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1Extremum Seeking Control with Sporadic Packet
Transmission for Networked Control Systems

Upeka Premaratne, Saman Halgamuge, Ying Tan and Iven M. Y. Mareels.

Abstract—Extremum Seeking Control (ESC) is a data-driven
optimization technique that can steer a dynamic plant towards an
extremum of an unknown but measurable, input to steady-state
output. In the context of Networked Control Systems (NCSs) a
new implementation method for ESC inspired by the well known
Luus-Jaakola algorithm is proposed. The main motivation is to
minimize the communication burden associated with the search
phase of ESC. In the proposed method the controller only requires
a notification of a change registered at the sensor, rather than
the full information available at the sensor. This event based
approach leads to sporadic packet transmission. In addition the
proposed method is able to directly account for constraints whilst
seeking for the desired extremum. The constraints may be of the
inequality or equality type. The algorithm’s behavior is illustrated
on a networked water pump control system.

Keywords—Extremum Seeking Control, Networked Control Sys-
tems, Sporadic Sampling, Luus-Jaakola Algorithm

I. INTRODUCTION

Extremum Seeking Control (ESC) is a data-driven opti-
mization technique capable of maintaining a dynamic plant
at the vicinity of an optimal operating point in real time [1]
[2] [3] [4] [5]. Unlike optimal control, ESC requires minimal
a-priori knowledge of the plant since it manipulates the control
input using the measured plant output. An example for such
a control system is ignition spark timing where there is an
optimum spark time for maximizing the torque output of the
internal combustion engine [1] [2] (Section I-A). The prevalent
form of ESC uses a dither (i.e., excitation) signal to explore
the search space for the optimum by perturbing the control
inputs. This can be periodic [6] [7] [8] or stochastic [9] [10]
for a continuous or discrete time system. In the input perturbed
framework of [11] an iterative optimization algorithm can be
used for extremum seeking in the form of a discrete system that
samples the output. The state optimizing approach of Zhang
and Ordonez [12] optimizes the state (instead of perturbing the
input) using gradient descent, metaheuristics [13] [14] or line
search [15].

The stability of the control loop has been established for
different types of ESC schemes [6] [7] [9]. ESC has a long
history [8] [16] [17] and has been applied to a wide range
of engineering applications such as handling thermoacoustic
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instability [18], biorectors [19] and cam timing [1] [2]. Recent
areas of interest for ESC have been maximum power point
tracking in photovoltaic cells [3] [4], parallel optimization of
chillers [5] and wind power optimization [20].

Despite the large body of research into ESC very limited
work has been done in the area of minimizing the net-
work traffic generated when the feedback path of ESC is
implemented over a communication network [21]. Previous
implementations of ESC over communication networks require
periodic sampling and use estimation methods to reduce the
error due to channel unreliability or localized communication
[22] [23] instead of reducing the traffic generated by the
control system itself.

A. Motivating Example and Problem Statement

Minimizing the network traffic generated by the feedback
path of an ESC implementation to reduce its contribution to
congestion of the communication network is an interesting
research problem. This is due to the numerous examples
of engineering problems that require the feedback sensor to
be placed at a significant distance from the ESC controller.
In such systems, implementing the feedback path over a
communication network (as in Fig. 1) is essential. Examples
for such ESC systems include torque maximization in naval
engines where the torque sensor of the propeller shaft is often
located at a significant distance from the timing controller
[24]. A similar situation can also be found in exhaust gas
scrubbers where chemical feeds have to be optimized based
upon input data from sensors located at a distance. Despite
the massive recent increase in bandwidth of communication
networks [25], emerging trends such as seamless integration
of enterprise and automation networks [26] and Internet of
Things (IoT) [27] where more and more entities are networked,
result in increased utilization and consequential congestion
which can lead to undesirable results such as delay, delay
variation (jitter) and packet drops [28]. These consequences
can cause significant stability issues in control systems [29]
[30]. Thus, they motivate the minimization of bandwidth
requirements of such control systems by reducing the effective
sampling rate through sporadic transmission of the data over
the communication network [31] [32].

In periodically [6] [7] [8] or stochastically [9] [10] per-
turbed ESC, the correlation between the input dither and plant
output shifts the averaged (i.e., integrated) input towards the
optimum operating point [8]. This approach requires synchro-
nized periodic sampling between the plant output and dither
to establish such a correlation. It is also bandwidth intensive
but a significant bandwidth reduction can be achieved using
event based sampling and reconstruction of the plant output
[21]. In iterative optimization algorithms (for example [11])
and state optimization methods [12] [13] [14] a measurement
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of the plant output has to be transmitted to the controller for
each periodically executed iteration. Furthermore, all of the
mentioned methods have a limited ability to handle constraints
(Section III-A2). Therefore, all of the above problems moti-
vate this work, which is formulated as a networked form of
ESC with the aim of reducing transmitted data and handling
constraints efficiently.

B. Contribution

The novelties of the paper include a new MISO ESC scheme
where the controller only needs a notification of a change
in the measured optimum output of the plant to update the
estimate of the optimum control input. Hence, it does not
need to transmit a sampled value of the plant output for each
iteration as in [11] or state optimizing ESC [12] [13] [14].
This significantly reduces network traffic. The ESC scheme
extends the framework of [11] using a special case of the Luus-
Jaakola (LJ) algorithm [33]. This new ESC scheme is called
the Luus-Jaakola Extremum Seeking (LJES) method. The
convergence of the LJES for dynamic conditions is established
with the ability to handle sensor noise by quantizing the
output. For the given example (Section IV-D and Table I) it
can reduce network traffic by 99.14% which is a significant
improvement compared to previous work [21]. Furthermore,
it can directly evaluate constraints instead of using indirect
penalty and barrier functions [34] [35]. The effective approach
of the new method is very similar to event based sampling
[31] [36] [37] where periodic transmission of samples over the
communication network is avoided by transmitting the sample
only when a predefined condition is met. However, there is
no reconstruction of the event based sampled signal at the
controller.

C. Outline of this Paper

In the preliminaries (Section II) the background is dis-
cussed. The proposed algorithm, related formal proofs and
simulation results are presented in Section III. In Section III-B
convergence is first proven for a static objective function. It
is then extended to a dynamic system in Section III-C. Some
aspects of the algorithm are simulated in Section IV. In Section
V, the proposed algorithm is implemented on an embedded
water pump control system and the relevant implementation
issues are discussed.

