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Some New Results on the Eigenvalues of Complex
Non-central Wishart Matrices with a Rank-1 Mean

Prathapasinghe Dharmawansa1

Department of Electronic and Telecommunication Engineering, University of Moratuwa,
Moratuwa, Sri Lanka

Abstract

Let W be an n×n complex non-central Wishart matrix with m (≥ n) degrees of

freedom and a rank-1 mean. In this paper, we consider three problems related

to the eigenvalues of W. To be specific, we derive a new expression for the

cumulative distribution function (c.d.f.) of the minimum eigenvalue (λmin) of

W. The c.d.f. is expressed as the determinant of a square matrix, the size of

which depends only on the difference m−n. This further facilitates the analysis

of the microscopic limit of the minimum eigenvalue. The microscopic limit

takes the form of the determinant of a square matrix with its entries expressed

in terms of the modified Bessel functions of the first kind. We also develop a

moment generating function based approach to derive the probability density

function of the random variable tr(W)/λmin, where tr(·) denotes the trace of

a square matrix. Moreover, we establish that, as m,n → ∞ with m − n fixed,

tr(W)/λmin scales like n3. Finally, we find the average of the reciprocal of the

characteristic polynomial det[zIn +W], | arg z| < π, where In and det[·] denote

the identity matrix of size n and the determinant, respectively.
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1. Introduction

The eigenvalues of random matrices are known to have far-reaching impli-

cations in various scientific disciplines. Finite dimensional properties of the

eigenvalues of Wishart type random matrices are of paramount importance in

classical multivariate analysis (Anderson [3], Muirhead [49]), whereas recent5

multivariate statistical investigations have focused on establishing the asymp-

totic properties of the eigenvalues (Johnstone [39], Onatski et al. [52]). Various

links between the eigenvalues of random matrices and statistical physics, combi-

natorics and integrable systems have been established over the last few decades

(see e.g., Forrester [26], Mehta [47] and references therein). Apart from these10

areas, random matrices, especially matrices with complex Gaussian elements,

have also found new applications in signal processing and wireless communica-

tions (Chiani et al. [16], Heath Jr. and Paulraj [33], Jin et al. [38], Kang and

Alouini [40, 41], Maaref and Aı̈ssa [45], Narasimhan [50], Oestges et al. [51], Or-

donez et al. [53], Palomar et al. [54], Telatar [59], Tulino and Verdú [60], Zanella15

et al. [65]).

The majority of those studies focus on random matrix ensembles derived

from zero mean Gaussian matrices. However, random matrices derived from

non-zero mean Gaussian matrices have been traditionally an area of interest

in multivariate analysis (Anderson [3], Constantine [17], James [37], Muirhead20

[49]). Moreover, mathematical objects such as zonal polynomials (Hua [36],

James [37]) and hypergeometric functions of matrix arguments (Herz [34], Kha-

tri [43]) have been introduced in multivariate analysis literature to facilitate

further analysis of such non-central random matrices. Interestingly, these non-

central matrices have also been referred to as random matrices with external25

sources in the literature of physics (Brézin and Hikami [11, 12, 13], Zinn-Justin

[66]). In this respect, the classical orthogonal polynomial based characterization

of the eigenvalues of random matrices (Mehta [47]) has been further extended to

encompass multiple orthogonal polynomials in Bleher and Kuijlaars [8, 9]. Alter-

natively, capitalizing on a contour integral approach due to Kazakov (Kazakov30
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[42]), the authors in Ben Arous and Péché [6], Brézin and Hikami [11, 12] have

introduced a double contour integral representation for the correlation kernel

of the eigenvalue point process of non-central random matrices. Some recent

contributions on this matter include Bassler et al. [5], Forrester [27].

One of the salient features common to those latter studies is that they exclu-35

sively focus either on spiked correlation or mean model. It is noteworthy that

these two models are mathematically related to each other (Bleher and Kuijlaars

[7]). As we are well aware of, the characterization of the joint eigenvalue distri-

bution of non-central random matrices2 involves the hypergeometric function of

two matrix arguments (James [37]). It turns out that one of the argument ma-40

trices becomes reduced-rank in the presence of a spiked mean/correlation model.

Specifically, when the spike is of rank one, an alternative representation of the

hypergeometric function of two matrix arguments has recently been discovered

independently by Mo (Mo [48]), Wang (Wang [62]) and Onatski (Onatski et al.

[52]). The key contribution there amounts to the representation of the hyper-45

geometric function of two matrix arguments with a rank-1 argument matrix

in terms of an infinite series involving a single contour integral. This repre-

sentation has been subsequently used to further characterize the asymptotic

behaviors of the eigenvalues of non-central random matrices (Mo [48], Wang

[62]). Further generalization of the contour integral representation given in Mo50

[48], Wang [62], Onatski et al. [52] to an arbitrary hypergeometric function with

two matrix arguments having a rank-1 argument matrix has been reported in

Dharmawansa and Johnstone [22].

In this paper, we analyze three problems pertaining to the eigenvalues of

a finite dimensional complex non-central Wishart matrix with a rank-1 mean55

matrix3. Let 0 < λ1 ≤ · · · ≤ λn be the ordered eigenvalues of an n× n complex

2Here the term “non-central random matrices” refers to non-central Gaussian and Wishart

matrices.
3This is also known as the shifted mean chiral Gaussian ensemble with β = 2 (i.e., the

complex case) (Forrester [27]).
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non-central Wishart matrix W with m degrees of freedom and a rank-1 mean.

We are interested in the following three problems.

1. The characterization of the cumulative distribution function (c.d.f.) of the

minimum eigenvalue of W as the determinant of a square matrix, the size60

of which depends on the difference of the number of degrees of freedom

and n (i.e., m− n).

2. The statistical characterization of the random quantity tr(W)/λ1 with

tr(·) denoting the trace of a square matrix.

3. The statistical average of the reciprocal of the characteristic polynomial65

det[zIn +W], | arg z| < π, with det[·] and In denoting the determinant of

a square matrix and the n× n identity matrix, respectively.

The above quantities have found many applications in contemporary wireless

communications systems. In particular, complex non-central Wishart matrices

with a rank-one mean arise in multiple-input multiple-output (MIMO) chan-70

nels characterized by strong line-of-sight components (i.e., Rician fading) (Kang

and Alouini [40, 41]). Therefore, the functionals of the eigenvalues of complex

non-central Wishart matrices with a rank one mean have been instrumental in

MIMO signal processing (Jin et al. [38], Kang and Alouini [40, 41], Maaref and

Aı̈ssa [45], Zanella et al. [65]). For example, the distribution of the minimum75

eigenvalue is important in characterizing the performance of MIMO multichan-

nel beamforming (MB) systems4 (Narasimhan [50], Ordonez et al. [53], Palomar

et al. [54], Jin et al. [38]). Specifically, the global performance of an MB system is

dominated by the performance of the weakest link (i.e., the link corresponding to

the minimum eigenmode transmission). The quantity tr(W)/λ1 is of paramount80

importance in the designing of adaptive multiantenna transmission techniques

(Heath Jr. and Paulraj [33]) and the modeling of physical multiantenna trans-

mission channels (Oestges et al. [51]). Moreover, condition numbers of this form

4MIMO MB systems are also known as spatial multiplexing MIMO systems with CSI

(channel state information) in the literature (Ordonez et al. [53]).
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have been introduced to mutiple antenna spectrum sensing in cognitive radio

(see e.g., Debbah and Couillet [19] and references therein). More recent appli-85

cations of the eigenvalues of Wishart matrices include the design and analysis

of massive MIMO systems (see e.g., Hoydis et al. [35] and references therein).

The first problem has a straightforward solution in the form of the deter-

minant of a square matrix of size n × n (Jin et al. [38], Maaref and Aı̈ssa

[45], McKay [46], Zanella et al. [65]). This stems from the determinant repre-90

sentation of the hypergeometric function of two matrix arguments due to Khatri

(Khatri [43]) (see also Gross and Richards [32]). However, in certain cases, it

is convenient to have an expression with the determinant of a square matrix of

size m − n. Therefore, in this work, by leveraging the knowledge of classical

orthogonal polynomials, we derive an alternative expression for the c.d.f. of the95

minimum eigenvalue which involves the determinant of a square matrix of size

m − n + 1. This new form is highly desirable when the difference between m

and n is small irrespective of their individual magnitudes. In such a situation,

this new expression circumvents the analytical complexities associated with the

above straightforward solution which requires the evaluation of the determinant100

of an n× n square matrix. This key representation, in turn, facilitates the fur-

ther analysis of the so-called microscopic limit of the minimum eigenvalue (i.e.,

the limit when m,n → ∞ such that m − n is fixed) which is known to have a

Fredholm determinant representation (Ben Arous and Péché [6]). Our results

reveal that this microscopic limit coincides with the corresponding limit in the105

central Wishart case.

