
MEASUREMENT OF ROAD PAVEMENT SURFACE

UNDULATIONS USING A LOW-COST

ACCELEROMETER SENSOR

A.W.C. Chamikara

(168325U)

Degree of M.Eng in Highway & Traffic Engineering

Transport Division, Department of Civil Engineering

University of Moratuwa

Sri Lanka

July 2020

MEASUREMENT OF ROAD PAVEMENT SURFACE

UNDULATIONS USING A LOW-COST

ACCELEROMETER SENSOR

A.W.C. Chamikara

(168325U)

Degree of M.Eng in Highway & Traffic Engineering

Transport Division, Department of Civil Engineering

University of Moratuwa

Sri Lanka

July 2020

DECLARATION

I declare that this is my own work and this thesis/dissertation does not incorporate

without acknowledgement any material previously submitted for a Degree or Diploma

in any other University or institute of higher learning and to the best of my knowledge

and belief it does not contain any material previously published or written by another

person except where the acknowledgement is made in the text. Also, I hereby grant to

University of Moratuwa the non-exclusive right to reproduce and distribute my

thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the

right to use this content in whole or part in future works (such as articles or books).

Signature: Date:

The above candidate has carried out research for the Masters/MPhil/PhD thesis/

Dissertation under my supervision.

Name of the Supervisor: Dr. H.R. Pasindu

Signature of the supervisor: Date:

ii

ABSTRACT

Pavement roughness measurement is one of the four parameters of measuring the

pavement condition evaluation, i.e., Pavement roughness measurement, distress

condition evaluation, skid resistance, and structural capacity evaluation.

This research aims to improve IRI measurement accuracy by smartphone

method using a low cost, off the shelf accelerometer without compromising the cost

aspect. This method collects data from an accelerometer fixed to a vehicle axel. Since

the vehicle's shock absorbers do not damp the measurement, the readings are much

more realistic. Data is then forwards to a machine-learning algorithm to analyze the

collected data and predict the road condition. This algorithm should be trained using a

training data set before using, which involves collecting and labelling data according

to prior knowledge and previously collected data. The training was done by collecting

data using a smartphone application and manually marking the data points. Then this

data was separated as training and testing data as appropriate, and training data was

fed into the algorithm with the manually labelled data as a reference. After training the

algorithm, the testing dataset was provided to the model to measure the accuracy.

 The second part of the research was carried out to train the algorithm on

detecting potholes without human involvement. For this, the data collection

application was slightly modified to label the pothole data points. Then the previous

training and the testing method were carried out.

Accurate results were observed during both instances regarding the labelled data. It

was found that more training data makes the prediction model more accurate.

Since this is a low-cost method to determine the road surface condition, local road

authorities can implement this as a network to collect real-time data and carry out

future road maintenance works effectively.

iii

ACKNOWLEDGMENT

IRI data for this research was obtained from the Road Development Authority, Sri

Lanka, and Mr. Chamikara R., who supported android application development. And

Dr. H.R. Pasindu and staff of Transport Division, Department of Civil Engineering,

University of Moratuwa.