II. PRELIMINARIES

A. Notations

The set of real numbers and positive integers (excluding
zero) are represented by R and N+ respectively. The Euclidean
norm of a variable z ∈ Rn (n ∈ N+) is given by ‖z‖. If z
were a scalar |z| would denote the absolute value. The floor of
a floating point value z is represented by bzc and is defined as
the largest integer that is less than or equal to z. The letter i
in square brackets is used for periodic (clocked) discrete time
samples where i = bt/TSc and TS is the sampling time.

The presence of a second argument for a discrete signal
(y[i, τ ]) indicates a signal with a sampling offset, τ (0 < τ <
TS) with respect to i. Therefore, the discrete time y[i, τ ] =
y(iTS + τ) in the continuous domain.

The Hessian operator of a matrix is denoted by H[·]. The
boundary, interior and relative complement of a set V are
denoted by ∂V , V◦ and \V respectively. The symbol ⊂ is
used to indicate the subset of a set V including the boundary
if applicable as per the definition of V .

The notations of K, K∞ and KL represent the class of
functions as defined in [38] (p. 144).

Definition 1. A class K function is a function α(s) : R > 0→
R > 0 that is continuous, strictly increasing and α(0) = 0. The
collection of class K functions where s ∈ [0,∞) is denoted
by K∞.

Definition 2. A class KL function is a function β(s, t) : R2 >
0→ R > 0 such that for fixed t, the mapping β(s, t) ∈ K with
respect to s and for fixed s the mapping β(s, t) is decreasing
with respect to t and β(s, t)→ 0 when t→∞.

B. Control System Model
The control system considered consists of a feedback loop

(Fig. 1) implemented over a communication network. A plant
with continuous dynamics with an output that needs to be
optimized is considered. The system description is given by,

ẋ = f(x, u) with x(0) = x0

y = g(x)

}
(1)

where x ∈ Rnx is the plant state, u ∈ Rnu is the control input
and y ∈ R the output (nx, nu ∈ N+). f is Lipschitz with
respect to its arguments. The bounded convex set U is the set
of feasible inputs u (u ∈ U ⊂ Rnu ), due to the satisfaction of
constraints that may contain a combination of equality Ψ(u) =
0 (Ψ(u) ∈ Rnh) and inequality Φ(u) ≥ 0 (Φ(u) ∈ Rns)
constraints. The strictly convex function Q : U → R with
Lipschitz constant LQ, is the objective function.

Assumption 1. For any u ∈ U ⊂ Rnu , there exists a unique
continuous mapping x∗ : Rnu → Rnx (i.e., x = x∗(u)) such
that f(x∗(u), u) = 0.

Assumption 2. The equilibrium point f(x∗(u), u) = 0 is
globally asymptotically stable, uniformly in u ∈ U ⊂ Rnu .

Remark 1. In other words from Assumptions 1 and 2 for a
constant u and given x∗(·), the system dynamics (1) converge
to a unique equilibrium point (x∗(u), u) determined by u ∈ U .
Assumptions 1 and 2 are standard assumptions in ESC [6] [7].

Remark 2. The output y(t) consists of a transient error e(t)
(due to the dynamics of the system (1)) such that

y(t) = Q(u) + e(t) (2)

where there exists β ∈ KL such that ‖e(t)‖ < β(‖e(t0)‖, t−
t0) (e(t0) is the bounded initial transient error at the initial
time instant t0 such that ‖e(t0)‖ ≤ ∆e where ∆e is the upper
bound). At steady state y(t) is constant and y(t) = Q(u).
Further, f(x, u) is such that there exists a unique steady state
map q : U → Rnx such that Q(u) = g(q(u)) for constant u.

Remark 3. For the domain U the mappings q(·) and x∗(·)
are equivalent resulting in Q(u) = g(q(u)) = g(x∗(u)).

Remark 4. From Assumptions 1 and 2 along with Remark 2 it
becomes apparent that the LJES requires fast stable dynamics.
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Assumption 3. The objective function Q(u) is assumed to be
strictly convex and without loss of generality, a minimizing
problem with v ∈ U being the isolated minimum of Q(u).

This paper is limited to convex optimization for brevity.
The use of metaheuristics and constructive methods will be
discussed in a subsequent paper.

The control input is perturbed (dithered) by a discrete
small random vector a[i] = [ a1 a2 . . . anu ]T (where
‖a[i]‖ ≤ am) at an interval TS generating the discrete dither
signal

u[i] = uk + a[i] (3)

where uk is the current estimate of the optimal input. All
elements aj of a[i] are uniformly distributed, symmetric and
zero mean (i.e., aj ∈ [−aj,max, aj,max]). The integer k ∈ Z+

corresponds to the number of updates of the current estimate
of the optimal input that have taken place. The closed loop
is formed by measuring the output y at an interval of TS
with a constant offset τ (τ ∈ (0, TS) and allows the transients
due to perturbation to settle down as shown in Fig. 2) using
a sensor located at a considerable distance from the plant
and controller (such as in the motivating example of Section
I-A and implementation of Section V). This results in a
discrete signal y[i, τ ] which is then subject to detection rule
C : y[i, τ ] < yk for every i where yk is the optimum output
from measurements up to i. The update of uk is determined by
the satisfaction of the update criteria C or a reset R (Algorithm
1 line 18) such that uk+1 = u[i] to avoid a potential deadlock
elaborated in Corollary 1.

Plant

Detector

Sensor

Communication 
Network

Update uk Command C : y[i,τ]<yk

u[i]
Controller

y[i,τ]
Actuator

System Dynamics
dx/dt = f(x,u), y = g(x)

Output

Fig. 1. Extremum Seeking Control using the LJES Algorithm
The sensor that measures the output is physically far from the plant (as in
Section I-A and [24]) which justifies the need for a communication network
for the feedback path.

Remark 5. The parameter τ is selected such that the tran-
sients of (1) that occur at steady state due to the change from
u[i−1] to u[i] settle down resulting in y[i, τ ] ≈ g(x∗(u[i])) =
Q(u[i]) until the next sampling instant.

The selection of τ is based upon the simulated or empirical
analysis of the transient behavior of (1). The most suitable
method is to perturb uk by an amount close to the maximum
value of a[i] and observe the settling time. The constant sam-
pling offset τ is illustrated in Fig. 2 where a ZOH maintains
the control input at u(t) = u[i] for t ∈ [iTS , (i+ 1)TS) and
the output is sampled after allowing the transients to settle for
time τ such that y[i, τ ] = y(iTS + τ).

u[i]

u[i+1]

y[i,τ]Transient 
Settling Time

τ

TS

Q(u[i])

i i+1

Input

Output

Q(u[i])+e(t)

Sample yDither u

Fig. 2. Sampling Offset of the Output Measurement
The input u is dithered at time i = bt/TSc. The output transients are allowed
to settle during time τ . The output is subsequently sampled at time i+ τ and
used for the detection stage.