The random quantity of our interest in the second problem is commonly

known as the Demmel condition number in the literature of numerical analysis

(Demmel [20]). As opposed to the case corresponding to the central Wishart ma-

trices (Muirhead [49]), tr(W) and λ1/tr(W) are no longer statistically indepen-110

dent. Furthermore, a direct Laplace transform relationship between λ1/tr(W)

and the probability density of the minimum eigenvalue of W has not been re-

ported in the literature. However, such a relationship among these random

quantities in the case of central Wishart matrices has been reported in Dhar-
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mawansa et al. [24], Krishnaiah and Schuurmann [44]. Therefore, we introduce115

a moment generating function (m.g.f.) based framework to solve the second

problem. In particular, using a classical orthogonal polynomial approach, we

derive the m.g.f. of the random variable of our interest in terms of a single inte-

gral involving the determinant of a square matrix of size m−n+1. Upon taking

the direct Laplace inversion of the m.g.f. we then obtain an exact expression120

for the probability density function (p.d.f.). The remarkable fact of having the

determinant of a square matrix of size m − n + 1 makes it suitable to be used

when the relative difference between m and n is small. For instance, in the

special case of m = n, the p.d.f. simplifies to an expression involving a single

infinite summation. Moreover, we have determined the asymptotic scaled limit125

of tr(W)/λ1 as m,n→∞ with m−n fixed. It turns out that, under the above

asymptotic setting, the random quantity tr(W)/λ1 scales like n3.

Statistical averages akin to the third problem are closely related to some

problems of the classical number theory (see e.g., Borodin and Strahov [10] for

a comprehensive list of references in this respect). A generalized framework130

based on the duality between certain matrix ensembles has been proposed in

Desrosiers [21] to solve certain problems involving the averages of the reciprocals

of characteristic polynomials pertaining to non-central Wishart matrices. How-

ever, the third problem of our interest does not seem to be consistent with that

framework, since the specific parameters associated with our problem do not sat-135

isfy the requirements in [21]. This particular problem has not been addressed

in a more recent work by Forrester (Bassler et al. [5]) on the averages of char-

acteristic polynomials for shifted mean chiral Gaussian ensembles. Therefore,

again following the classical orthogonal polynomial approach, here we derive a

new expression for this particular average. The resultant expression turns out140

to have a single infinite series. This is not surprising, since in the case of a cen-

tral Wishart matrix the corresponding answer depends only on the number of

characteristic polynomials rather than the size of the random matrix (Borodin

and Strahov [10], Desrosiers [21], Fyodorov [29], Fyodorov and Strahov [30]).

The rest of this paper is organized as follows. We begin Section 2 by deriving145
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a new p.d.f. for the eigenvalues of a complex non-central Wishart matrix with

a rank-1 mean. In Section 3, we use the new joint eigenvalue p.d.f. to derive

the c.d.f. of the minimum eigenvalue in terms of the determinant of a square

matrix of size m−n+1. We also establish the microscopic limit of the minimum

eigenvalue. Section 4 addresses the problem of statistical characterization of150

the random quantity tr(W)/λ1 by deriving the corresponding m.g.f. and p.d.f.

expressions. Moreover, we show that, as m,n → ∞ with m − n fixed, the

random variable tr(W)/λ1 scales like n3. Section 5 derives the average of the

reciprocal of the characteristic polynomial det[zIn + W], | arg z| < π.

2. Preliminaries155

Let us first present some results related to the p.d.f. of a complex non-central

Wishart matrix. In what follows, we use (·)∗ to denote the conjugate transpose

of a matrix and ||A||2F to represent tr(A∗A) where A ∈ Cm×n. Moreover, we

use EA (·) to denote the mathematical expectation with respect to A.

Theorem 1. Let X ∈ Cm×n be distributed as CNn,m (M, Im ⊗ In) where M ∈
Cn×n with m ≥ n. Then W = X∗X has a complex non-central Wishart distri-

bution Wn (m, In,M∗M) with p.d.f. (James [37])

fW(W) =
e−tr(M∗M)

Γ̃n(m)
(det [W])m−ne−tr(W)

0F̃1 (m;M∗MW) (1)

where Γ̃n(m) = π
m(m−1)

2

n∏

i=1

Γ(m− i + 1) and 0F̃1 (·; ·) denotes the complex hy-

pergeometric function of one matrix argument. In particular, for a Hermitian

positive definite n× n matrix A, we have (James [37])

0F̃1 (p;A) =
∞∑

k=0

1
k!

∑

κ

Cκ(A)
[p]κ

where Cκ(·) is the complex zonal polynomial5, κ = (k1, . . . , kn), with ki’s being160

non-negative integers, is a partition of k such that k1 ≥ · · · ≥ kn ≥ 0 and

5The zonal polynomial Cκ(A) is a symmetric, homogeneous polynomial of degree k in the

eigenvalues of A. However, the specific definition of the zonal polynomial is not given here

7



∑n
i=1 ki = k. Also [n]κ =

∏n
i=1(n− i+ 1)ki with (a)n = a(a+ 1) · · · (a+ n− 1)

denoting the Pochhammer symbol.

The following theorem is due to James (James [37]).

Theorem 2. The joint density of the ordered eigenvalues 0 < λ1 ≤ · · · ≤ λn of

W is given by James [37]

fΛ (λ1, . . . , λn) = Km,ne
−tr(M∗M)∆2

n(λ)
n∏

i=1

λm−n
i e−λi

0F̃1 (m;Λ,M∗M) (2)

where

Km,n =
1∏n

i=1 Γ(m− i + 1)Γ(n− i+ 1)
,

Λ = diag(λ) with λ = (λ1, . . . , λn) and ∆n(λ) =
∏

1≤i<k≤n (λk − λi). More-

over, 0F̃1(·; ·, ·) denotes the complex hypergeometric function of two matrix ar-

guments. For Hermitian positive definite n× n matrices A and B, we have

0F̃1 (m;A,B) =
∞∑

k=0

1
k!

∑

κ

Cκ(A)Cκ(B)
[m]κCκ(In)

.

Since we are interested in a rank-1 mean matrix M, we can further simplify

the above expression for the joint density of the eigenvalues to obtain

fΛ (λ1, . . . , λn) = Kn,α
e−µ

µn−1

n∏

i=1

λα
i e
−λi∆2

n(λ)
n∑

k=1

0F1 (α+ 1;µλk)
n∏

i=1
i6=k

(λk − λi)

(3)

where µ = tr (M∗M) and

Kn,α = Kn+α,n
(n− 1)!(n+ α− 1)!

α!

with α = m− n.165

Remark 1. One can use either the contour integral approach given in Wang

[62] or the repeated application of the l’Hospital’s rule due to Khatri (Khatri

as it is not required in the subsequent analysis. More details of the zonal polynomials can be

found in James [37], Takemura [58].
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[43])6 to obtain the above form. Since the algebra involved in both approaches

are fairly standard and straightforward, we do not show the specific steps of the

derivation of (3). However, we feel that the contour integral approach is the170

most transparent way of obtaining the above expression.

It is important to note that the functional form given in (3) facilitates the

use of classical orthogonal polynomial approach in solving the three problems

of our interest.

Remark 2. A different normalization scheme has been employed in contempo-

rary signal processing literature to characterize the MIMO Rician channel (e.g.,

see Jin et al. [38], Kang and Alouini [40, 41], Maaref and Aı̈ssa [45], Zanella

et al. [65] and references therein). In particular, the matrix X is normalized as

X =

√
K

K + 1
Xd +

√
1

K + 1
Xr (4)

where Xr ∼ CNm,n(0, Im ⊗ In), Xd ∈ Cm×n is the deterministic component

normalized such that ||Xd||2F = mn and K is the Rician factor. Clearly, the

above normalization gives

E
(
||X||2F

)
= mn.

Since we can rewrite the above model as

X =

√
1

K + 1

[√
KXd + Xr

]
,

the eigenvalue spectrum of X∗X takes the form

λi (X∗X) =
1

K + 1
λi (S) , i = 1, . . . , n (5)

where

S ∼ Wn(m, In,KX∗
dXd).

6Repeated application of the l’Hospital’s rule in the context of simplifying indeterminate

forms involving determinants is given in Khatri [43].
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Moreover, for rank-one Xd, we find

µ = Ktr(X∗
dXd) = Kmn. (6)

Therefore, in view of (5) and (6), the subsequent results developed in this paper175

can readily be applied to the rank-one MIMO Rician channel.

Let us now see how to derive a new expression for the c.d.f. of the minimum

eigenvalue of a complex non-central Wishart matrix with a rank-1 mean starting

from the joint p.d.f. given above.

Before proceeding, it is worth mentioning the following useful results.180

Definition 3. For ρ > −1, the generalized Laguerre polynomial of degree M ,

L
(ρ)
M (z), is given by Szegö [57]

L
(ρ)
M (z) =

(ρ+ 1)M

M !

M∑

j=0

(−M)j

(ρ+ 1)j

zj

j!
, (7)

with the kth derivative satisfying

dk

dzk
L

(ρ)
M (z) = (−1)kL

(ρ+k)
M−k (z). (8)

Also L(ρ)
M (z) satisfies the following contiguous relationship

L
(ρ−1)
M (z) = L

(ρ)
M (z)− L

(ρ)
M−1(z). (9)

Definition 4. For a negative integer −M , we have the following relation

(−M)j =





(−1)j M !
(M−j)! for j ≤M

0 for j > M.
(10)

Lemma 3. Following Gradshteyn and Ryzhik [31, Eq. 7.414.7] and Andrews

et al. [4, Corollary 2.2.3], for j, k ∈ {0, 1, 2, . . .}, we can establish
∫ ∞

0

xje−xL
(k)
M (x)dx =

j!
M !

(k − j)M .
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The following compact notation has been used to represent the determinant

of an M ×M block matrix:

det [ai,1 bi,j−1]i=1,...,M
j=2,...,M

=

∣∣∣∣∣∣∣∣∣∣∣∣

a1,1 b1,1 b1,2 · · · b1,M−1

a2,1 b2,1 b2,2 · · · b2,M−1

...
...

