cos(2πfit+ θm,n,i,t) + η(t), (1)

where S is the number of subcarriers in the transmitted OFDM
signal. Moreover, for the i-th subcarrier, hm,n,i,t and θm,n,i,t

denote the amplitude and the phase values of the random
channel between the transmitter and the n-th antenna of the m-
th receiver, respectively, and η(t) represents the random noise
in the received signal. We assume that at a given time t, the
data concentrator has access to all received signals (samples),
which can be achieved through a feedforward mechanism.

Fig. 2 presents an overview of the system. The first stage,
which is implemented at the data concentrator, focuses on
extracting CSI from the received signals. CSI is considered to
be more stable and robust to complex environmental effects
compared to Received Signal Strength Indicator (RSSI) values
[28], and since the CSI related to each subcarrier of the
OFDM signal can be extracted, the system will have more
information for effective learning. Moreover, the effect of
activities in a sensing area on the CSI has been recently
studied in [29]. This stage is explained in Section III-A. The
second stage is pre-processing the extracted CSI information,
which is elaborated in Section III-B. The pre-processed data is
fed into the deep neural networks, which include the activity
recognizer, the authenticator and the tracker. This is considered
to be the third stage in the system architecture, and it is
discussed in Section IV. The deep neural networks output three
annotations per data segment of the form [At,Pt, (Xt,Yt)],
where at time t, At is the predicted activity, Pt is the predicted
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person performing the activity and (Xt,Yt) are the Cartesian
coordinates of the person’s location, relative to a pre-defined
coordinate frame. With the aid of the three annotations, we
can sufficiently characterize the proceedings within a T second
window, similar to a camera video.

III. DATA PROCESSING

A. Extracting Channel State Information (CSI)

Current OFDM implementations (including 802.11a, g, n
and ac) use the information available in pilot sub-carriers of
the OFDM signal to estimate the channel behaviour and the
multi-path disturbances caused by the environment. Channel
estimation in OFDM systems is well-studied in the literature
[30]. The data concentrator performs the channel estimation in
the proposed system. We note that the channel estimation can
alternatively be performed at the receivers, and the estimated
CSI can then be forwarded to the data concentrator for further
processing. However, most commercial Wi-Fi devices do not
provide access to the estimated CSI data, and hence, we
propose a more general architecture for wider adaptability.

Both amplitude and phase values are finer-grained descrip-
tors of the wireless channel [31]. However, the phase values
are affected by several sources of error, including the carrier
frequency offset (CFO) and the sampling frequency offset
(SFO) [20]. Although these errors can be eliminated using
a calibration technique termed data sanitization in [32], we
avoid phase values in the learning process to reduce the
computational and implementational complexity. Thus, at time
t, for each m ∈ {1, . . . ,M} and n ∈ {1, . . . , N}, the data
concentrator estimates hm,n,t = [hm,n,1,t . . . hm,n,S,t]

>,
which is an S-by-1 vector that consists of amplitude values of
the channel between the transmitter and the n-th antenna of the
m-th receiver. The concentrator then forwards the estimated
amplitude values to the next stage for further processing.

B. CSI Preprocessing

We start the CSI preprocessing by a sparsity reduction
operation that aids the learning of the network. The coarse
frequency offset correction done in channel estimation usually
leads to some elements in hm,n,t to have negligibly small
values (quantitatively, amplitude < 0.05), as evident from Fig.
8, irrespective of the setup, trial, activity or the person. Fur-
thermore, this observation holds irrespective of the application,
distance between the Wi-Fi devices, and the position of the
person. These elements do not provide any useful information
and in fact hinders learning. Hence, they are removed from the
estimated channel amplitude vectors. We denote the respective
sparsity reduced amplitude vector of hm,n,t by ĥm,n,t. As
an example, if h1,1,t = [0.1 0.2 0.0 0.4 0.0003]>, we
have ĥ1,1,t = [0.1 0.2 0.4]>. Moreover, ĥm,n,t is a S̄-by-
1 vector, where S̄ ≤ S. Note that for a given m and n, the
dimensionality of ĥm,n,t is fixed at S̄ for all t values since the
sparsity is caused by the coarse frequency offset correction.
Next, for each m ∈ {1, . . . ,M} and n ∈ {1, . . . , N},
we concatenate the sparsity reduced amplitude vectors along
the temporal axis to produce the S̄-by-Tjk matrix Ĉm,n =
[ĥm,n,1 · · · ĥm,n,Tjk

]. Here, Tjk denotes the duration of the

Fig. 3. Generating annotations using deep neural networks. During the
inference phase, the decision box aids to distinguish between static and
dynamic activities, to predict [At,Pt, (Xt,Yt)] correctly, where at a given
time t, At is the predicted activity, Pt is the predicted person and (Xt,Yt)
are the Cartesian coordinates of the location.

j-th trial of the k-th activity, signifying the variability in the
duration of activities, as well as the variability in the duration
of different trials of the same activity.