Assumption 4. The delay and delay variation due to the
communication network lag is assumed to be negligibly small
compared to the difference TS − τ .

Assumption 5. All sensors, the controller and the plant that
comprise the control loop of the networked control system
(NCS) have perfectly synchronized clocks for periodic sam-
pling and reconstruction.

The implications of Assumptions 4 and 5 are discussed in
detail in Section III-G along with the other main issue of packet
drops that occurs when the LJES is implemented in a NCS.

III. MAIN RESULTS

The steps of the LJES algorithm are detailed in Algorithm
1. It is a special case of the LJ algorithm [33] where instead
of generating p random numbers per iteration as in [33], a
single random dither vector a[i] is obtained at discrete time
i. The loop is not terminated because the algorithm has to
maintain the plant at the minimum by tracking any changes
in the optimum value. The LJES is suitable for real time use
compared to recent developments in the LJ algorithm [39] [40].

The reset R of line 18 is a clocked reset input (Remark
10) which is needed to prevent the algorithm from getting
deadlocked (Corollary 1) in a particular position due to an error
caused by a transient (Remark 9), input disturbance (Remark
14) or packet drop (Section III-G3). The value yk = Q(uk) is
the optimum value according to measurements up to i, while
uk is the estimate of the optimum input. The satisfaction of
C : y[i, τ ] < yk or reset results in a change of both of these
values.

A. Algorithm Selection Rationale and Operation

1) Sporadic Packet Transmission: In previous ESC imple-
mentations that involved optimization algorithms such as the
gradient descent [11] and state optimization [12] [13] [14], the
control input u[i] has to be computed from y[i] = Q(u[i]) (and
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1 At i = 0 and k = 0, initialize u[0] = u0 ∈ U
2 Input u[0]
3 Measure y[0, τ ]
4 Update y0 = y[0, τ ]
5 while do
6 Generate a[i]
7 Check uk + a[i] ∈ U
8 if uk + a[i] /∈ U then
9 // uk has been perturbed

outside the boundary of U
10 Find the boundary point uBP [i]
11 // where a[i] and ∂U intersect
12 u[i] = uBP [i]
13 else
14 u[i] = uk + a[i]
15 end
16 Input u[i]
17 Measure y[i, τ ]
18 if (y[i, τ ] < yk ∨ (reset)) then
19 // A better minimum has been

found or reset R has
occurred

20 Update yk+1 = y[i, τ ]
21 Update uk+1 = u[i]
22 Increment k := k + 1
23 end
24 Increment i := i+ 1
25 end

Algorithm 1: The LJES Algorithm

previous values) for every i. Input perturbed ESC of [6] [7]
requires the output to be correlated with the dither signal.

In the LJES, the dither input u[i] depends only on lo-
cally generated a[i] and stored uk. Similarly the condition
C : y[i, τ ] < yk depends only on the plant output y[i, τ ]
and previously stored yk. Hence, the dither and checking
for condition C (detection) can occur independently until a
sporadic update command for uk+1 = u[i] is issued by the
detector to the controller when either C is satisfied or a reset
occurs.

2) Direct Evaluation of Constraints: Direct evaluation of
constraints is included in the LJES algorithm for inequality
(Section III-D1) and equality constraints (Section III-D2).
When compared to other algorithms: [11] [12] [13] [14]
have no constraints. For extremum seeking systems that use
parametric estimation [34] (instead of input perturbation),
constraints are indirectly handled by using barrier functions
for equality constraints and external penalty functions for
inequality constraints. In [35] the same technique is used for
continuous time systems with input perturbations.

3) Additional Merits: LJES is relatively simple to imple-
ment an LJES controller on an embedded system. The number
of inputs nu can be scaled as required. In addition, aj,max can
be varied according to a metaheuristic.

B. Static Convergence
This section establishes the convergence of the LJES to

the isolated minimum v of a time invariant strictly convex

problem. Theorem 1 provides the proof for static conditions
which are extended to dynamic conditions in Section III-C.

Theorem 1. Let Q : U → R be a strictly convex function
(where U ⊂ Rnu is a convex set) that satisfies Assumption 3.
For an arbitrary point uk ∈ U from which a new point u[i] ∈ U
is randomly perturbed such that u[i] = uk + a[i] at time i
where a[i] is a bounded random vector (0 < ‖a[i]‖ ≤ am)
with every element aj being of zero mean and independent (in
both j and time i) resulting in ‖u[i]−uk‖ ≤ am, if an update
uk+1 = uk + a[i] is made only when Q(uk + a[i]) < Q(uk),
the resulting uk will converge to a neighborhood of v upper
bounded by am when k →∞.

Proof: Let convex set Uk be given by

Uk = {Uk ⊂ U|∀u ∈ ∂Uk \ ∂U , Q(u) = Q(uk) and
∀u ∈ U◦k , Q(u) < Q(uk) where uk ∈ ∂Uk}.

Since Q(u) is strictly convex on Uk and for u[i] = uk +
a[i] ∈ U◦k , Q(uk + a[i]) < Q(uk). Hence, for the update
uk+1 = uk + a[i],

Uk+1 ⊂ Uk. (4)

Thus, from Cantor’s Intersection Theorem, the infinite inter-
section, ∩Uk 6= {∅} and there exists a point (i.e, the minimum
v) such that v ∈ Uk for all k. Since for all k, uk 6= uk+1

and 0 < ‖uk+1 − uk‖ ≤ am, uk ∈ ∂Uk converges to
within a small neighborhood of v when k → ∞ such that
0 < ‖uk−v‖ ≤ v̄k < am where v̄k = max(‖v−u‖, ∂Uk\∂U)
(the distance from the v to the furthest boundary point of
Uk \ ∂U).

Remark 6. Though the upper bound am is a loose bound,
it is not possible to prove limk→∞ uk = v since it requires
am to decrease with k. This cannot occur since all aj are
independent and uniformly distributed.

Theorem 1 proves convergence of the LJES in real time
compared to the proof for the LJ algorithm per se of [41]. In
[41], the proof is based upon a batch generation of random
a[i] and requires a probabilistic selection of a suitable point
and a decreasing perturbation (i.e., ‖a[i + 1]‖ < ‖a[i]‖).
The LJ algorithm [33] was originally proposed with empirical
performance results in place of a formal proof.

Remark 7. For an even distribution the vector elements aj
of a[i] are selected from a uniform distribution such that
−aj,max ≤ aj ≤ aj,max. Near the boundary of U , aj will no
longer be uniform due to scaling if u[i] exceeds the boundary
(Section III-D1).