...
. . .

...

aM,1 bM,1 bM,2 · · · bM,M−1

∣∣∣∣∣∣∣∣∣∣∣∣

.

3. Cumulative Distribution of the Minimum Eigenvalue

Here we derive a new expression for the c.d.f. of the minimum eigenvalue

λmin of W with a rank-1 mean.

By definition, the c.d.f. of λmin is given by

Fλmin(x) = Pr (λ1 < x) = 1− Pr (λ1 ≥ x) (11)

where

Pr (λ1 ≥ x) =
∫

x≤λ1≤···≤λn<∞
fΛ (λ1, . . . , λn) dλ1 · · ·dλn. (12)

The following theorem gives the c.d.f. of λmin.

Theorem 4. Let W ∼ Wn (m, In,M∗M), where M is rank-1 and tr(M∗M) =

µ. Then the c.d.f. of the minimum eigenvalue of W is given by

Fλmin(x) = 1− (n+ α− 1)! e−nx det
[
(−µ)i−1ψi(µ, x) L

(j−2)
n+i−j(−x)

]
i=1,...,α+1
j=2,...,α+1

(13)

where α = m− n,

ψi(µ, x) =
1

(α + i+ n− 2)!

∞∑

k=0

(xµ)k
1F1 (α+ k;α+ n+ i+ k − 1;−µ)

k!(α+ i+ n− 1)k
,

and 1F1(a; c; z) is the confluent hypergeometric function of the first kind.185

Proof. See Appendix A.

Remark 5. Alternatively, we can express ψi(µ, x) as

ψi(µ, x) =
e−µ

(α+ i+ n− 2)!
Φ3 (n+ i− 1, n+ α+ i− 1;µ, xµ) (14)

11



where Φ3(a, c;x, y) =
∑∞

i=0

∑∞
j=0(a)ix

iyj/(c)i+ji!j! is the confluent hypergeo-

metric function of two variables (Erdélyi [25, Eq. 5.7.1.23]).

In the special case of α = 0 (i.e., m = n), (13) admits the following simple form

Fλmin(x) = 1− e−nx
∞∑

k=0

(xµ)k

k!(n)k
1F1(k;n+ k;−µ)

= 1− e−µ−nxΦ3 (n, n;µ, xµ) (15)

which coincides with what we have derived in Dharmawansa and McKay [23,

Eq. 32/39] purely based on a matrix integral approach7.190

In addition, it is not difficult to show that, for µ = 0, (13) simplifies to

Forrester and Hughes [28, Eq. 3.19]

Fλmin(x) = 1− e−nx det
[
L

(j−1)
n+i−j(−x)

]
i,j=1,...,α

. (16)

It is worth noting that (13) provides an efficient way of evaluating the c.d.f. of

λmin particularly for small values of α. Moreover, since the algebraic complexity

depends only on n and the difference of m and n (i.e., m − n), this result is

instrumental in evaluating the microscopic limit of λmin.

Alternative expressions8 for the c.d.f. of λmin have been reported in Jin et al.195

[38, Eq. 15], Maaref and Aı̈ssa [45, Eq. 18]. and Zanella et al. [65, Eq. 11].

The key difference between our result and those alternative expressions is that

the latter involve the determinants of n × n matrices. Therefore, they are not

amenable to asymptotic analysis as m and n grow large, but their difference

does not.200

Figure 1 compares the analytical c.d.f. result for the minimum eigenvalue

of non-central Wishart matrix with simulated data. Analytical curves are com-

puted based on Theorem 4. As can be seen from the figure, our analytical

7Since the results given in Dharmawansa and McKay [23] are valid for an arbitrary co-

variance matrix with α = 0, one has to assume the identity covariance to obtain the above

results.
8These expressions are valid for an arbitrary rank mean matrix.
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Figure 1: Comparison of simulated data points and the analytical c.d.f.s of λmin for various

values of n and α with µ = 10.

results match with the simulated data thus validating our theorem. We note

that the infinite summation in (13) has been truncated to 5 terms in each of the205

calculation. This fact in turn demonstrates the fast convergence of the given

infinite series.

Figures 2, 3 and 4 further demonstrate the effects of n, α and µ, respectively,

on the c.d.f. of λmin for different parameter configurations.

For certain applications (Wang and Giannakis [63]), the behavior of the210

c.d.f. of λmin at the origin is of paramount importance. Therefore, fig. 5

further demonstrates that particular behavior. Here the infinite series (13) has

been truncated to 10 terms.

Remark 6. The dynamics of fig. 4 suggests that the increasing µ increases the

λmin. However, it is noteworthy that for rank-one MIMO Rician channel, the215

λmin decreases with the increasing K (Jin et al. [38], Kang and Alouini [40, 41]).

This inconsistency between the two models can be explained using the relations

(5) and (6).
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Figure 2: Illustration of the behavior of the c.d.f. of λmin for various values of n. The results

are shown for µ = 10 and α = 2.

3.1. Asymptotic Characterization (Microscopic Limit) of the Smallest Eigen-

value220

Here we investigate the so called microscopic limit of the c.d.f. of λmin. To

be precise, we would consider the c.d.f. of suitably scaled λmin for fixed α when

m,n→∞. The following corollary gives the microscopic limit.

Corollary 5. As m and n tend to ∞ such that α = m − n is fixed, the scaled

minimum eigenvalue nλ1 converges in distribution to a random variable X with

the c.d.f. FX(x). In particular, we have

lim
n→∞

Fnλ1 (x) = FX(x) = 1− e−x det
[
Ii−j(2

√
x)
]
i,j=1,...,α

. (17)

Proof. See Appendix B .

Clearly, the above asymptotic expression does not depend on µ. Moreover,225

this limiting c.d.f. coincides with the limiting c.d.f. corresponding to central

Wishart case in Forrester and Hughes [28, Eq. 3.33].

The advantage of the asymptotic formula given in corollary 5 is that it

provides an easy to use expression which compares favorably with finite n results.
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Figure 3: Illustration of the behavior of the c.d.f. of λmin for various values of α. The results

are shown for µ = 10 and n = 20.
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Figure 4: Illustration of the behavior of the c.d.f. of λmin for various values of µ. The results

are shown for n = 5 and n = 10 with α = 2.
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n. The results are shown for µ = 10 and α = 2.

To further highlight this fact, in Fig. 6, we compare the analytical asymptotic230

p.d.f. derived in corollary 5 with simulated data points.

Having analyzed the behavior of the minimum eigenvalue of W, let us now

move on to determine the distribution of the random variable tr(W)/λ1.

4. The Distribution of tr(W)/λ1

Here we study the distribution of the quantity

V =
tr(W)
λ1

=

∑n
j=1 λj

λ1
. (18)

It turns out that this quantity is intimately related to the distribution of the

minimum eigenvalue of W given the constraint tr(W) = 1 (i.e., fixed trace)

(Chen et al. [15]). To be precise, the latter is distributed as 1/V . Apart

from that, the most notable application of the distribution of V is the so-

called “smoothed analysis of condition numbers” (Spielman and Teng [56]).

For a given function g : Cm×n → R+ (e.g., the 2−norm condition number),

A ∼ CNm,n(M, σ2Im ⊗ In) with 0 < σ ≤ 1 and M ∈ Cm×n being arbitrary

such that either tr (M∗M) = 1 or ||M||2 ≤
√
n is satisfied, under the smoothed

16
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Figure 6: Comparison of the analytical asymptotic c.d.f. of λmin and simulated data points

for µ = 10.

analysis framework, a typical problem is to study the behavior of (Wschebor

[64], Sankar et al. [55], Cucker et al. [18], Bürgisser et al. [14])

sup
M

EA (g(A)) (19)

where || · ||2 denote the 2-norm. For mathematical tractability, sometimes it

is assumed that the matrix M is of rank one [64]. Bounds on the quantity

(19) have been derived in the literature when g(A) defines various condition

numbers (see, e.g., Sankar et al. [55], Cucker et al. [18], Bürgisser et al. [14]

and references therein). Among those condition numbers, the one introduced

by James Demmel (Demmel [20]) plays an important role in understanding

the behaviors of other condition numbers arising in different contexts. For a

rectangular matrix X ∈ Cm×n, the function g defined by [18]

g(X) = ||X||F ||X†||2 (20)

17



with X† denoting the Moore-Penrose inverse, gives the Demmel condition num-

ber9. In particular, for the matrix of our interest X ∼ CNm,n(M, Im⊗ In) with

m ≥ n, (20) specializes to Dharmawansa et al. [24]

g(X) =

√∑n
j=1 λj

λ1
=
√
V

where λ1 ≤ · · · ≤ λn are the ordered eigenvalues of W = X∗X. In light of these235

developments we can clearly see that the distribution of V is of great importance

in performing the smoothed analysis on the Demmel condition number.

Having understood the importance of the variable V in (18), we now focus

on deriving its p.d.f. when the matrix W has a rank-1 mean. For this purpose,

here we adopt an approach based on the m.g.f. of V . We have the following key240

result.

Theorem 6. Let W ∼ Wn (m, In,M∗M), where M is rank-1 and tr(M∗M) =

µ. Then the p.d.f. of V is given by

f
(α)
V (v) =(n− 1)!

e−µ

vn(n+α)
L−1

{
e−ns

s(n−1)(n+α+1)
R(s, v, µ)

}
(21)

where

R(s, v, µ) = det
[(
− µ

sv

)i−1

φi(µ, s, v) L
(j)
n+i−1−j(−s)

]

i=1,...,α+1
j=2,...,α+1

φi(µ, s, v) =
∞∑

k=0

ai(k)
k!