Next, we focus on noise removal. In order to reduce burst
noise, we carry out Butterworth filtering on each time series
represented by the rows of Ĉm,n. Even though principal
component analysis (PCA) based noise removal is proven to be
more effective at burst noise removal in CSI signals than low-
pass filtering [33], we again resort to the low complex method
to minimize the implementation complexity. Butterworth low
pass filtering provides sufficiently adequate noise removal, as
shown later in our experimental results. We denote the noise
filtered data matrix of Ĉm,n by C̃m,n. Guidelines on selecting
the cutoff frequency of the low pass filter are also provided
with reference to the experiments in Section V.

We concatenate all filtered CSI for a particular activity
such that the resultant MNS̄-by-Tjk matrix is given by
C̃ = [C̃1 · · · C̃M ]>, where C̃m = [C̃m,1 · · · C̃m,N ]> for
all m ∈ {1, . . . ,M}. We segment C̃ into time steps of fsT
samples (corresponding to T seconds) with 90% overlap, to
produce the labelled dataset D of dimensions [R, fsT,MNS̄],
where R is the number of training/testing samples. It is
necessary to maintain that T < Tjk, ∀j, k, such that T is
less than the lowest duration of any trial of any activity. The
complete data processing stage is summarized in Algorithm 1.

Algorithm 1 CSI data pre-processing Algorithm
Input: ym,n(t) ∀m ∈ [1, ...,M ], ∀n ∈ [1, ..., N ] and ∀t
Output: Processed dataset D to be fed in to the deep networks

1: ∀m,n,hm,n,t ← Estimate Channel(ym,n(t))
2: ∀m,n, ĥm,n,t ← Sparsity Reduce(hm,n,t)
3: ∀m,n, Ĉm,n ← [ĥm,n,1 · · · ĥm,n,Tjk

]

4: ∀m,n, C̃m,n ← Butterworth(Ĉm,n)
5: ∀m, C̃m ← [C̃m,1 · · · C̃m,N ]>

6: C̃ ← [C̃1 · · · C̃M ]>

7: D ← Segment(C̃)

IV. DEEP NETWORKS FOR ACTIVITY CLASSIFICATION,
AUTHENTICATION AND TRACKING

We consider a threefold classification of activities as dy-
namic, static and no activity (NoAc). Firstly, we classify an
activity as dynamic if the location coordinates of the performer
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vary significantly during the action. This includes activities
such as running and walking. Secondly, we classify an activity
as static if the location coordinates of the performer do not
vary significantly during the action. For example, activities
such as sitting, jumping and falling can be categorized as static
activities if minor location coordinate changes are disregarded.
Finally, as a novel and very important contribution, we classify
scenarios where there is no one in the sensing area, or the
performer in the sensing area is not engaging in any activity,
as NoAc. If NoAc is not captured in the classification process,
the system will require the user to initiate the system before
performing the activity, e.g., through a push button input.
Classification of NoAc makes this a system that requires zero
user interaction.