Remark 8. In the case of finding a maximum Theorem 1 can
be trivially proven for concave−Q(u) with the rule C : Q(uk+
a[i]) > Q(uk) (C : y[i, τ ] > yk when measured).

C. Dynamic Convergence
In this section, the proof of static convergence is extended to

dynamic (transient) conditions. The transients that affect the
system will be the initial transient of the dynamical system
and after reaching steady state, the perturbation transients
that occur for input u[i]. From Assumptions 1 and 2, the
stability of the system is guaranteed for an arbitrary bounded
discrete sequence u[i] ∈ U with sampling time TS and
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‖u[i + 1] − u[i]‖ ≤ am (where ‖a[i]‖ < am) due to the
transient error satisfying (2). Thus, for convergence to the
small neighborhood of the optimum point v under dynamic
conditions it is necessary for the sequence to be updated
according to the criterion C : Q(uk + a[i]) < Q(uk) of
Theorem 1. Due to dynamics, this becomes C : y[i, τ ] < yk.
This can be further generalized to

C : Q(uk + a[i]) + ε[i, τ ] > Q(uk) + ε[ik, τ ] (5)

where ε[i, τ ] = e[i, τ ] + n[i, τ ] is the generic error during
measurement due to the transient error e[i] from (2) and sensor
noise n[i] from (Section III-E). The same error during the last
update is given by ε[ik, τ ]. Let is be the time that steady state
is reached such that for all i ≥ is, y[i, τ ] ≈ Q(uk+a[i]) (from
Remark 5). During the initial transient when i < is, the errors
ε[i, τ ] and ε[ik, τ ] cannot be neglected and could lead to the
potential deadlock detailed in Corollary 1.

Corollary 1. A sufficiently large negative error between
Q(u[i]) and y[i], ε[i] can cause the LJES to deadlock by
non-satisfaction of the condition C : y[i, τ ] < yk if ∀‖a‖ ≤
am, ∀i > ik > 0, ∀ε[i, τ ], Q(uk + a[i]) + ε[i, τ ] > Q(uk) +
ε[ik, τ ] where ik is the time when the last update took place.

Remark 9. During the initial transient when y(t) is subject to
a bounded transient error e(t) where ‖e(t)‖ < β(‖e(t0)‖, t−
t0) (from Remark 2), the the deadlock of Corollary 1 can
potentially occur.

Remark 10. Should the potential deadlock of Remark 9 occur,
it can be overcome by periodically resetting the stored value
yk using a clock input pulse R with duration TS and period
TR � TS (Algorithm 1 line 18). Once, steady state is reached,
the reset of uk+1 = u[i] will allow the system to settle to
yk+1 ≈ Q(uk+1).

Alternatively, to avoid the deadlock of Corollary 1 the
initial value of τ can be made very large to allow the
initial transient to settle and then reduced when steady state
is reached. However, the reset of Remark 10 is preferred
because it will also rectify the deadlock of Corollary 1 should
it occur in other situations besides that of Remark 9 such
as an input disturbance (Remark 14), sensor noise (Remark
13), synchronization errors (Section III-G2) and packet drops
(Section III-G3).

D. Constraints

1) Inequality Constraints: The LJES can incorporate any
smooth inequality constraint as an implicit function such that
Φ(u) ≥ 0 if the constraint is satisfied. Though the LJES can
simply ignore a violation of an inequality constraint and retry,
it can become inefficient under circumstances illustrated by
the example of Section IV-A, where there is a high likelihood
of the perturbation overshooting the boundary of U . This can
be avoided by scaling a[i] by a parameter λ ∈ (0, 1) such that
from (3), if u[i] = uk+a[i] /∈ U , a point on the boundary given
by uBP = uk + λa[i] ∈ ∂U is obtained. For convex U , λ is
unique since there will only be a single point of intersection
of a[i] and ∂U1. The value of λ can be obained by minimizing

1From Theorem 1.4 of [42] p. 114-116.

the function σ(λ) given by,

|σ(λ)| = min
λ
|Φ(uk + λa[i])| ≈ 0. (6)

with the constraint Φ(uk + λa[i]) ≥ 0 provided that Φ(u)
is nonlinear (Algorithm 2). Finding λ is trivial for linear
inequality constraints.

1 if (Φ(uk + a[i]) < 0) then
2 // uk + a[i] /∈ U therefore find

boundary point
3 while (Φ(uk + λa[i]) > 0) do
4 Minimize |(Φ(uk + λa[i])| w.r.t. λ
5 u[i] = uk + λa[i]
6 end
7 else
8 u[i] = uk + a[i]
9 end

Algorithm 2: The Boundary Point Selection Algo-
rithm for Nonlinear Inequality Constraints

2) Equality Constraints: For the LJES the main distinction
for an equality constraint is whether it is parameterizable or
not. A parameterizable equality constraint which can be linear
(affine), a non-linear explicit function or a parameterizable
manifold can be dithered trivially. For example the objective
function Q(u) = u2

1 + u2
2 + u2

3 when subjected to the affine
constraints u1 + u2 + u3 = 1 and u1 − 3u2 − u3 = 3 can be
parametrized as u1 = u2 + 2 and u3 = −2u2 − 1. Similarly
the nonlinear constraint u1 = 2u2

2 + u2
3 is an explicit function

where u2 and u3 can be dithered. The manifold constraint
u2

1 +2u2
2 = 1 can be conveniently parametrized to u1 = sin(θ)

and u2 = cos(θ)/
√

2 and dithered by θ.
If parametrization is inconvenient, the constraint can be

computed via an efficient Taylor series approximation of the
constraint function provided that Ψj is sufficiently smooth. The
value of small perturbation b ∈ Rnu , has to be sufficiently
small to ensure the local Euclidean property ([43] p. 1) for
this approximation to be valid. In [44], the Taylor series
approximation is used for optimization using gradient descent
methods for Stiefel and Grassmann manifolds.

The approximation is given by,

Ψj(uk + b) = Ψj(uk) + bT∇Ψj(uk)

+
1

2
bTH[Ψj(uk)]b+ ∆ (7)

where uk ∈ F, H[·] is the Hessian operator and ∆ is the
approximation error due to higher order terms. By taking,

σ(b) = bT∇Ψj(uk) +
1

2
bTH[Ψj(uk)]b, (8)

Ψj(uk + b) = Ψj(uk) + σ(b) + ∆,

|Ψj(uk + b)| ≤ |Ψj(uk)|+ |σ(b)|+ |∆max| (9)

where ∆max is the upper bound of the approximation error.
Since uk, (uk + b) ∈ {u : Ψj(u) = 0}, the best approximation
for the next point on the constraint will be when Ψj(uk +
b)→ 0⇒ |Ψj(uk + b)| → 0. Since |∆max| may be unknown,

5

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on June 15,2020 at 09:22:47 UTC from IEEE Xplore.  Restrictions apply. 