( µ
sv

)k

1F1

(
n2 + nα+ k + i− 1;n+ i+ k + α− 1;

µ

v

)

ai(k) = (n+ i− 1)
(n2 + nα+ i− 2)!
(n+ i+ α− 2)!

(n+ i)k(n+ i− 2)k(n2 + nα+ i− 1)k

(n+ i− 1)k(n+ i+ α− 1)k

and L−1(·) denotes the inverse Laplace transform.

Proof. See Appendix C.

9This generalizes the condition number definition given in Demmel [20] to m×n rectangular

matrices.
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Although further simplification of (21) seems intractable for general matrix

dimensions m and n, we can obtain a relatively simple expression in the im-245

portant case of square matrices (i.e., m = n), which is given in the following

corollary.

Corollary 7. For α = 0, (21) becomes

f
(0)
V (v) = n(n2 − 1)e−µ(v − n)n2−2v−n2

×
∞∑

k=0

(n2)k

(n)kk!

(µ
v

)k

3F3

(
n+ 1, n− 1, n2 + k;n, n+ k, n2 − 1;µ

(
1− n

v

))

×H(v − n) (22)

where H(z) denotes the unit step function and 3F3(a1, a2, a3; c1, c2, c3; z) is the

generalized hypergeometric function (Erdélyi [25]).

We also note that, for µ = 0 (i.e., when W is a central Wishart matrix),

(21) simplifies to

f
(α)
V (v) =

n!(n2 + nα− 1)!
(n+ α− 1)!vn(n+α)

× L−1

{
e−ns

s(n−1)(n+α+1)
det
[
L

(j+1)
n+i−j−1(−s)

]
i,j=1,...,α

}
(23)

which coincides with the corresponding result given in Dharmawansa et al. [24,250

Corollary 3.2].

Figure 7 compares the analytical p.d.f. f
(0)
V derived in Corollary 7 with

simulated data points corresponding to n = 5, 7 and 10. The agreement between

the analytical and simulation results is clearly evident from the figure. Note

that we have used as few as 4 terms in the infinite summation (22) in each255

calculation. Moreover, figures 8 and 9 demonstrate the effects of µ on the p.d.f.

of V corresponding to α = 0 case. Although we have a wide range of µ values,

we have used only 4 terms in the infinite summation in each calculation.

Remark 7. Since the random quantity V is scale invariant and for fixed m,n,

µ ∝ K, it is expected that the behavior of V for different K with respect to260

rank-one MIMO Rician model is consistent with figs. 8 and 9.
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Figure 7: Comparison of simulated data points and the analytical p.d.f f
(0)
V (v) (i.e., α = 0)

for different matrix dimensions with µ = 10.

The above exact finite dimensional results pertaining to V have inherent

algebraic complexity. For instance, obtaining an exact finite dimensional p.d.f.

of V for a general value of α seems a formidable task. To circumvent this

difficulty, it is natural to study the asymptotic behavior of the random variable265

V . The following corollary gives the asymptotic behavior of V for fixed α when

m and n tend to ∞.

Corollary 8. The scaled random variable V/n3 converges in distribution to the

random variable 1/X as m and n tend to ∞ with α fixed. More specifically, for

fixed α, we have

lim
n→∞

FV/n3(x) = F1/X(x) = e−
1
x det

[
Ij−i

(
2√
x

)]

i,j=1,...,α

. (24)

Proof. We are aware that, as m,n → ∞ with α fixed, nλ1 converges in dis-

tribution to X and tr(W)/n2 converges in probability to 110. Therefore, we

can invoke the Slutsky’s lemma (Van Der Vaart [61]) to establish the fact that270

10The latter statement can easily be verified by considering the limiting m.g.f. of tr(W)/n2

as n, m→∞ with α fixed.
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(0)
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n3/V converges in distribution to X . Now the final result follows by using the

continuous mapping theorem and Corollary 5.

It is noteworthy that the limiting c.d.f. of V/n3 does not depend on µ.

Therefore, V/n3 should have the same asymptotic limiting c.d.f. in the case

corresponding to central Wishart matrices as well (see Akemann and Vivo [2,275

Eq. 4.34] for the result corresponding to central Wishart case).

5. The Average of the Reciprocal of a Certain Characteristic Poly-

nomial

Here we consider the problem of determining the average of the reciprocal

of a certain characteristic polynomial with respect to a complex non-central280

Wishart density with a rank-one mean. This particular problem corresponding

to complex central Wishart matrices has been solved in Mehta [47], Fyodorov

and Strahov [30]. A general framework to derive such averages based on duality

relations has been proposed in Desrosiers [21]. However, the duality relation

given in Desrosiers [21, Proposition 8] does not seem to apply here, since the285

stringent technical requirements for the validity of that formula are not satisfied

by the parameters in our model of interest. Moreover, this particular case has

not been addressed in a recent detailed analysis on the averages of characteristic

polynomials by Forrester [27]. Therefore, in what follows, we derive the average

of one of the basic forms of the reciprocal of the characteristic polynomial. The290

most general form, however, is not investigated here.

Let us consider the following average

EW

(
1

det[zIn + W]

)
= EΛ




n∏

j=1

1
z + λj


 , | arg z| < π, (25)

the value of which is given in the following theorem.

Theorem 9. Let W ∼ Wn (m, In,M∗M), where M is rank-1 and tr(M∗M) =

µ. Then the average in (25) is given by

EW

(
1

det[zIn + W]

)
= zα

∞∑

k=0

(−µ)kΨ(k + n+ α;α + 1; z), | arg z| < π (26)
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where Ψ(a; c; z) is the confluent hypergeometric function of the second kind.

Proof. See Appendix D.

Figures 10, 11 and 12 demonstrate the effect of each parameter (i.e., n, α295

and µ) on the average EW (1/ det[zIn + W]). The agreement between the an-

alytical and simulation results is clearly evident from the figure. This verifies

the accuracy of our Theorem 9.

Remark 8. The behavior of EW (1/ det[zIn + W]) for different K with the

rank-one MIMO Rician model is expected to be inconsistent with that of fig.300

12 due to (5) and (6).

6. Conclusions

Here we have addressed three problems related to the eigenvalues of a com-

plex non-central Wishart matrix W with a rank-one mean. In particular, new

expressions have been derived for the c.d.f. of the minimum eigenvalue, the305

p.d.f. of tr(W)/λ1, and the statistical average EW (1/ det[zIn + W]). We have

used a classical orthogonal polynomial based approach to derive the main re-

sults in this paper. One of the key advantages of this approach is that the

dimensionality of the main results depends on α = m− n. This α dependency

is pivotal in deriving the microscopic limit of the minimum eigenvalue as well310

as establishing the stochastic convergence of the Demmel condition number. It

turns out that, in the limit, the above two random quantities (once suitably

scaled) do not depend on the rank-one mean, whereas the corresponding finite

dimensional results depend on the rank-one mean through µ = tr(M∗M). This

rank-one mean property also helps us express the average EW (1/ det[zIn + W])315

in terms of a single infinite summation.
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Appendix A. Proof of Theorem 4

Since the joint p.d.f. is symmetric in λ1, . . . , λn, we can write (12) as

Pr (λ1 ≥ x) =
1
n!

∫

[0,∞)n

fΛ (λ1 + x, . . . , λn + x) dλ1 · · · dλn.

Now it is convenient to use (3) to arrive at

Pr (λ1 ≥ x) =
Kn,α

n!
e−µ−nx

µn−1

n∑

k=1

∫

[0,∞)n

0F1 (α+ 1;µ(λk + x))∏n
i=1
i6=k

(λk − λi)

×
n∏

i=1

(λi + x)αe−λi∆2
n(λ)dλ1 · · · dλn. (A.1)
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Since each term in the above summation contributes the same amount, we may

write (A.1) as

Pr (λ1 ≥ x) =
Kn,α

(n− 1)!
e−µ−nx

µn−1

∫

[0,∞)n

0F1 (α+ 1;µ(λ1 + x))∏n
i=2 (λ1 − λi)

×
n∏

i=1

(λi + x)αe−λi∆2
n(λ)dλ1 · · ·dλn.

Using the decomposition ∆2
n(λ) =

∏n
i=2(λ1 − λi)2∆2

n−1(λ), we can rewrite the

above multiple integral after relabeling the variables, λ1 = λ, λi = yi−1, i =

2, . . . , n, as

Pr (λ1 ≥ x) =
Kn,α

(n− 1)!
e−µ−nx

µn−1

∫

[0,∞)
0F1 (α+ 1;µ(λ+ x)) (λ+ x)αe−λ

× (−1)(n−1)αQn−1 (λ,−x, α) dλ (A.2)

where

Qn (a, b, α) :=
∫

[0,∞)n

n∏

i=1

(a− yi)(b− yi)αe−yi∆2
n(y)dy1 · · ·dyn. (A.3)

As shown in Appendix E, we can solve the above multiple integral in closed-form

to yield

Qn (a, b, α) =
Kn,α

(b− a)α
det
[
L

(0)
n+i−1(a) L

(j−2)
n+i+1−j(b)

]
i=1,...,α+1
j=2,...,α+1

(A.4)

where

Kn,α = (−1)n+α(n+α)

∏α+1
i=1 (n+ i− 1)!