A. Activity classification

We propose the deep neural network illustrated in Fig.
4 for activity classification. The network consists of two
recurrent layers followed by one fully connected layer. We
add a dropout layer after the first recurrent layer to reduce
overfitting and set the dropout rate to 0.3 [34]. We used three
different types of recurrent layers in our study, Long Short-
Term Memory (LSTM), Gated Recurrent Unit (GRU) and
Bidirectional-Gated Recurrent Unit (B-GRU), in an attempt
to find the best suited recurrent layer type for each task.
Following the recommendations in [34], it is widely accepted
that, in order to avoid overfitting, dropout should be used
prior to the layers with the highest percentage of trainable
parameters, which results in them being more prone to co-
adapting themselves to the training data. For our networks,
the highest percentage of the trainable parameters (more than
75%) are concentrated in the recurrent layers. Hence, we add
the dropout layers between the recurrent layers. Literature
suggests that in general, the dropout rate is set between
0.2 [35] and 0.5 [34] to achieve optimum results. Hence,
in compliance, we empirically set the drop rate to 0.3 for
our application. The two recurrent layers are set with tanh
activation in order to maintain the layer outputs within (1,−1),
similar to the normalized CSI streams [36], whereas the final
fully connected layer has softmax activation following the
existing state-of-the-art classification approaches [37]. Each
recurrent layer consists of 3 ×MNS̄ hidden units, and the
fully connected layer consists of K units, where K is the
number of activity classes, M is the number of receivers, N
is the number of antennas per receiver and S̄ is the number
of subcarriers after sparsity reduction. Following the existing
state-of-the-art classification approaches with more than two
distinct classes, we use categorical cross-entropy as the loss
function, where the total loss for activity recognition is given
by

Lactivity = − 1

R

R∑
r=1

K∑
k=1

ar log(br,k), (2)

where ar is the ground truth of the r-th sample, and br,k is the
predicted value for the k-th activity of the r-th training/testing
sample. The network uses adam with a learning rate of 0.001
as the optimizer, following [38].

B. User Authentication

The network we propose for authentication consists of
three recurrent layers, followed by one fully connected layer.
We add a dropout layer after the first recurrent layer to
reduce overfitting and set the dropout rate to 0.3. The fully
connected layer consists of P units, where P is the number
of participants. The rest of the network parameters are similar
to the activity recognizer in IV-A. Using the same loss function
as earlier, the total loss for activity recognition is given by

Lauth = − 1

R

R∑
r=1

P∑
p=1

cr log(dr,p), (3)

where cr is the ground truth of the r-th sample, and dr,p is
the predicted value for the p-th person of the r-th sample.

C. Tracking

The tracking network consists of two recurrent layers. First
layer consists of two parallel recurrent layers with each having
3×MNS̄ hidden units, that extracts low level features from
the input sequence. Second recurrent layer consists of 3 ×
MNS̄ hidden units, which identifies the remaining patterns
present in the data sequence. We add a dropout layer after
the first recurrent layer and set the dropout rate to 0.2. Final
regression layer is trained to regress on x and y distances using
the features that are extracted in the second recurrent layer. We
use the mean squared error (MSE) as the loss function such
that the total loss for tracking is given by

Ltracking =
1

R

R∑
r=1

(xp,r − xt,r)2 +
1

R

R∑
r=1

(yp,r − yt,r)2, (4)

where (xp,r, yp,r) are the predicted Cartesian coordinates and
(xt,r, yt,r) are the ground truth Cartesian coordinates of the
r-th training/testing sample.

Proper training is critical for the performance of the system.
It is clear that the tracking network should only be trained
on dynamic activities because effective learning necessitates
significant changes in location. Similarly, the authentication
network should only be trained on dynamic activities, as it will
not be effective to authenticate the performer after learning
through static activities. For example, consider authenticating
a performer from the manner in which he jumps or falls. On
the other hand, the activity recognition network is trained on
all these three categories of activities. In this case, even not
doing an activity should be classified, and hence, NoAc is of
importance as well. Note that in a practical activity recognition
system, NoAc will be the most common and frequent activity.
Since the activity labels are available during the training phase,
we can conveniently train the authentication and tracking
networks with only the dynamic activities and the activity
recognition network with all activity classes, including the
balanced NoAc class.

Now, let us focus on the inference phase; that is, the
operation of a functioning deployed system. In the inference
phase, we do not have knowledge on the activity classification
as a priori. Therefore, the incoming CSI data are fed into
all three networks for prediction, irrespective of the activity.
Obviously, the authenticator and the tracker will fail to predict

Authorized licensed use limited to: University of Exeter. Downloaded on June 19,2020 at 22:56:18 UTC from IEEE Xplore.  Restrictions apply. 