2325-5870 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2019.2940244, IEEE
Transactions on Control of Network Systems

the feasible method to achieve this is to consider (8) as a
minimization problem similar to (6) such that

|σ(b)| = min
b

∣∣∣∣bT∇Ψj(uk) +
1

2
bTH[Ψj(uk)]b

∣∣∣∣ ≈ 0 (10)

where ‖b‖ ∈ (0, bmax]. Ideally the value of b from the solution
of (10) should satisfy Ψj(uk+b) = Ψj(u[i]) = 0 as a point on
the manifold. However, this is not possible when b is computed
with finite precision, in which case the manifold Ψ(u) = 0 has
to be approximated.

Theorem 2. Let Ψ(u) = 0 be an embedded differentiable
manifold and up an interatively obtained point very close to
Ψ(u) = 0 such that |Ψ(up)| ≤ εT where εT is an arbitrarily
small bound. A subsequent point up+1 = up + b where b
is obtained from minimizing

∣∣bT∇Ψ(up) + 1
2b
TH[Ψ(up)]b

∣∣
w.r.t. b will approximate the manifold for all p if the bound
|Ψ(up+1)| ≤ εT is satisfied.

Proof: Let UΨ be a set with inner boundary, U = {u ∈
U|Ψ(u) + εT = 0} and outer boundary, U = {u ∈ U|Ψ(u)−
εT = 0}. Thus, for all u such that |Ψ(u)| ≤ εT ⇒ u ∈ UΨ.
From (9), the upper bound for the error of an iteration p is
given by εp,

|εp| = |εp−1|+ |εO|+ |∆max| (11)

where εO is the bound of error in convergence of the finite
precision result b from the ideal solution bI , where Ψ(uk +
bI) = 0. Thus,

|εO| = |Ψ(uk + b)| (12)

Since the upper bound can grow with each iteration, a constant
conservative bound εT > 0 has to be forced for each iteration
such that |Ψ(up + b)| ≤ εT to ensure up + b ∈ UΨ for all up.

From the result of Theorem 2, it is possible to use Algo-
rithm 3 to allow the LJES to dither the search space along an
approximation of the manifold equality constraint.

input : uk ∈ UΨ

output: u[i] ∈ UΨ

1 Minimize |bT∇Ψ(uk) + 1
2b
TH[Ψ(uk)]b| w.r.t. b

2 if |Ψ(uk + b)| ≤ εT then
3 // If uk + b ∈ UΨ return uk + b
4 u[i] = uk + b
5 else
6 // If uk + b /∈ UΨ return uk
7 u[i] = uk
8 end

Algorithm 3: The Taylor Series Approximation for
Manifold Equality Constraints

Remark 11. Efficient minimization algorithms are necessary
for the relevant steps of Algorithms 2 and 3 to allow the LJES
to run in real time (time complexity of O(1)) and implemented
on an embedded system. This algorithm has to be implemented
within the LJES controller. Since the solution for λ ∈ (0, 1)
of Algorithm 2 and non-trivial solution for b from quadratic
(10) of Algorithm 3 are both unique, a simple algorithm like
the steepest gradient descent can be used.

E. Sensor Noise
This section looks into when y[i, τ ] is subject to an additive

bounded zero mean measurement noise n[i] where |n[i]| < nm
(Fig. 3).

Remark 12. The deadlock of Corollary 1 will occur if
∀‖a[i]‖ ≤ am, ∀i > ik > 0, ∀n[i, τ ] Q(uk + a[i]) + n[i, τ ] >
Q(uk) + n[ik, τ ] where the time of the last update is ik.

Though this situation can be remedied by the periodic
reset of Remark 10, the convergence time can be further
augmented by the 0.5 probability of divergence of u[i] that
can occur if n[i, τ ] > 0 (which has a probability of 0.5) occurs
during a periodic reset. Therefore, the alternative solution of
quantization is used. For notational convenience, Theorem 3
shall be proven using u[i] instead of the notation of Fig. 3
which shall be adopted in Section III-F.

Theorem 3. For strictly convex function Q : U → R on convex
set U ⊂ Rnu with Lipschitz constant LQ, the result of Theorem
1 will continue to hold in the presence of bounded additive zero
mean noise such that Q(u[i]) + n[i, τ ] (where |n[i, τ ]| < nm)
when Q(u) is quantized by a mid tread operator Q[·] such that
Q[Q(u)] = ∆q

(⌊
Q(u)
∆q

+ 1
2

⌋)
(where b·c is the floor operator

and ∆q is the quantization step size with ∆q > nm) when am
(‖a[i]‖ ≤ am) is sufficiently large such that ∆q+nm

LQ
� am.

Proof: Let Q(u) be quantized into p ∈ Z levels such that
each level is a convex set given by,

Up = {Up ⊂ U|∀u ∈ ∂Up \ ∂U , Q(u) = p∆q and
∀u ∈ U◦p , Q(u) < p∆q where p ∈ Z}.

For the condition C : Q(u[i] + a[i]) < Q(u[i]) to be satisfied,
u[i] ∈ Up and u[i] +a[i] ∈ Up+l where l ∈ Z. To cancel noise
nm < ∆q . For a given p when l = 1, there exists a region
Q(u) ∈ ((p− 1)∆q + nm, p∆q) for which C can be triggered
due to additive noise resulting in u[i] + a[i] ∈ Up−1. This
results in the lower bound

∆q + nm
LQ

≤ am (13)

since 0 ≤ ∇Q(u) ≤ LQ, from by considering the gradient
instead of LQ, (13) am cannot be upper bounded. This results
in the requirement of am to be chosen as ∆q+nm

LQ
� am.

Remark 13. For any p, when within the region Q(u) ∈
(p∆q, p∆q + nm), the resulting error of ∆q could lead to
the deadlock of Corollary 1. The reset described in Remark
10 suffices to overcome the deadlock situation in this case as
well.