∏n−1
i=0 i!(i+ 1)!

∏α−1
i=1 i!

.

Therefore, using (A.4) in (A.2) with some algebraic manipulation, we obtain

Pr (λ1 ≥ x) = (−1)n+1 (n+ α− 1)!
α!

e−µ−nx

µn−1
det
[
ζi(x) L

(j−2)
n+i−j(−x)

]
i=1,...,α+1
j=2,...,α+1

(A.5)

where

ζi(x) =
∫ ∞

0
0F1 (α+ 1;µ(λ+ x)) e−λL

(0)
n+i−2(λ)dλ.
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The remaining task is to evaluate the above integral, which does not seem to

have a simple closed-form solution. Therefore, we expand the hypergeometric

function with its equivalent power series and use Corollary 3 to arrive at

ζi(x) =
∞∑

l=0

∞∑

k=0

µl+kxk

k!l!(α+ 1)l+k

∫ ∞

0

λle−λL
(0)
n+i−2(λ)dλ

=
∞∑

l=0

∞∑

k=0

µl+kxk

k!(α+ 1)l+k

(−l)n+i−2

(1)n+i−2
. (A.6)

Following (10), we observe that the quantity (−l)n+i−2 is non-zero only when

l ≥ n + i − 2. Therefore, we shift the summation index l with some algebraic

manipulation to yield

ζi(x) =
(−1)n+iµn+i−2α!
(n+ i+ α− 2)!

∞∑

k=0

(xµ)k

k!(n+ i+ α− 1)k

× 1F1(n+ i− 1;n+ α+ i+ k − 1;µ) (A.7)

where we have used the relation

(α + 1)k+i+n+l−2 =
(α+ i+ n− 2)!

α!
(α+ i+ n+ k − 1)l(α+ i+ n− 1)k.

Substituting (A.7) back into (A.5) with some algebra then gives

Pr (λ1 ≥ x) = (n+ α− 1)!e−nx det
[
(−µ)i−1ψi(µ, x) L

(j−2)
n+i−j(−x)

]
i=1,...,α+1
j=2,...,α+1

(A.8)

where we have used the Kummer relation (Erdélyi [25]), 1F1(a; c; z) = ez
1F1(c−

a; c,−z). Finally, using (A.8) in (11) gives the c.d.f. of the minimum eigenvalue,325

which concludes the proof.

Appendix B. Proof of Corollary 5

It is convenient to start with (A.5) which we rewrite with the help of (A.6)

as

Pr (λ1 ≥ x) = (−1)n+1 e
−µ−nx

α!µn−1

∞∑

k=0

∞∑

l=0

µk+lxl(−k)n−1

l!(α+ 1)k+l

× det
[

(n)α

(n)i−1

(−k)n+i−2

(−k)n−1
L

(j−2)
n+i−j(−x)

]

i=1,...,α+1
j=2,...,α+1

.

27



We may further rewrite it as

Pr (λ1 ≥ x) =
e−µ−nx

α!µn−1

∞∑

k=n−1

∞∑

l=0

µk+lxl k!
l!(α+ 1)k+l(k − n+ 1)!

× det
[

(n)α

(n)i−1

(−k)n+i−2

(−k)n−1
L

(j−2)
n+i−j(−x)

]

i=1,...,α+1
j=2,...,α+1

.

(B.1)

Now we use the decomposition

(−k)n+i−2

(−k)n−1
= (−1)i−1

i−2∏

p=0

(k − n+ 1− p) (B.2)

to obtain

Pr (λ1 ≥ x) =
e−µ−nx

α!µn−1

∞∑

k=n−1

∞∑

l=0

µk+lxlk!
l!(α+ 1)k+l(k − n+ 1)!

× det

[
(−1)i−1 (n)α

(n)i−1

i−2∏

p=0

(k − n+ 1− p)

L
(j−2)
n+i−j(−x)

]
i=1,...,α+1
j=2,...,α+1

.

(B.3)

Since the first infinite summation begins with k = n− 1, we may reorganize the

sum with respect to k to yield

Pr (λ1 ≥ x) = (n)αe
−µ−nx

∞∑

k=0

∞∑

l=0

µk+lxl(n)k

k!l!(n)α+l+k

× det

[
(−1)i−1

(n)i−1

i−2∏

p=0

(k − p) L
(j−2)
n+i−j(−x)

]

i=1,...,α+1
j=2,...,α+1

. (B.4)
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At this juncture, we focus on further simplification of the columns involving the

generalized Laguerre polynomials. To this end, we use (7) to obtain

Pr (λ1 ≥ x)

=
(n)αe

−µ−nx

∏α
j=1(j − 1)!

∞∑

k=0

∞∑

l=0

µk+lxl(n)k

k!l!(n)α+l+k

× det

[
(−1)i−1

(n)i−1

i−2∏

p=0

(k − p)

(n+ i− 2)!
(n+ i− j)!

n+i−j∑

kj=0

(−n− i+ j)kj

(j − 1)kj

(−x)kj

(kj)!




i=1,...,α+1
j=2,...,α+1

. (B.5)

Further manipulation in this form is highly undesirable due to the i, j dependent

summations upper limits in the 2, . . . , α + 1 columns of the determinant. To

circumvent this problem, we use the factorization

(−n− i+ j)kj = (−n− i+ j)kj

(−n− α− 1 + j)kj

(−n− α− 1 + j)kj

=
(n+ i− j)!

(n+ α+ 1− j)!
(−n− α− 1 + j)kj

α−i∏

p=0

(cj − p), (B.6)

where cj = n + α + 1 − j − kj , in (B.5) with some algebraic manipulation to

yield

Pr (λ1 ≥ x)

=
(n)α e

−µ−nx

∏α
j=1(j − 1)!(n+ α− j)!

∞∑

k=0

∞∑

l=0

µk+lxl(n)k

k!l!(n)α+l+k

× det

[
(−1)i−1

(n)i−1

i−2∏

p=0

(k − p)

(n+ i− 2)!
n+α+1−j∑

kj=0

(−n− α− 1 + j)kj

(j − 1)kj

(−x)kj

(kj)!




i=1,...,α+1
j=2,...,α+1

(B.7)
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from which we obtain

Pr (λ1 ≥ x) =
(n)α e

−µ−nx

∏α
j=1(j − 1)!

∞∑

k=0

∞∑

l=0

µk+lxl(n)k

k!l!(n)α+l+k

×
n+α−1∑

k1=0

n+α−2∑

k2=0

· · ·
n∑

kα=0

α∏

j=1

(−n− α+ j)kj

(j)kj

(−x)kj

(kj)!

× det

[
(−1)i

i−1∏

p=0

(k − p)
(n+ p)2

α−i−1∏

p=0

(c̃j − p)

]

i=0,...,α
j=1,...,α

(B.8)

where c̃j = n + α − j − kj and in the second equality, we have translated the

indices i = 1, . . . , α+1 to i = 0, . . . , α and j = 2, . . . , α+1 to j = 1, . . . , α. Note

that, under the current index assignment, an empty product is interpreted as

unity. Keeping in mind that we are interested in the limit as n → ∞, we may

further simplify the above determinant with the help of Dharmawansa et al. [24,

Lemma A.1] to yield

Pr (λ1 ≥ x) =
(n)α e

−µ−nx

∏α
j=1(j − 1)!

∞∑

k=0

∞∑

l=0

µk+lxl(n)k

k!l!(n)α+l+k

×
n+α−1∑

k1=0

n+α−2∑

k2=0

· · ·
n∑

kα=0

α∏

j=1

(−n− α+ j)kj

(j)kj

(−x)kj

(kj)!
Ξ(n, k, c̃)

(B.9)

where

Ξ(n, k, c̃) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 + o(1) c̃α1 c̃α2 · · · c̃αα
−k
n2 + o

(
1

n2

)
c̃α−1
1 c̃α−1

2 · · · c̃α−1
α

k(k−1)
n2(n+1)2 + o

(
1

n4

)
c̃α−2
1 c̃α−2

2 · · · c̃α−2
α

...
...

...
. . .

...

(−1)α−2
∏α−3

p=0
(k−p)
(n+p)2 + o

(
1

n2(α−2)

)
c̃21 c̃22 · · · c̃2α

(−1)α−1
∏α−2

p=0
(k−p)
(n+p)2 c̃1 c̃2 · · · c̃α

(−1)α
∏α−1

p=0
(k−p)
(n+p)2 1 1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(B.10)

with c̃ = (c̃1, . . . , c̃α) and for non-zero g(x), f(x) = o(g(x)) is equivalent to

lim
x→∞

f(x)/g(x) = 0.
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Now let us consider the expression Pr (λ1 ≥ x/n), which can be written as

Pr
(
λ1 ≥

x

n

)
=

(n)α e
−µ−x

∏α
j=1(j − 1)!

∞∑

k=0

∞∑

l=0

µk+lxl(n)k

k!l!(n)α+l+knl

×
n+α−1∑

k1=0

n+α−2∑

k2=0

· · ·
n∑

kα=0

α∏

j=1

(−n− α+ j)kj

(j)kj

(− x
n )kj

(kj)!
Ξ(n, k, c̃).

(B.11)

Assuming that we have the freedom to take the limits term by term and observ-

ing that only the terms corresponding to l = 0 contribute to a non-zero limit as

n→∞, we take the limit of (B.11) as n→∞ to yield

lim
n→∞

Pr
(
λ1 ≥

x

n

)

=
e−µ−x

∏α
j=1(j − 1)!