1558-1748 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2020.2987386, IEEE Sensors
Journal

5

Fig. 4. General network architecture, where λ denotes the number of parallel
hidden layers, µ denotes the number of sequential hidden layers after the block
of parallel layers and ν denotes the dimension of the output vector for each
task. For the activity recognizer, λ = 1, µ = 1, ν = K, for the authenticator
λ = 1, µ = 2, ν = P , and for the tracker λ = 2, µ = 1, ν = 2. Here, M is
the number of receivers, N is the number of antennas per receiver and S̄ is
the number of subcarriers after sparsity reduction.

Fig. 5. Combined single multi-task network. For the dynamic activities, the
pre-processed CSI data can be fed to the shared layer, in order to concurrently
generate [At,Pt, (Xt,Yt)], where at a given time t, At is the predicted
activity, Pt is the predicted person and (Xt,Yt) are the Cartesian coordinates
of the location.

accurately for static and NoAc categories. However, since
we have an activity predictor, we can observe the output
of the activity predictor, and discard the predictions of the
authenticator and the tracker for static and NoAc categories, as
illustrated by the decision box in Fig. 3. We update the activity
At, authentication Pt and location (Xt,Yt) annotations if
At is a dynamic activity. Else, we discard the predicted
authentication and location annotations, and continue with
the previously predicted annotations, i.e., Pt = Pt−1 and
(Xt,Yt) = (Xt−1,Yt−1), respectively.

D. Combined multi-task network for dynamic activities
It is evident that the authenticator and the tracker should

only be trained on dynamic activities, whereas the activity
recognizer can be trained on both static and dynamic activities.
Due to this variability, it is challenging to design a single
network for all three tasks. However, for applications with only
dynamic activities, we propose a single multi-task network,
as illustrated in Fig. 5. The network consists of an initial
recurrent layer, which is shared by all the three tasks. Since
the lower level features learnt for all three tasks are similar,
the initial layer can be jointly learnt by all tasks. Subsequently,
the network splits into three task heads, each corresponding to

Fig. 6. Experiment setup, where different colored lines show the four walking
paths used to experiment tracking algorithm, and TX1, RX1, RX2 refer to
the transmitter and the two receivers. The distances are in cm.

activity recognition, classification and tracking. Each recurrent
layer has tanh activation, and every fully connected layer in the
classification heads has softmax activation, whereas every fully
connected layer in the regression head has linear activation.

We define the objective function for the proposed multi-task
network as a weighted sum of the three distinct loss functions
defined in (2), (3) and (4), as follows:

L∗ = α Lactivity + β Lauth + γ Ltracking, (5)

where 0 < α, β, γ < 1 and α+ β + γ = 1.

V. EXPERIMENTAL VALIDATION

A. Experimental Setup

We deploy our system using three Universal Software Radio
Peripheral (USRP) N210 software defined radios (SDRs), each
configured to have one omni-directional antenna, such that
we have one transmitter and two receivers. The acquisition
sampling rate, fs, for each antenna is 100Hz. Optimum
placement of the transmitter and the receivers is not studied
in this paper, and we resort to the simplest form of placing
the two receivers. To this end, one receiver (RX1) is placed
directly opposite to the transmitter, and the other (RX2) is
placed perpendicular to the line that joins the transmitter and
RX1, as illustrated in Fig. 6. The perpendicular placement
allows us to achieve perspective invariance. We show later
that the results obtained from this simple setup, which may
or may not be optimal, can be used to get insights on the
optimal placement of receivers. The SDRs are programmed
to transmit and receive Wi-Fi packets with 64 subcarriers
(S = 64), and in the 2.45GHz frequency band. The SDRs
that act as receivers are utilized for the channel estimation.
The experiment is done inside an indoor environment (lecture
room), where there is rich scattering, and high interference
from other Wi-Fi networks and radio frequency (RF) sources.

B. Data Collection

We collected data using P = 13 voluntary participants,
where each participant is requested to perform a set of pre-
designated activities. For the experiments, we use three static
activities sit, fall and jump, two dynamic activities walk and
run, and the NoAc category. The data collection duration for
one activity trial is 10 seconds, during which the participant
is instructed to remain stationary for a brief period, prior to
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Fig. 7. Activity and no-activity labelling of the CSI streams, in order to
obtain the training data for each activity class, where RX1 and RX2 refer to
the receivers.
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Fig. 8. A sample ĥ1,1,t, which is the estimated channel state vector, as a
function of the subcarrier index. It can be clearly observed that amplitudes of
certain subcarriers are approximately zero.