F. Input Disturbances
In this section the effect and mitigation of an additive

disturbance w[i] (‖w[i]‖ ≤ wm) to the input u[i] (Fig. 3) where
Assumption 2 continues to hold is discussed. The control input
to the plant is now given by u = w[i] + uC [i] where uC [i] is
the output of the controller (instead of previous u[i]). Such a
disturbance will shift the position of the optimum point. For
static conditions, this shift is upper bounded by,

Q(uC [i] + w[i]) ≤ Q(uC [i]) + LQ‖w[i]‖
≤ Q(uC [i]) + LQwm (14)

6
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Fig. 3. The LJES Algorithm with Sensor Noise and Input Disturbances

for all uC [i] ∈ U where LQ is the Lipschitz constant of Q(u).
Practically such a disturbance is equivalent to a disturbance at
the actuator.

Remark 14. Under dynamic conditions, during the initial
transient when the transient error e[i] from (2) cannot be
neglected, the resulting error at the output Q(uC [i]+w[i])+e[i]
can potentially result in the deadlock of Corollary 1. Thus, if
∀‖a[i]‖ ≤ am, ∀i > ik > 0, ∀e[i.τ ], ∀w[i, τ ], Q(uk + a[i] +
w[i, τ ]) + e[i, τ ] > Q(uk +w[ik, τ ]) + e[ik, τ ] where ik is the
time when the last update took place, the same periodic reset
of Remark 10 is sufficient to overcome this situation.

G. Communication Network Issues

The NCS of this paper will further have the following issues
due to the communication network.

1) Delay: It is apparent that if the upper bound of the delay
of the communication network tD is large (i.e., tD > TS), the
update of output y[i, τ ] occurs for a future value of the control
input u[i + p] where p ≤ btD/TSc + 1 ∈ Z+. In which case
though the stability of the control system is guaranteed from
Assumptions 1 and 2, there is no guarantee that the control
input u[i] converging to within a small neighborhood of the
minimum point v since the update command is received incor-
rectly. The resulting error y[i, τ ] − y[i + n, τ ] can potentially
lead to the deadlock of Corollary 1. As long as Assumption 4
holds, this problem will not occur.

2) Synchronization: The error due to clock drift is a similar
situation where the update of y[i, τ ] can occur for u[i ± 1].
Clock drift is the difference between the time period of two
clocks, resulting in a relative gain or loss of time of one clock
with respect to the other. In the case of the LJES, if the clocks
of the controller and detector have significant drift, when the
gained or lost time equals TS , the output y[i, τ ] momenterily
becomes y[i ± 1, τ ] with respect to the controller. This too
can result in non-convergence of the LJES due to the error
y[i, τ ]− y[i± 1, τ ] leading to the deadlock of Corollary 1. In
order to avoid it it is necessary to synchronize the two clocks
(Assumption 5) to remove the gained or lost time. This can be
acheived by using an established algorithm like Network Time
Protocol (NTP) [45]. NTP does this by generating a time offset
by statistical estimation of the time difference between clocks
and network latency via timestamps.

3) Packet Drops: During a packet drop the update uk+1 =
uk+a[i] will fail to take place due to the packet containing the
update command getting dropped. This will result in the error
Q(uk+1+a[i])−Q(uk+a[i]) which can lead to the deadlock of
Corollary 1. Though acknowledging the command seems the
intuitive solution, it itself can get dropped and the timeout used
to remedy this may be infeasible for small sampling times.
Thus, the three solutions listed below can be used

1) Multiple packet transmission, such as the retransmission
of critical Generic Object Oriented Substation Event
(GOOSE) packets in the electric substation automation
protocol IEC61850 ([46] Clause 18.1.2.5).

2) IEC62439 Parallel Redundancy Protocol (PRP) [47]
implementation where the controller and detector have
two network cards that connect to two independant
networks.

3) The periodic reset of Remark 10. The main drawback
of this method is that since the reset time, TR � TS ,
the LJES will remain deadlocked for a significant
proportion of time if packet drops are frequent.

IV. SIMULATION RESULTS

In this section the performance of the LJES algorithm is
simulated for specific extremum seeking scenarios to demon-
strate its ability to handle constraints. To the best of the
authors knowledge, there is currently no ESC method that
is technically equivalent to the proposed method in terms of
having sporadic packet transmission between the dither and
detection units of the implementation. The same applies to the
methods used for handling constraints. Similarly, despite the
numerous methods proposed for ESC outlined in Section I-A,
no significant work exists on how to accurately benchmark
and compare performance. Hence, the simulated examples
and implementation (Section V) are included for illustrative
(i.e., proof of concept) purposes only. For brevity, sensor and
input disturbance noise are not considered for the simulations
because it is inherent in the implementation of the LJES
in Section V. All simulations are done using Scilab and
MATLAB Simulink.

A. MISO Convex Inequality Constrained Optimization
In this example, the ability of the LJES to handle inequality

constraints that result in a progressively reduced search space
is demonstrated. The spherical objective function

Q(u) = (u1 − 100)2 + u2
2

with the minimum at (100, 0) is subjected to the convex
inequality constraint obtained from the implicit curve of the
trangle with vertices {(0, 1), (105, 0), (0,−1)} given by

u1

(
u2 +

u1

105
− 1
)(

u2 −
u1

105
+ 1
)

+ 0.1 ≤ 0

and transient dynamics (x ∈ R),

ẋ = Q(u)− q0x
y = x

q0

}
(15)

with q0 = 10. The remaining parameters are heuristically
selected such that aj,max = 1 for all elements of a[i], sampling
time TS = 1s, settling time τ = 0.5 and reset time TR = 100s.
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The simulation is run for 2000s which is sufficient time for
convergence. The results of Fig. 4 and 5b show the conver-
gence of the algorithm at approximately 1200s. A total of 707
packets were generated which corresponds to a reduction in
network traffic of 64.65%. The packets generated of Fig. 5c
show the reduced transmission of packets after convergence.
In the logarithmic plot of y[i] of Fig. 6, it can be observed that
the perturbations result in the measured output being orders of
magnitude greater compared to yk after convergence resulting
in few updates of yk.
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Fig. 4. Input Convergence for the Example of Section IV-A
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Fig. 5. Output, Input Convergence and Generated Traffic for the Example
of Section IV-A

B. MISO Convex Manifold Equality Constrained Optimization
In this example, the spherical objective function

Q(u) = u2
1 + (u2 − 1)2
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Fig. 6. Log Plot of Output Convergence for the Example of Section IV-A

is equality constrained by the implicit curve manifold

u2

(
u2

1 + u2
2 − 1

)
+ 0.01 = 0

where u1 ∈ [−1, 1] and u2 ∈ [0.2, 1], resulting in a con-
vex search space with the minimum at (0.0.995). The same
transient dynamics of (15) with q0 = 10. The threshold,
εT = 10−6, The other parameters are given by aj,max = 0.1,
TS = 1s, τ = 0.5 and TR = 100s with the simulation run for
200s. When the algorithm starts from (0.9456, 0.2589) (Fig. 7)
it converges to the minimum in around 80s (Fig. 8b) generating
45 packets. This corresponds to a traffic reduction of 77.5%.
Similar to the example of Section IV-A, in Fig. 9, perturbations
make the measured output orders of magnitude greater than yk
after convergence. Thus, there are few updates of yk.
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Fig. 7. Input Convergence for the Example of Section IV-B