∞∑

k=0

µk

k!

∞∑

k1=0

∞∑

k2=0

· · ·
∞∑

kα=0

α∏

j=1

xkj

(j)kjkj !
lim

n→∞
Ξ(n, k, c̃). (B.12)

We now focus on the limiting value of the remaining determinant Ξ(n, k, c̃).

Since each of the terms c̃j, j = 1, . . . , α, contains n, a straightforward term-by-

term limit will give an indeterminate form. To circumvent this problem, we try

to simplify the determinant as much as possible before taking the limits. To

this end, we expand the determinant using its first column as

Ξ(n, k, c̃) =
α+1∑

i=1

(−1)i+1Ξ1,i(n, k, c̃)M1,i (B.13)

where M1,i is the minor corresponding to the ith element of the first column.

As such, we can represent the M1,i as the determinant of an α× α matrix as

M1,i =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c̃α1 c̃α2 · · · c̃αα

c̃α−1
1 c̃α−1

2 · · · c̃α−1
α

...
...

. . .
...

c̃α−i+2
1 c̃α−i+2

2 · · · c̃α−i+2
α

c̃α−i
1 c̃α−i

2 · · · c̃α−i
α

...
...

. . .
...

1 1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (B.14)
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A few observations on the evaluation of this determinant are in order now.

Clearly, by invoking the factor theorem, it can be easily seen that there exists

α(α − 1)/2 factors of the form c̃i − c̃j with 1 ≤ i < j ≤ α. Most importantly,

each of such factors is free of n (i.e., because c̃i − c̃j = j + kj − i − ki). Since

the original minor consists of monomials of degree ν1 given by

ν1 = 1 + · · ·+ α− (α− i+ 1) =
1
2
(α2 − α+ 2i− 2), (B.15)

the other factor term should be of degree ν2, which is given by

ν2 = ν1 −
1
2
α(α − 1) = i− 1. (B.16)

Therefore, we can write

M1,i =


 ∏

1≤i<j≤α

(j + kj − i− ki)



(

i−1∑

k=0

ak,in
k

)

= ∆α(c)

(
i−1∑

k=0

ak,in
k

)
(B.17)

where c = (c1, . . . , cα) with cl = l + kl and ak,i, k = 1, . . . , i − 1, are constant

coefficients free of n. This in turn gives

Ξ(n, k, c̃) = ∆α(c)
α+1∑

i=1

(−1)i+1Ξ1,i(n, k, c̃)
i−1∑

k=0

ak,in
k. (B.18)

Since, for large n, each of Ξ1,i(n, k, c̃) (i.e., the ith element of the first column

of Ξ(n, k, c̃)) has the lowest order term of 1/n2(i−1), one can easily obtain

lim
n→∞

Ξ(n, k, c̃) = ∆α(c)
α+1∑

i=1

(−1)i+1 lim
n→∞

(
Ξ1,i(n, k, c̃)

i−1∑

k=0

ak,in
k

)

= ∆α(c) (B.19)

where we have used the fact that a0,1 = 1. Thus, we can write (B.12) as

lim
n→∞

Pr
(
λ1 ≥

x

n

)
=

e−x

∏α
j=1(j − 1)!

∞∑

k1=0

∞∑

k2=0

· · ·
∞∑

kα=0

α∏

j=1

xkj

(j)kjkj !
∆α(c) (B.20)
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from which we obtain

lim
n→∞

Pr
(
λ1 ≥

x

n

)

=
e−x

∏α
j=1(j − 1)!

∞∑

k1=0

∞∑

k2=0

· · ·
∞∑

kα=0

α∏

j=1

xkj

(j)kjkj !
det
[
(kj + j)i−1

]
i,j=1,...,α

.

(B.21)

To facilitate further manipulations, keeping in mind that Vandermonde deter-

minant is invariant to constant shift of its arguments, we rewrite the above

equation as

lim
n→∞

Pr
(
λ1 ≥

x

n

)

=
e−x

∏α
j=1(j − 1)!

∞∑

k1=0

∞∑

k2=0

· · ·
∞∑

kα=0

α∏

j=1

xkj

(j)kjkj !
det
[
(kj + j + β − 1)i−1

]
i,j=1,...,α

(B.22)

where β is an arbitrary non-negative number. In view of Dharmawansa et al. [24,

Lemma A.1], the alternative representation of the Vandermonde determinant

gives

lim
n→∞

Pr
(
λ1 ≥

x

n

)

=
e−x

∏α
j=1(j − 1)!

∞∑

k1=0

∞∑

k2=0

· · ·
∞∑

kα=0

α∏

j=1

xkj

(j)kjkj !

× det

[
i−2∏

p=0

(kj + j + β − 1− p)

]

i,j=1,...,α

=
e−x

∏α
j=1(j − 1)!

∞∑

k1=0

∞∑

k2=0

· · ·
∞∑

kα=0

α∏

j=1

xkj

(j)kjkj !
det
[
(kj + j + β − 1)!
(kj + j + β − i)!

]

i,j=1,...,α

= e−x
α∏

j=1

(β + j − 1)!
(j − 1)!

det


 1

(1)j+β−i

∞∑

kj=0

(β + j)kj

(j)kj (j + β + 1− i)kj

xkj

kj !




i,j=1,...,α

.

(B.23)

Since β is an arbitrary non-negative number, we may set it to zero and use the

relation

z−
ν
2 Iν(2

√
z) =

1
(1)ν

∞∑

k=0

zk

k!(ν + 1)k
(B.24)
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with Iν(z) denoting the modified Bessel function of the first kind and order ν,

to arrive at

lim
n→∞

Pr
(
λ1 ≥

x

n

)
= e−x det

[
x

i−j
2 Ij−i(2

√
x)
]

i,j=1,...,α

= e−x det
[
Ij−i(2

√
x)
]
i,j=1,...,α

. (B.25)

Finally, (B.25) along with the fact that lim
n→∞

Fnλ1(x) = 1− lim
n→∞

Pr (nλ1 ≥ x) =330

FX(x) concludes the proof.

Appendix C. Proof of Theorem 6

By definition, the m.g.f. of V can be written as

MV (s) = EΛ

(
e
−s

∑n
j=1 λj

λ1

)
, ℜ(s) ≥ 0,

which has the following multiple integral representation

MV (s) = e−s

∫

0≤λ1≤···≤λn<∞
e−s

∑n
j=2 λj

λ1 fΛ(λ1, . . . , λn)dλ1 · · · dλn.

Since the argument of the exponential function is symmetric in λ2, . . . , λn, it

is convenient to introduce the substitution λ1 = x and rewrite the multiple

integral, keeping the integration with respect to x last, as

MV (s) = e−s

∫ ∞

0

∫

x≤λ2≤...≤λn<∞
e−s

∑n
j=2 λj

x fΛ(x, λ2, . . . , λn)dλ2 · · · dλndx.

(C.1)

To be consistent with the above setting, we may restructure the joint p.d.f. of

Λ given in (3) as

fΛ(x, λ2, . . . , λn) = Kn,α
e−µ

µn−1
xαe−x

n∏

i=2

λα
i e
−λi(x− λi)2∆2

n−1(λ)

×




0F1 (α+ 1;µx)
n∏

i=2

(x− λi)

+
n∑

k=2

0F1 (α+ 1;µλk)

(λk − x)
n∏

i=2
i6=k

(λk − λi)




(C.2)

34



where we have used the decomposition ∆2
n(λ) = (x−λi)2∆2

n−1(λ). Now we use

(C.2) in (C.1) with some algebraic manipulation to obtain

MV (s) = P(s) + S(s) (C.3)

where

P(s) = Kn,α
e−µ−s

µn−1

∫ ∞

0

e−xxα
0F1 (α+ 1;µx)

×
(∫

x≤λ2≤···≤λn<∞

n∏

i=2

e−(1+ s
x )λiλα

i (x− λi)∆2
n−1(λ)dλ2 · · · dλn

)
dx

(C.4)

and

S(s) = Kn,α
e−µ−s

µn−1

∫ ∞

0

e−xxα

(∫

x≤λ2≤···≤λn<∞

n∑

k=2

0F1 (α+ 1;µλk)

(λk − x)
n∏

i=2
i6=k

(λk − λi)

×
n∏

i=2

λα
i e
−λi(x− λi)2∆2

n−1(λ)dλ2 · · ·dλn

)
dx.

(C.5)

The remainder of this proof focuses on evaluating the above two multiple inte-

grals. Since the two integrals do not share a common structure, in what follows,

we will evaluate them separately.335

Let us begin with (C.4). Clearly, the inner multiple integral is symmetric in

λ2, . . . , λn. Thus, we can remove the ordered region of integration to yield

P(s) =
Kn,α

(n− 1)!
e−µ−s

µn−1

∫ ∞

0

e−xxα
0F1 (α+ 1;µx)

×
(∫

[x,∞)n−1

n∏

i=2

e−(1+ s
x )λiλα

i (x − λi)∆2
n−1(λ)dλ2 · · · dλn

)
dx.

Now we apply the change of variables yi−1 = (x+ s)(λi − x)/x, i = 2, . . . , n, to

the inner (n− 1) fold integral with some algebraic manipulation to obtain

P(s) = (−1)(n−1)(1+α) Kn,α

(n− 1)!
e−µ−sn

µn−1

∫ ∞

0

e−nxxn(n−1+α) 0F1 (α+ 1;µx)
(x+ s)(n+α)(n−1)

×Rn−1(−(s+ x), α)dx
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where

Rn(a, α) =
∫

[0,∞)n

n∏

i=1

e−yjyj(a− yj)α∆2
n(y)dy1 · · · dyn.