commencing the activity, and after completing the activity
until instructed to stop. The walk activity consists of four
different paths (resulting in K = 9: sit, jump, fall, run, NoAc,
walk1, walk2, walk3, walk4), which are marked on the floor,
as illustrated by Fig 6. We obtained camera video recordings
of each trial in order to annotate the collected CSI streams.
To this end, the stationary periods are annotated as NoAc
and the activity period is annotated with the corresponding
activity, as illustrated by Fig. 7. Fig. 8 illustrates an ex-
ample for an estimated channel state vector, obtained from
a commercial Wi-Fi device with 64 sub-carriers. Note that
sub-carriers with indices [1, 2, 3, 4, 5, 6, 33, 60, 61, 62, 63, 64]
have approximately zero amplitude in this case, and hence,
highlighting the importance of the sparsity reduction proposed
in Section III-B. The data preprocessing technique proposed in
Section III-B is applied on the extracted CSI results in frames
with dimensions [1, 80, 104], for T = 0.8 s. The duration of the
jump activity generally registers the lowest duration, between
0.9 − 1.1 s. Hence, the value of T is chosen to be 0.8 s,
which is less than 0.9 s. We assume that human movements
typically do not exceed 10 m/s, which is consistent with the
7.7 m/s limit set in [33], where running is not considered.
Thus, typical human movements introduce frequencies less
than 10

0.1223/2 = 163.53 Hz [33] at a wavelength of 12.23
cm since our system operates at 2.45 GHz. Hence, the cut-off
frequency of the 10th order Butterworth low pass filter is set
to 200 Hz.

For the classification tasks, which are activity recognition
and authentication, we train two different models, that consist

of LSTM layers, and GRU layers, respectively. For the regres-
sion task, which is tracking, we train three different models,
that consist of the state-of-the-art recurrent layers: LSTM
layers, GRU layers and B-GRU layers [36], respectively.

A major challenge in generating a dataset for activity
recognition is the class imbalance caused by the variable
durations of the activities. For example, the sit activity has
an average duration of 1 s, whereas the run activity has an
average duration of 4 s, resulting in more data samples. On
average, NoAc accounts for 60%-90% of the duration of each
trial, largely contributing to the data imbalance. In an attempt
to reduce this inherent class imbalance, we vary the number of
trials (estimated based on the average duration per activity and
the comfort of the participant in performing repeated trials)
for each activity inversely proportional to the duration of the
activity. Hence, for sit and jump activities, we conduct 10
trials for each participant, whereas we conduct 8 trials for the
fall activity and 6 trials for the run and walk activities, for
each participant, respectively. The reduced number of training
samples due to the low activity duration can be compensated
by obtaining samples from a higher number of trials. Further,
we randomly sample the no activity duration in order to obtain
training samples matching the average number of training
samples obtained for other activity classes, thus resolving the
class imbalance.

C. Robustness analysis of the proposed networks

We study the robustness of the proposed networks through
several experiments. We use the collected data from an in-
the-wild participant, whose data is not used for training, to
investigate the robustness of the activity recognizer and the
authenticator. We hypothesize that if the two networks are
sufficiently robust, the activity recognizer should successfully
classify the activities with high confidences, whereas the
authenticator should fail to provide a prediction with high
confidence.

VI. RESULTS AND DISCUSSION

In this section, we present and discuss the experimental
results. We use ensembling techniques [39] to improve the
performance of our networks by reducing the model variance,
and take a simple weighted voting of the predictions of the set
of classifiers to produce the ensemble prediction. Each model
is trained on a GTX 1080 graphics processing unit (GPU) for
60 epochs. The results obtained for the proposed networks
for the three tasks, with different types of recurrent layers,
are summarized in Table I. Each result depicts the average of
the maximum accuracy obtained in 3 independent trials. The
average inference time per training sample in milliseconds for
each model is summarized in Table II.

TABLE I
RESULTS FOR DIFFERENT TYPES OF RECURRENT LAYERS.

Task LSTM GRU B-GRU Ensemble
Model

Precision Recall

Activity
recognition

96.36% 98.11% - 98.74% 0.9883 0.9826

Authentication 94.41% 95.53% - 97.41% 0.9754 0.9745
Tracking ±21 cm ±19 cm ±10 cm ±10 cm - -
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TABLE II
INFERENCE TIME PER 800 MS LONG SAMPLE.