C. MISO Non-Quadratic Objective Function
In this example, the non-quadratic and non-convex Mc-

Cormick function given by,

Q(u) = sin(u1 + u2) + (u1 − u2)2 − 1.5u1 + 2.5u2 + 1

is constrained by inequality constraint

(u1 + 1.5)(u2 + 3)(5.5u2 + 7u1 − 11.5) + 5 ≤ 0

to become convex. It is further used to illustrate the practical
need for the reset of Remark 10 due to the initial transient
caused by a large negative intial value, i.e. x(0) = −100. The
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Fig. 8. Output, Input Convergence and Generated Traffic for the Example
of Section IV-B
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Fig. 9. Log Plot of Output Convergence for the Example of Section IV-B

remaining parameters are given by aj,max = 0.1, TS = 1s,
τ = 0.5 and TR = 100s and the simulation run for 1000s. The
LJES converges to the local optimum (−0.54719,−1.54719),
as constrained (Fig. 10) within around 420s and generates
196 packets (80.4% reduction) during the process. During the
initial 100s of the, the LJES remains deadlocked (Fig. 11a)
due to the large negative initial transient and starts converging
only after the reset of Remark 10 occurs at 100s.

D. Performance Comparison
The performance of the LJES algorithm is compared

with sinusoidally perturbed (SP) ESC [6] [7] [8]: the other
completely real time implementation of ESC. The LJES is
compared with SP alone and SP with the feedback encoded
(as in [21]) by Deadband Error Modulation (DEM) [32] and
Memory Based Event Triggering (MBET) [31] in terms of
both convergence time and traffic reduction. The output and
system dynamics are respectively given by

y = (x− 3)2

ẋ = 100(u− x)
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Fig. 10. Input Convergence for the Example of Section IV-C
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Fig. 11. Output, Input Convergence and Generated Traffic for the Example
of Section IV-C

where u and x are scalars. This results in the steady state
objective function of Q(u) = (u − 3)2. A rapid transient is
selected for fast convergence of the SP method within the
simulation time of 1000s. The convergence time is taken as
the output reaching within ±0.1 units of zero (the minimum
value). The amplitude of the sinusoidal perturbation of 10rad/s
is taken as 0.1 and the integrator gain is taken as 0.9 for the SP
and SP with feedback encoding. To be comparable the uniform
dither is taken within the range of ±0.1. The system is also
subjected to a symmetric triangular input disturbance of 100s
duration and 0.5 unit amplitude. The results of Table I show
that LJES significantly outperforms SP and SP with encoded
feedback in terms of both traffic reduction and convergence
time despite the LJES apparently having partial information
compared to SP. This apparent paradox can be explained by
the stability properties and slow learning rate of SP when
compared to the LJES (see Appendix).
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TABLE I. ESC PERFORMANCE COMPARISON

Method Conv. Time (s) No. Packets Traffic Red. (%)
SP 190.53 100000 –
SP-DEM 190.54 3380 96.62
SP-MBET 199.33 3347 96.65
LJES 4.42 860 99.14

V. CONTROL SYSTEM IMPLEMENTATION

The proposed LJES is tested on a proof of concept pump
controller that maintains the water flow rate at an optimum
level. The system (Fig. 12 and Fig. 13) controls the output
of the pump via Pulse Width Modulation (PWM). It is im-
plemented on two Arduino equivalent EtherTen development
boards. A magnetic hall effect flow sensor measures the flow
rate using Pulse Frequency Modulation (PFM). An update
is transmitted from the detector to the controller via the
communication network using User Datagram Protocol (UDP).
Two pumps are used one with a commutative motor and the
other with a brushless one.

The objective function is given by y = Q(u) where
y = g(x) ≥ 0 is the flow output (measurement of the sensor)
and u is the PWM input. Both u and y are integers. For both
pumps the output 0 ≤ y ≤ 38 with the maximum output for
a supply of 15V. The mapping Q(u) varies significantly due
to flow uncertainties. To prevent the system from entering the
trivial equilibrium point (u, y) = (0, 0), 1 ≤ u < 254. Due
to the limited computational power of the embedded develop-
ment board, all calculations are integer based. A maximizing
objective function is used due to software coding efficiency.
An integer dither with a range up to ±32 is used along with
TS = 2s and τ = 0.5s. The PFM measurement requires a
further 1s and the remaining 0.5s is the upper bound for the
network delay. The experimental setup is run for 2000 such
samples (4000s) with the reset of Remark 10, resulting in at
least 20 packets being transmitted per experiment. The two
boards are clocked using a common external signal to mimic
two perfectly synchronized clocks.

Pump

Flow SensorController

Flow TransportDriver

Network

Fig. 12. Pump Control System Block Diagram

SensorPumpClockSwitch DetectorController

Driver

Fig. 13. Pump Control System Implementation

Performance is quantified in terms of the convergence time
and number of generated packets for dither ranges of ±1, ±2,

±4, ±8, ±16 and ±32. The convergence time is taken as the
time at which the output reaches 90% of the maximum (i.e.,
sensor reading of 34 or above). The results are given in Table II
and clearly indicate that the packets generated during the 4000s
of the experiment and traffic reduction performance are highly
consistent. Also as expected, the convergence time decreases
significantly with increased dither.

TABLE II. LJES HARDWARE PERFORMANCE RESULTS

Dither
Performance Result

Commutative Motor Pump Brushless Motor Pump
Conv. (s) Packets Red. (%) Conv. (s) Packets Red. (%)

±1 – 50 97.50 – 47 97.65
±2 1602 51 97.45 3560 53 97.35
±4 130 51 97.45 802 48 97.60
±8 62 52 97.4 110 52 97.4
±16 34 45 97.75 40 45 97.75
±32 16 42 97.9 16 42 97.9

VI. CONCLUSION

The two novelties of the LJES are sporadic packet transmis-
sion, which occurs when there is a need to transmit and direct
evaluation of constraints. The LJES is simple to implement
and scalable in terms of inputs. Hence, it can be readily
implemented on an embedded controller (Fig. 13). Sporadic
packet transmission makes it highly desirable for bandwidth
constrained NCS compared to [11] [12] [13] [14] where the
dither signal or state estimation requires a packet transmission
of the measured plant output for each periodic iteration.