iv

TABLE OF CONTENT

Declaration .. i

Abstract .. ii

Acknowledgment .. iii

Table of Content .. iv

List of Figures .. vii

List of Tables... viii

1 Introduction .. 1

2 Literature Review ... 3

2.1 Early Adoption of IRI .. 3

2.2 Road Roughness Measuring Devices .. 3

2.2.1 Bump Integrator ... 3

2.2.2 Rolling Straight Edge ... 5

2.2.3 Road Surface Profiler (Laser-based) .. 5

2.2.4 Walking Profiler ... 5

2.2.5 Smartphone-Based Measurements ... 6

2.3 Sri Lanka in Road Roughness Measurement .. 7

2.4 Using Accelerometer in Road Roughness Measurement 7

2.5 Use of Machine Learning Algorithms ... 8

2.5.1 Artificial Neural Network .. 9

2.5.2 Supervised Machine Learning.. 9

2.5.3 Unsupervised Machine Learning ... 11

2.6 Summary ... 12

3 Methodology .. 13

v

3.1 Data Collection .. 13

3.1.1 Accelerometer Sensor .. 13

3.1.2 Smartphone .. 15

3.1.3 Smartphone Application... 15

3.2 Data Pre-processing ... 17

3.2.1 Speed Calculation... 17

3.2.2 Combined Acceleration Calculation .. 18

3.2.3 Data Arrangement .. 18

3.3 Data Analysis .. 18

3.3.1 Using Weka Software .. 18

3.3.2 Using Tensorflow Library .. 19

4 Results .. 24

4.1 Pothole Detection .. 24

4.2 Calibration to IRI Data .. 28

4.3 Real-time Data Processing .. 32

5 Discussion .. 33

6 Conclusion ... 35

7 References .. 37

Annex 01 – Data Pre-processing with JavaScript (P5) .. 39

sketch.js (JavaScript in P5) .. 39

Annex 02 – Accelerometer Data with IRI/Pothole prediction (Machine Learning with

Tensorflow) .. 41

sketch.js (JavaScript in P5) .. 41

index.html (P5) ... 42

Annex 03 - Data collection Android Application with Kotlin 43

MainActivity.kt .. 43

vi

MyApplication.kt ... 47

BluetoothSerial.kt .. 48

ConnectedThred.kt ... 57

LocationManager.kt ... 63

Recorder.kt ... 64

vii

LIST OF FIGURES

Figure 2.1: Bump Integrator ... 4

Figure 2.2: Rolling Straight Edge .. 4

Figure 2.3: Walking Profiler .. 6

Figure 2.4: Machine Learning Models ... 8

Figure 2.5: Machine Learning Algorithms... 9

Figure 2.6: Neural Network Layers ... 9

Figure 2.7: Supervised Learning Example ... 10

Figure 2.8: Classification Model .. 11

Figure 2.9: Regression Model .. 11

Figure 3.1: Data Collection Methodology ... 13

Figure 3.2: Accelerometer Sensor .. 14

Figure 3.3: Sensor Placement ... 14

Figure 3.4: Mobile Phone ... 15

Figure 3.5: Data Record Format... 16

Figure 3.6: Mobile Phone Application ... 16

Figure 3.7: Data Preprocessing Procedure ... 17

Figure 3.8: Neural Network Model .. 20

Figure 3.9: JavaScript for Tensorflow ... 21

Figure 3.12: Linear Activation Function .. 23

Figure 3.12: Sigmoid Activation Function... 23

Figure 3.12: activation Function Process ... 23

Figure 4.1: Angular Acceleration ... 25

Figure 4.2: Linear Acceleration ... 26

Figure 4.4: Boralasgamuwa Road .. 27

Figure 4.4: Southern Expressway .. 27

file:///C:/Users/Ewis/Desktop/Online%20Submision/Final%20Submission/Research%20Thesis%20Final.docx%23_Toc69800914
file:///C:/Users/Ewis/Desktop/Online%20Submision/Final%20Submission/Research%20Thesis%20Final.docx%23_Toc69800915
file:///C:/Users/Ewis/Desktop/Online%20Submision/Final%20Submission/Research%20Thesis%20Final.docx%23_Toc69800916
file:///C:/Users/Ewis/Desktop/Online%20Submision/Final%20Submission/Research%20Thesis%20Final.docx%23_Toc69800917
file:///C:/Users/Ewis/Desktop/Online%20Submision/Final%20Submission/Research%20Thesis%20Final.docx%23_Toc69800918
file:///C:/Users/Ewis/Desktop/Online%20Submision/Final%20Submission/Research%20Thesis%20Final.docx%23_Toc69800919
file:///C:/Users/Ewis/Desktop/Online%20Submision/Final%20Submission/Research%20Thesis%20Final.docx%23_Toc69800923
file:///C:/Users/Ewis/Desktop/Online%20Submision/Final%20Submission/Research%20Thesis%20Final.docx%23_Toc69800924
file:///C:/Users/Ewis/Desktop/Online%20Submision/Final%20Submission/Research%20Thesis%20Final.docx%23_Toc69800925
file:///C:/Users/Ewis/Desktop/Online%20Submision/Final%20Submission/Research%20Thesis%20Final.docx%23_Toc69800926
file:///C:/Users/Ewis/Desktop/Online%20Submision/Final%20Submission/Research%20Thesis%20Final.docx%23_Toc69800927
file:///C:/Users/Ewis/Desktop/Online%20Submision/Final%20Submission/Research%20Thesis%20Final.docx%23_Toc69800928
file:///C:/Users/Ewis/Desktop/Online%20Submision/Final%20Submission/Research%20Thesis%20Final.docx%23_Toc69800929
file:///C:/Users/Ewis/Desktop/Online%20Submision/Final%20Submission/Research%20Thesis%20Final.docx%23_Toc69800931
file:///C:/Users/Ewis/Desktop/Online%20Submision/Final%20Submission/Research%20Thesis%20Final.docx%23_Toc69800932
file:///C:/Users/Ewis/Desktop/Online%20Submision/Final%20Submission/Research%20Thesis%20Final.docx%23_Toc69800933
file:///C:/Users/Ewis/Desktop/Online%20Submision/Final%20Submission/Research%20Thesis%20Final.docx%23_Toc69800934
file:///C:/Users/Ewis/Desktop/Online%20Submision/Final%20Submission/Research%20Thesis%20Final.docx%23_Toc69800935
file:///C:/Users/Ewis/Desktop/Online%20Submision/Final%20Submission/Research%20Thesis%20Final.docx%23_Toc69800936
file:///C:/Users/Ewis/Desktop/Online%20Submision/Final%20Submission/Research%20Thesis%20Final.docx%23_Toc69800937
file:///C:/Users/Ewis/Desktop/Online%20Submision/Final%20Submission/Research%20Thesis%20Final.docx%23_Toc69800938