Task LSTM GRU B-GRU Ensemble
Model

Activity recognition 4.28 ms 3.75 ms - 5.82 ms
Authentication 6.32 ms 5.63 ms - 8.64 ms

Tracking 3.23 ms 3.10 ms 5.60 ms 8.72 ms

TABLE III
COMPARISON ON OUR TRACKING METHOD, WITH THE STATE-OF-THE-ART
DEVICE FREE TRACKING RESULTS. P TRANSMITTERS WITH Q ANTENNAS

EACH AND M RECEIVERS WITH N ANTENNAS EACH

Method Sensing area(m) M ×N P ×Q Error
Youssef et al [25] 2.74m long strip 2× 2 2× 2 ±15.7cm
IndoTrack 7m× 7.4m 2× 3 2× 3 ±62cm
[26] 68.5m2 4× 3 2× 3 ±62cm

This paper 3.4m× 2.5m 2× 1 1× 1 ±10cm

A. Performance of the Activity Recognition Network

It is evident from Table I that the proposed model with GRU
layers marginally outperforms the model with LSTM layers
(by 1.45%). Nevertheless, ensembling over the said two mod-
els provides the best performance of 98.74%, outperforming
the GRU model by a margin of 0.63%. According to Table II,
the time taken by the ensemble model to perform inference
on a sample 800 ms long is 5.82 ms, which is higher than
that for the LSTM and GRU models, yet, acceptable for a
real time system since inference is completed in 0.72% of
the total sample duration. Table IV tabulates error rates for
each activity used for activity recognition. The highest error
rate of 2.49% is recorded by the 3-rd variation of the walk
activity, and yet, it is within acceptable margins. The NoAc
class is evidently distinct from every other activity class and
the jump activity contains upwards motion not present in any
other activity class, resulting in 0% error rate. Furthermore, sit
and fall have similar downwards motions, and run and walk
have similar forwards motions causing them to have higher
error rates.

B. Performance of the Authentication Network

Similar to the activity recognizer, it can be observed from
Table I that the proposed model with GRU layers marginally
outperforms the model with LSTM layers (by 1.12%) and
ensembling over the said two models provides the best perfor-
mance, outperforming the GRU model by a margin of 1.88%.
According to Table II, the time taken by the ensemble model
to perform inference on a sample 800 ms long is 8.64 ms,
which is higher than that for the LSTM and GRU models, yet,
acceptable for a real time system since inference is completed
in 1.08% of the total sample duration.

C. Performance of the Tracking Network

By referring to Table I, the proposed model with GRU
layers slightly outperforms the model with LSTM layers by
an error margin of ± 2 cm, which is an improvement of
approximately 9.52%, whereas the model with B-GRU layers
significantly outperforms the model with GRU layers by an
error margin of ± 9 cm, which is a significant improvement

(a) (b)

(c) (d)

Fig. 9. Trajectories predicted by the tracking network, for the four different
walking paths defined in Fig. 6. It is evident from the observation that the
approximated trajectory (red) is close to the true trajectory (blue) in each
instance.

of approximately 47.36%. It achieves a mean squared error
of ± 10 cm on both x and y coordinates, which is highly
acceptable for an indoor tracking system. Table III compares
our system with the existing state-of-the-art, in terms of the
size of the sensing area, number of transmitters/receivers used,
mean squared error achieved, etc.

Fig. 9 illustrates the estimated trajectories for the four differ-
ent paths of the walk activity. The ground truth is represented
by the blue lines, whereas the Cartesian coordinates predicted
by the network are represented by the small gray circles.
The red dotted line illustrates the predicted trajectory, which
is the regression line estimated from the predicted Cartesian
coordinates using the least squares regression technique. It is
evident that the proposed network is able to successfully track
the trajectory for the first three paths of the user, including the
starting and the ending coordinates of the trajectory. We can
observe the predicted path diverging from the ground truth in
the fourth path, as the user approaches the side of the sensing
area where a receiver has not been placed. It is not hard to
see that placing a third receiver at (340, 170) (please refer
Fig. 6) will lead to superior performance in all predictions
(we were unable to experiment with a three receiver set up
due to hardware limitations).

When comparing the inference times between B-GRU and
other uni-directional models, B-GRU inference time is 1.75
times higher than that of the other two models. However,
B-GRU completes the inferring within 0.7% of the sample
duration, which qualifies for a real time system.