Following Mehta [47, Section 22.2.2], we can solve the above integral to yield11

Rn(a, α) = (−1)nα
n−1∏

j=0

(j + 1)!(j + 1)!
α−1∏

j=0

(n+ j)!
j!

det
[
L

(j)
n+i−j(a)

]
i,j=1,...,α

.

(C.6)

Therefore, we obtain

P(s) = (−1)(n−1) (n− 1)!
α!

e−µ−sn

µn−1

×
∫ ∞

0

e−nxxn(n−1+α) 0F1 (α+ 1;µx)
(x+ s)(n+α)(n−1)

× det
[
L

(j)
n+i−j−1(−x− s)

]
i,j=1,...,α

dx.

(C.7)

Although further manipulation in this form is feasible, it is convenient to leave

the solution in the current form. Next we focus on solving the multiple integral

given in (C.5).

By symmetry, we convert the ordered region of integration in (C.5) to an

unordered region to yield

S(s) =
Kn,α

(n− 1)!
e−µ−s

µn−1

∫ ∞

0

e−xxα

(∫

[x,∞)n−1

n∑

k=2

0F1 (α+ 1;µλk)

(λk − x)
n∏

i=2
i6=k

(λk − λi)

×
n∏

i=2

λα
i e
−λi(x− λi)2∆2

n−1(λ)dλ2 · · ·dλn

)
dx.

Since each term in the above summation contributes the same amount, we can

11Specific steps pertaining to this evaluation are not given here as the detailed steps of

solving a similar integral have been given in Dharmawansa et al. [24].
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further simplify the multiple integral giving

S(s) =
Kn,α

(n− 2)!
e−µ−s

µn−1

∫ ∞

0

e−xxα

(∫

[x,∞)n−1

0F1 (α+ 1;µλ2)

(λ2 − x)
n∏

i=3

(λ2 − λi)

×
n∏

i=2

λα
i e
−λi(x− λi)2∆2

n−1(λ)dλ2 · · · dλn

)
dx,

from which we obtain, after using the decomposition ∆2
n−1(λ) =

∏n
j=3(λ2 −

λj)2∆2
n−2(λ),

S(s)

=
Kn,α

(n− 2)!
e−µ−s

µn−1

∫ ∞

0

e−xxα

{∫ ∞

x

λα
2 (λ2 − x)0F1 (α+ 1;µλ2) e−(1+ s

x )λ2

×
(∫

[x,∞)n−2

n∏

i=3

λα
i e
−(1+ s

x )λi(λ2 − λi)(x− λi)2∆2
n−2(λ)dλ3 · · · dλn

)
dλ2

}
dx.

Now we apply the variable transformations, y = λ2 − x, yi−2 = (x + s)(λi −
x)/x, i = 3, . . . , n, in the above multiple integral to yield

S(s)

= (−1)nα Kn,α

(n− 2)!
e−µ−sn

µn−1

∫ ∞

0

e−xnxα

(
1 + s

x

)(n−2)(n+α+1)

{∫ ∞

0

y(y + x)αe−(1+ s
x)y

× 0F1 (α+ 1;µ(y + x)) Tn−2

(
y
(
1 +

s

x

)
,−s− x, α

)
dy

}
dx

where

Tn(a, b, α) :=
∫

[0,∞)n

n∏

i=1

(a− yi)(b − yi)αe−yiy2
i ∆2

n(y)dy1 · · ·dyn. (C.8)

It is not difficult to observe that Tn(a, b, α) and Qn(a, b, α) defined in (A.3)

share a common structure up to a certain Laguerre weight. Therefore, we can

readily follow similar arguments as shown in Appendix E with the modified

monic orthogonal polynomials given by Pk(x) = (−1)kk!L(2)
k (x) to arrive at

Tn(a, b, α) :=
(−1)n+α(n+α)K̃n,α

(b− a)α
det
[
L

(2)
n+i−1(a) L

(j)
n+i+1−j(b)

]
i=1,...,α+1
j=2,...,α+1
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where

K̃n,α =

∏α+1
j=1 (n+ j − 1)!

∏n−1
j=0 (j + 1)!(j + 2)!

∏α−1
j=0 j!

.

This in turn gives

S(s)

= (−1)n (n− 1)!
α!

e−µ−sn

µn−1

×
∫ ∞

0

e−xnxα

(
1 + s

x

)(n−1)(n+α)−2

{∫ ∞

0

ye−(1+ s
x )y

0F1 (α+ 1;µ(y + x))

× det
[
L

(2)
n+i−3

(
y
(
1 +

s

x

))
L

(j)
n+i−1−j (−x− s)

]
i=1,...,α+1
j=2,...,α+1

dy

}
dx

from which we obtain, after the variable transformation y (1 + s/x) = t,

S(s) = (−1)n (n− 1)!
α!

e−µ−sn

µn−1

×
∫ ∞

0

e−xnxα

(
1 + s

x

)(n−1)(n+α)
det
[
̺i(s, x) L

(j)
n+i−1−j (−x− s)

]
i=1,...,α+1
j=2,...,α+1

dx

(C.9)

where

̺i(s, x) =
∫ ∞

0

te−t
0F1

(
α+ 1;µ

(
x+

t

1 + s
x

))
L

(2)
n+i−3(t)dt (C.10)

and we have used the fact that only the first column of the determinant de-

pends on the variable t. The integral in (C.10) does not seem to have a simple

closed-form solution. Therefore, to facilitate further analysis, we write the hy-

pergeometric function with its equivalent power series expansion and use Lemma

3 to arrive at

̺i(s, x) =
1

(n+ i− 3)!

∞∑

p=0

p∑

k=0

µpxp−k(k + 1)!
k!(p− k)!(α+ 1)p

(1− k)n+i−3(
1 + s

x

)k

=
1

(n+ i− 3)!

∞∑

k=0

∞∑

p=0

µp+kxp(k + 1)!
k!p!(α+ 1)p+k

(1− k)n+i−3(
1 + s

x

)k .

The behavior of the Pochhammer symbol (1−k)n+i−3 with respect to l deserves
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a special attention at this juncture. As such, we can observe that

(1− k)n+i−3 =





(n+ i− 3)! for k = 0

0 for k = 1

(1− k)n+i−3 for k ≥ 2,

which enables us to decompose the terms corresponding to the summation index

k into two parts. As a result, after some algebra, we obtain

̺i(s, x) = 0F1 (α+ 1;µx) +
σi(s, x)

(n+ i − 3)!
. (C.11)

where

σi(s, x) =
∞∑

k=0

∞∑

p=0

µp+k+2xp(k + 3)!
(k + 2)!p!(α+ 1)p+k+2

(−1− k)n+i−3(
1 + s

x

)k+2
. (C.12)

Now we substitute (C.11) into (C.9) and further simplify the resultant determi-

nant using the multilinear property to obtain

S(s) = (−1)n (n− 1)!
α!

e−µ−sn

µn−1

∫ ∞

0

e−xnxn(n+α−1) 0F1 (α+ 1;µx)

(x+ s)(n−1)(n+α)

× det
[
1 L

(j)
n+i−1−j (−x− s)

]
i=1,...,α+1
j=2,...,α+1

dx

+ (−1)n (n− 1)!
α!

e−µ−sn

µn−1

∫ ∞

0

e−xnxα

(
1 + s

x

)(n−1)(n+α)

× det
[

σi(s, x)
(n+ i− 3)!

L
(j)
n+i−1−j (−x− s)

]

i=1,...,α+1
j=2,...,α+1

dx.

(C.13)

Let us now focus on further simplification of the determinant in the first integral.

To this end, we apply the following row operation

ith row→ ith row + (−1)(i− 1)th row

on each row for i = 2, . . . , α + 1, and expand the resultant determinant using

its first column to obtain

det
[
1 L

(j)
n+i−1−j (−x− s)

]
i=1,...,α+1
j=2,...,α+1

= det
[
L

(j)
n+i−1−j (−x− s)

]
i,j=1,...,α

(C.14)
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where we have used the contiguous relation given in (9). Therefore, in view

of (C.7), we can clearly identify the first term in (C.13) as −P(s). This key

observation along with (C.3) gives

MV (s)

= (−1)n (n− 1)!
α!

e−µ−sn

µn−1

×
∫ ∞

0

e−xnxα

(
1 + s

x

)(n−1)(n+α)
det
[

σi(s, x)
(n+ i− 3)!

L
(j)
n+i−1−j (−x− s)

]

i=1,...,α+1
j=2,...,α+1

dx.

The remaining task at hand is to further simplify σi(s, x) given in (C.12). To

this end, following (10), we find that (−1−k))n+i−3 is non-zero for k ≥ n+i−4.

Therefore, we shift the index k with some algebraic manipulation to obtain the

m.g.f. of V as

MV (s)

= (n− 1)!e−µ−sn

∫ ∞

0

e−xnxn(n+α)−1

(x+ s)(n−1)(n+α+1)

× det

[(
− µx

x+ s

)i−1

ϑi(xµ, x + s) L
(j)
n+i−1−j (−x− s)

]

i=1,...,α+1
j=2,...,α+1

dx

(C.15)

where

ϑi(w, z) =
(n+ i− 1)

(n+ α+ i− 2)!