viii

LIST OF TABLES

Table 3.1: Accelerometer Specifications ... 14

Table 3.2: Smart Phone Specifications .. 15

Table 3.3: Weka Software Specifications .. 19

Table 4.1: A2 Road Accelerometer Data ... 24

Table 4.2: Pothole Detection Results ... 26

Table 4.3: Pothole Detection Neural Network Settings ... 27

Table 4.4: IRI Data for Piliyandala Bypass Road .. 28

Table 4.5: Accelerometer Data for Piliyandala Bypass Road 30

Table 4.6: Results for IRI - Accelerometer Relationship ... 31

Table 4.7: IRI- Accelerometer Neural Network Settings... 31

1

1 INTRODUCTION

Road roughness is a crucial parameter that used in road maintenance planning and

managing works. The International Roughness Index (IRI) considered the primary

measurement related to road roughness. IRI value measured using the quarter- car

math model with the units of meters per kilometre. The main drawback of this method

is the cost associated with the measurement accuracy and data collection speed. Highly

accurate IRI measuring devices like laser-based vehicle-mounted devices are more

reliable than the Bump Integrator Devices, which generate less accurate

measurements. This research uses an accelerometer device to measure the road surface

undulations and uses that data to predict the actual IRI value with machine learning

assistance.

An accelerometer is a device that can identify the intensity of physical acceleration (or

the rate of change of velocity) experienced by an object. A common multi-axis digital

accelerometer can measure the linear acceleration in 3 axes (x, y, and z-direction) and

the rotational acceleration around the three axes. Most commonly, acceleration

measured by the gravitational force equivalent units known as the g-force. Therefore,

an accelerometer resting on the Earth's surface indicates a 1g-force value. Today,

digital accelerometers can be purchased off the shelf anywhere in the world for an

affordable cost. Integrated accelerometers in smartphones are generally less accurate

and have lower data output rates.

With a smartphone application, collected accelerometer data is combined with the GPS

location data from the smartphone. GPS data used to calculate the speed and position

of the data collection vehicle. Then the dataset is processed using a machine learning

algorithm." Machine learning (ML) is the scientific study of algorithms and statistical

models that computer systems use to perform a specific task without using explicit

instructions, relying on patterns and inference instead. It is seen as a subset of artificial

intelligence" (Samuel, 1959). There are many branches of machine learning used in

the world today. A classification based machine-learning algorithm used in this

research to classify accelerometer data into IRI values.

2

This research's main objective is to improve the indirect IRI measuring methods'

accuracy, such as the smartphone accelerometer-based approach while maintaining

cost-effectiveness. An external accelerometer was used in this research instead of a

smartphone's built-in accelerometer to improve the test's accuracy. A machine-

learning algorithm was used to improve the result interpretation accuracy. All the

components and tools used in this method are selected to minimize the cost.

The scope of this proposed study includes the following components,

• Study the feasibility of using an external accelerometer and machine learning

with a smartphone to improve the data collection accuracy.

• Evaluate the possibility of identifying the road distresses such as potholes and

road bumps using the accelerometer without any human involvement and

• Evaluate the accuracy of IRI values' prediction compared to commercially

available solutions such as laser-based IRI measuring devices.

.

3

2 LITERATURE REVIEW

2.1 Early Adoption of IRI

The International Roughness Index (IRI) is an essential parameter for pavement

management and decision-making in the road development sector. Before having a

standard measurement system, different parts of the world have been using various

methods to assess the pavement condition. In 1982, the World Bank initiated the

International Road Roughness Experiment (IRRE) to establish a standard

measurement unit. As a result, it was found that different roughness measurements

were not correlated with one another, partially due to how the measuring instruments

respond to the road profile and partly due to how the data is processed (Paterson, 1986).

Hence it was suggested that to have a standard measurement scale to improve the

reliability of exchanging information related to road roughness.