TABLE IV
ERROR RATES FOR ACTIVITY RECOGNITION.

sit jump fall run NoAc walk1 walk2 walk3 walk4
1.65% 0% 0.68% 1.58% 0% 1.38% 1.01% 2.49% 1.71%
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TABLE V
RESULTS OF THE COMBINED MULTI-TASK NETWORK.

Task Model performance Inference time
Activity recognition 97.36 % 14.35 ms

Authentication 95.90 % 14.35 ms
Tracking ± 12 cm 14.35 ms

TABLE VI
CONFIDENCE SCORES FOR THE IN-THE-WILD DATASET.

Task Confidence score
margin

Main test
set

In-the-wild
dataset

Activity recognition 75% 98.85% 86.86%
Authentication 99.9% 79.12% 25.57%

D. Performance of the Combined Multi-task Network
We empirically set values for α, β and γ as 0.15, 0.15 and

0.70, respectively. Using these values, we obtain the results
tabulated in Table V. The performance of the combined model
for the three tasks marginally falls below the performance of
the respective individual models, yet, achieves a significant
speedup. The ensemble models collectively require 5.82 +
8.64 + 8.72 = 23.18 ms for the entire prediction, whereas the
combined model requires only 14.35 ms, achieving a speedup
of 38%. Operating all the ensemble models in parallel is not
feasible in practice due to memory constraints of GPUs. Thus,
the system operates sequentially.

E. Results of the robustness analysis
We base our robustness analysis of the activity recognizer

and the authenticator on the highest confidence score of its
prediction, as summarized in Table VI. For the authenticator,
we argue that the confidence of a successful authentication
should be near perfect and we raise the confidence score
margin to a high value of 99.9%. This is due to the fact that, if
an authenticator network recognizes an individual, it should al-
most be fully confident about its prediction, due to the sensitive
nature of authentication. Thus, after thresholding, the accuracy
for the in-the-wild dataset should be as low as possible, to
avoid unauthorized persons being authenticated. Raising the
confidence margin in this manner reduces the performance
of the main test set to a 79.12%, yet, we can tolerate false
negatives over false positives from an authentication system.
The authenticator only predicts 25.57% of the in-the-wild
dataset, establishing that it often fails to recognize a person
that it has never seen before, demonstrating its robustness.

For the activity recognizer, we accept the prediction of
the network if the confidence of prediction is above 75%.
The confidence of a successful prediction should be high, yet
intuitively, the threshold need not be enforced as strictly as for
the authenticator. Hence, we choose a generic value of 75% as
the confidence threshold. 98.85% of the activity predictions on
the main test set by the activity recognizer were made with
a confidence score in excess of 75%, whereas a significant
portion of 86.86% of the activity predictions on the in-the-wild
dataset were also made with a confidence score in excess of
75%. Hence, it can be concluded that the activity recognizers
can successfully recognize the activities of a person that the
network has never seen before, which ensures its robustness.

F. Potential enhancements to the proposed system
Even though the simple setup proposed in Section V-A

provides adequate performance, a superior performance can be

obtained via several enhancements. Our system discarded the
phase information of the estimated CSI for implementational
simplicity, yet integrating phase information for a system
where the required additional processing can be dispensed can
lead to better performance. Similarly, increasing the number of
receivers and the number of antennas per receiver can provide
finer predictions in more complex scenarios. Optimal antenna
placement for the transmitters and receivers can also enhance
the performance of the system.

VII. CONCLUSIONS

This paper proposes a novel system capable of completely
characterizing an event, using processed channel state infor-
mation gathered from commercial Wi-Fi devices. The system
performs activity recognition, authentication and tracking si-
multaneously, by utilizing deep neural networks. It is fully au-
tonomous, non-invasive, requires zero user intervention, device
free and passive. Experimental results have been presented to
demonstrate the feasibility and the achievable performance of
the proposed system. The results have shown that the proposed
system achieves promising prediction scores for all three tasks
on a collected dataset, by only using two single-antenna Wi-
Fi receivers. The robustness of the system has been estab-
lished through an in-the-wild study. Possible improvements
of the proposed system have also been highlighted. Future
work includes performance improvements for the single user
case and extending the framework to accommodate multiple
simultaneous users.
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