∞∑

k=0

(n+ i)k(n+ i− 2)k 0F1 (α+ n+ i+ k − 1;w)wk

k!(α+ n+ i− 1)k(n+ i− 1)kzk
.

Finally, we take the inverse Laplace transform of the above to yield the p.d.f.

of V , which concludes the proof.340

Appendix D. Proof of Theorem 9

We use partial fraction decomposition and exploit the symmetry to yield

EΛ




n∏

j=1

1
z + λj


 =

1
(n− 1)!

∫

[0,∞)n

1∏n
j=2(λj − λ1)

× fΛ(λ1, . . . , λn)
(z + λ1)

dλ1 · · · dλn.
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To facilitates further analysis, we use (3) with some rearrangements to write

EΛ




n∏

j=1

1
z + λj


 = Ω1(z) + Ω2(z) (D.1)

where

Ω1(z) =
(−1)n−1

α!
e−µ

µn−1

∫ ∞

0

0F1 (α+ 1, µλ1)
z + λ1

λα
1 e
−λ1dλ1 (D.2)

and

Ω2(z) =
Kn,α

(n− 1)!
e−µ

µn−1

∫ ∞

0

λα
1 e
−λ1

z + λ1




n∑

k=2

∫

[0,∞)n−1

0F1 (α+ 1, µλk)∏n
j=1
j 6=k

(λj − λk)

×
n∏

j=2

λα
j e
−λj

(λj − λ1)
∆2

n(λ)dλ2 · · ·dλn


 dλ1.

(D.3)

Since further simplification of (D.2) seems an arduous task, we leave it in its

current form and focus on (D.3). Noting that each term inside the summation

contributes the same amount due to symmetry in λ2, . . . , λn, we can further

simplify (D.3) to yield

Ω2(z)

=
(−1)nKn,α

(n− 2)!
e−µ

µn−1

∫ ∞

0

λα
1 e
−λ1

z + λ1

∫ ∞

0
0F1 (α+ 1, µλ2)λα

2 e
−λ2



∫

[0,∞)n−1

1∏n
j=1
j 6=2

(λj − λk)

n∏

j=2

λα
j e
−λj

(λ1 − λj)
∆2

n(λ)dλ3 · · · dλn


dλ2dλ1.

We now use the decomposition ∆2
n(λ) =

∏n
j=2(λ1−λj)2

∏n
j=3(λ2−λj)2∆2

n−2(λ)

followed by the variable transformation yj = λj−2, j = 3, . . . , n, to obtain

Ω2(z) =
(−1)nKn,α

(n− 2)!
e−µ

µn−1

×
∫ ∞

0

λα
1 e
−λ1

z + λ1

(∫ ∞

0
0F1 (α+ 1, µλ2)λα

2 e
−λ2Un−2(λ1, λ2, α)dλ2

)
dλ1

where

Un(r1, r2, α) :=
∫

[0,∞)n

n∏

j=1

2∏

i=1

(ri − yj)yα
j e
−yj ∆2

n(y)dy1 · · · dyn. (D.4)
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The above integral can be solved using Mehta [47, Eqs. 22.4.2, 22.4.11] and

Appendix E with the choice of Pk(x) = (−1)kk!L(α)
k (x) to yield

Un(r1, r2, α) = (−1)n!(n+ 1)!
n−1∏

j=0

(j + 1)!(j + α)!
det
[
L

(α)
n+i−1(rj)

]
i,j=1,2

(r2 − r1)
.

(D.5)

This in turn gives

Ω2(z)

= (−1)n+1 (n− 1)!
α!(n+ α− 2)!

e−µ

µn−1

×
∫ ∞

0

λα
1 e
−λ1

z + λ1



∫ ∞

0
0F1 (α+ 1, µλ2)

det
[
L

(α)
n+i−1(λj)

]
i,j=1,2

(λ2 − λ1)
λα

2 e
−λ2dλ2


 dλ1.

(D.6)

Further manipulation of the above integral in its current form is highly undesir-

able due to the term λ2 − λ1 in the denominator. To circumvent this difficulty,

we employ the following form of the Christoffel-Darboux formula (Abramowitz

and Stegun [1, Eq. 22.12.1])

det
[
L

(α)
n+i−1(λj)

]
i,j=1,2

(λ2 − λ1)
= (−1)

(n+ α− 2)!
(n− 1)!

n−2∑

j=0

j!
(j + α)!

L
(α)
j (λ1)L

(α)
j (λ2)

in (D.6) to obtain

Ω2(z) =
(−1)n

α!
e−µ

µn−1

n−2∑

j=0

j!
(j + α)!

∫ ∞

0

L
(α)
j (λ1)
z + λ1

λα
1 e
−λ1dλ1

×
∫ ∞

0
0F1 (α+ 1, µλ2)L

(α)
j (λ2)λα

2 e
−λ2dλ2.

Now the second integral can be solved using Lemma 3 to obtain
∫ ∞

0
0F1 (α+ 1, µλ2)L

(α)
j (λ2)λα

2 e
−λ2dλ2 =

α!
j!

(−µ)jeµ (D.7)

which in turn gives

Ω2(z) =
(−1)n

α!
e−µ

µn−1

n−2∑

j=0

(−µ)jα!
(j + α)!

eµ

∫ ∞

0

L
(α)
j (λ1)
z + λ1

λα
1 e
−λ1dλ1.
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In order to further simplify the above integral, we rearrange the summation

with respect to index j giving

Ω2(z) =
(−1)n

α!
e−µ

µn−1




∞∑

j=0

(−µ)jα!
(j + α)!

eµ

∫ ∞

0

L
(α)
j (λ1)
z + λ1

λα
1 e
−λ1dλ1

−
∞∑

j=n−1

(−µ)jα!
(j + α)!

eµ

∫ ∞

0

L
(α)
j (λ1)
z + λ1

λα
1 e
−λ1dλ1


 .

(D.8)

Let us now focus on the first infinite summation. As such, using (7) with some

algebraic manipulation we obtain
∞∑

j=0

(−µ)jα!
(j + α)!

L
(α)
j (λ1) = 0F1(α + 1;µλ1)e−µ.

Therefore, we can simpify (D.8), in view of (D.2), to yield

Ω2(z) = −Ω1(z) + (−1)n+1 1
µn−1

∞∑

j=n−1

(−µ)j

(j + α)!

∫ ∞

0

L
(α)
j (λ1)
z + λ1

λα
1 e
−λ1dλ1.

Finally, we shift the initial value of the summation index to zero and use Erdélyi

[25, Eq. 6.15.2.16] with (D.1) to yield (26), which concludes the proof.

Appendix E. Proof of (A.4)

Following Mehta [47, Eqs. 22.4.2, 22.4.11], we begin with the integral
∫

[0,∞)n

n∏

j=1

e−yj

α+1∏

i=1

(ri − yj)∆2
n(y)dy1 · · · dyn

=
n−1∏

i=0

(i+ 1)!i!
det [Pn+i−1(rj)]i,j=1,...,α+1

∆α+1(r)
, (E.1)

where Pk(x)’s are monic polynomials orthogonal with respect to e−x, over 0 ≤
x < ∞. As such, we choose Pk(x) = (−1)kk!L(0)

k (x), which upon substituting

into the above equation gives
∫

[0,∞)n

n∏

j=1

e−yj

α+1∏

i=1

(ri − yj)∆2
n(y)dy1 · · · dyn

= K̃
det
[
L

(0)
n+i−1(rj)

]
i,j=1,...,α+1

∆α+1(r)
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where

K̃ = (−1)(n−1)(α+1)
n−1∏

i=0

(i + 1)!i!
α+1∏

i=1

(−1)i(n+ i− 1)!.

In general, the ri’s in the above formula are distinct parameters. However, for

our purpose, we have to choose them in such a manner that the left side of (E.1)

becomes Qn(a, b, α). To this end, we select ri’s such that

ri =





a if i = 1

b if i = 2, . . . , α+ 1.

This direct substitution in turn gives 0/0 indeterminate form for the right side

of (E.1). To circumvent this problem, instead of direct substitution, we follow

an approach given in Khatri [43] to obtain

Qn(a, b, α) = K̃ lim
r2,...,rα+1→b

det
[
L

(0
n+i−1(a) L

(0)
n+i−1(rj)

]
i=1,...,α+1
j=2,...,α+1

det[ai−1 ri−1
j ]i=1,...,α+1

j=2,...,α+1

= K̃

det
[
L

(0)
n+i−1(a)

dj−2

dbj−2
L

(0)
n+i−1(b)

]

i=1,...,α+1
j=2,...,α+1

det
[
ai−1

dj−2

dbj−2
bi−1

]

i=1,...,α+1
j=2,...,α+1

. (E.2)

The denominator of (E.2) gives

det
[
ai−1 dj−2

dbj−2
bi−1

]

i=1,...,α+1
j=2,...,α+1

=
α−1∏

i=1

i! (b − a)α. (E.3)

The numerator can be simplified using (8) to yield

det
[
L

(0)
n+i−1(a)

dj−2

dbj−2
L

(0)
n+i−1(b)

]

i=1,...,α+1
j=2,...,α+1

= (−1)
1
2 α(α−1) det

[
L

(0
n+i−1(a) L

(j−2)
n+i+1−j(b)

]
i=1,...,α+1
j=2,...,α+1

.

(E.4)

Substituting (E.3) and (E.4) into (E.2) gives (A.4).345
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