The drawbacks of the LJES include initial value dependency
when used with non-convex objective functions, which can be
overcome by adjusting the upper bound of the perturbation am
using a metaheuristic. The LJES is also vulnerable to packet
drops and timing offsets. In the case of packet drops this short-
coming can be overcome using multiple packet transmissions
with a small increase in required bandwidth.

The development of the LJES results in numerous fu-
ture directions. One of them is the development of suitable
metaheuristics for global optimization of non-convex objective
functions. There is also the need to benchmark ESC systems
for standardized comparison purposes. In addition, the ability
to improve convergence (from Remark 6) by detecting whether
the current estimate uk is within the bound ‖uk − v‖ ≤ am
of the optimum using output measurements and subsequently
decreasing am is another interesting open problem.
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APPENDIX

For brevity, consider the illustrated ESC scheme of Fig.
14 which sinusoidally perturbs the stable system dynamics of
(1), i.e., Assumptions 1 and 2 with an output that converges
to Q(u) at steady state. Let the angular frequency of the
sinusoidal perturbation be ω with ε = δω where δ is a small
parameter. In the LJES where transients of x and update of
u are independent and from Assumptions 1 and 2, stability
can be guaranteed for arbitrary u. However, from [7] [8]
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dx/dt = f(x,u)
y = g(x)

+ ε/(A•s)

A•sin(ωt)

u

X
uO

Fig. 14. ESC with a Generic Sinusoidal Perturbation

(where Assumptions 1 and 2 also apply), the dynamics of
SP ESC form a singularly perturbed system with perturbation
parameter ω (from equation (15) of [7]) from which stability
is established. The dynamics of the sinusoidal perturbation of
the search space are given by

ẋ = f(x, uO +A sin(ωt))

u̇O = εg(x) sin(ωt)

where A is the amplitude of the sinusoidal pertubation, ε is
a small parameter and uO is the estimate of the optimum.
Stability for the optimum v is established when the system is
“frozen” at the slow time scale s = ωt. From equations (10)
and (11) of [8], the averaged system is given by,

d

ds
uav = δA

∫ 2π

0

Q (uav +A sin(s)) sin(s)ds (16)

≈ δA

∫ 2π

0

[Q(uav) sin(s)+

A

2
∇Q(uav) (1− cos(s)) +O(A2)

]
ds

≈ δA2

2

[
∇Q(uav) +O(A2)

]
(17)

which is an estimate of the gradient of the system. In order
to obtain this estimate, SP requires a time T � TS (where
T = 2π/ω) which is further scaled by small ε. For the LJES, an
update can occur during a time instance i of duration TS where
only a change in the measured optimum output is detected.
Thus, the LJES has a significantly faster learning rate than SP
resulting in faster convergence.

REFERENCES

[1] C. S. Draper and Y. Li, Principles of optimalizing control systems and
an application to the internal combustion engine. ASME Publications,
1951.

[2] P. G. Scotson and P. E. Wellstead, “Self-tuning optimization of spark
ignition automotive engines,” IEEE Commun. Mag., vol. 10 (3), pp.
94–101, 1990.

[3] N. Bizon, “Global maximum power point tracking (GMPPT) of photo-
voltaic array using the extremum seeking control (ESC): A review and
a new GMPPT ESC scheme,” Renew. Sustain. Energy Rev., vol. 57, pp.
524–539, 2016.

[4] A. Kebir, L. Woodward, and O. Akhrif, “Extremum-seeking control
with adaptive excitation: application to a photovoltaic system,” IEEE
Trans. Ind. Electron., vol. 65, no. 3, pp. 2507–2517, 2018.

[5] B. Mu, Y. Li, J. M. House, and T. I. Salsbury, “Real-time optimization
of a chilled water plant with parallel chillers based on extremum seeking
control,” Appl. Energy, vol. 208, pp. 766–781, 2017.

[6] M. Krstic and H. H. Wang, “Stability of extremum seeking feedback
for general nonlinear dynamic systems,” Automatica, vol. 36 (4), pp.
595–601, 2000.

[7] Y. Tan, D. Nesic, and I. Mareels, “On non-local stability properties of
extremum seeking control,” Automatica, vol. 42 (6), pp. 889–903, 2006.

[8] Y. Tan, W. H. Moase, C. Manzie, D. Nesic, and I. Mareels, “Extremum
seeking from 1922 to 2010,” in Proceedings of the 29th Chinese Control
Conference, 2010.

[9] C. Manzie and M. Krstic, “Extremum seeking with stochastic pertur-
bations,” IEEE Trans. Autom. Control, vol. 54 (3), pp. 580–585, 2009.

[10] J. C. Spall, “Multivariate stochastic approximation using a simultaneous
perturbation gradient approximation,” IEEE Trans. Autom. Control, vol.
37 (3), pp. 332–341, 1992.

[11] A. Teel and D. Popovic, “Solving smooth and nonsmooth multivariable
extremum seeking problems by the methods of nonlinear programming,”
in Proceedings of the American Control Conference, vol. 3, 2001, pp.
2394–2399.

[12] C. Zhang and R. Ordonez, “Numerical optimization-based extremum
seeking control with application to ABS design,” IEEE Trans. Autom.
Control, vol. 52 (3), pp. 454–467, 2007.

[13] C. Hong and K. Li, “Swarm intelligence-based extremum seeking
control,” Expert Syst Appl., vol. 38 (12), pp. 14 852–14 860, 2011.

[14] S. J. Yu, H. Chen, and L. Kong, “Particle swarm optimization-based
extremum seeking control,” in Advanced Intelligent Computing Theories
and Applications. Springer, 2010, pp. 185–196.

[15] M. Ye and G. Hu, “A robust extremum seeking scheme for dynamic
systems with uncertainties and disturbances,” Automatica, vol. 66, pp.
172–178, 2016.

[16] M. Leblanc, “Sur l’electrication des chemins de fer au moyen
de courants alternatifs de frequence elevee,” Revue Generale de
l’Electricite, 1922.

[17] V. V. Kazakevich, “Technique of automatic control of different pro-
cesses to maximum or to minimum,” USSR Patent 66 335, 1943.

[18] A. Banaszuk, K. B. Ariyur, M. Krstic, and C. A. Jacobsen, “An adaptive
algorithm for control of thermoacoustic instability,” Automatica, vol. 40
(11), pp. 1965–1972, 2004.

[19] G. Lara-Cisneros, R. Aguilar-López, and R. Femat, “On the dy-
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