(Bennett, 2006) has identified five Information Quality Levels in road surface

undulation measurement. The decision-making priority decreased with the information

quality level from having the highest accuracy of the collected data in level 1. The

main concern in data collection is the repeatability of the data that was collected. A

research study in 2006 using 68 various road surface profiles found that the accuracy

varies significantly even among the same types of devices, and none of the profilers

that evaluated has met all the current IRI bias standard requirements (Wang, 2006).

That means it is hard to cross-compare the data collected from one device with a

different kind of device.

2.2 Road Roughness Measuring Devices

There are several devices available in the market for roughness data collection. The

following were found as the most common devices.

2.2.1 Bump Integrator

There are two main types of bump integrators available in the market. The Central

Road Research Institute (India) developed the fifth wheel bump integrator (Fifth

Wheel Bump Integrator, 2012). The bump integrator towed using a vehicle at 32 kmph

speed to take the measurements. The other type is the vehicle-mounted bump

4

integrator, which has two separate sensors for calculating bumps and distance

travelled. This instrument also has a data collection speed of 32 kmph.

● Strength - Fast, simple, and reliable in taking measurements. Less human

involvement is needed. No in-depth knowledge of the subject is necessary.

● Limitations - Both have a data collection speed limitation of 32 kmph. Also,

vehicle vibrations can be an issue for these devices.

Figure 2.1: Bump Integrator

Figure 2.2: Rolling Straight Edge

5

2.2.2 Rolling Straight Edge

A 3-meter width structure supported by rubber tires, which has a similar tire in the

middle of the device, can move freely in a vertical direction. The intensity of bumps

is recorded in a graph sheet with the distance measurement. Rolling straight edge is a

push-on type device. So, the typical data collection speed is 1-2 kmph.

● Strength - The accuracy of this device is very high. The reproducibility of this

device is excellent.

● Limitations - 3m distance of this device is a limitation. Also, it is not directly

related to the road roughness that road users are experiencing in the real world.

2.2.3 Road Surface Profiler (Laser-based)

This equipment is known as the high-speed profiler. The road profile is digitally

measured using a combination of laser and accelerometer sensors. This device is

capable of collecting data at a speed of 100 kmph. However, typically, data is collected

at 80 kmph as a rule of thumb.

● Strength - Data collection speed and accuracy are the main plus points of this

device. Also, the data is collected automatically, and little human involvement

is necessary.

● Limitations - High cost associated with the device is the main limitation.

Because of that, developing countries like Sri Lanka are having trouble

accessing modern decision-making tools. Also, to operate this machine, it must

have high operating skills.

2.2.4 Walking Profiler

Walking profiler is a high precision instrument when it comes to road roughness

measurement. Usually, an inclinometer sensor fixed between 2 supported wheels is

used to measure the road surface undulations. Since it is a push-on instrument, it has a

data collecting speed denoted as 800 meters per hour.

● Strength - High accuracy of the data is the main strength of this device

6

● Limitations - Low data collection speed and skills needed to collect the data is

the main limitation of this device.

2.2.5 Smartphone-Based Measurements

There are many smartphone applications available for both Android and iOS operating

systems to measure road roughness. (Abeywardana, Abeywikrama, Amarasinghe, &

Kumarasinghe, 2018) Even homegrown applications are available, which are more

polished for the Local conditions. Smartphone-based measurement is typically carried

out using the inbuilt accelerometers in the smartphone and converting it into an IRI

value. In the data collection, the phone must be rigidly fixed to the vehicle to measure

accelerometer data accurately. Data collection speed can be varied since the data could

be normalized with the speed data collected using an in-built GPS sensor. The

relationship between pavement distress and IRI is often expressed as the root mean

square value of the accelerometer data. (Firoozi, Mahmoudzadeh, Azizpour, &

{others}, 2017) Indicate that the IRI = 4.19RMS + 1.73, where RMS is the root mean

square value of acceleration data. (Sandamal & Pasindu, Applicability of smartphone-

based roughness data for rural road pavement condition evaluation, 2020) has formed

a relationship with IRI and pavement surface distresses such as ravelling, cracking,

and edge gap. They have introduced two submodels to account for the ageing of the

pavement. Submodel 1, IRI = 2.538 + 0.095RAV + 1.545EDG + 1.158PAT .

Figure 2.3: Walking Profiler

7

Submodel 2, IRI = 6.135 + 0.107RAV + 11.353POT + 0.25CRA. (RAV - Raveling as

a percentage, EDG - percentage of the edge gap more than 10 cm in linear length along

both side of the pavement, PAT- Patch area as a percentage, CRA - Cracking area as

a percentage, POT - Pothole area as a percentage)

● Strength – Data collection speed can be varied. Anyone who has a decent

smartphone can access this technology.

● Limitations - Reproducibility is questionable since measurements can depend

on the smartphone model, vehicle type, and speed.

2.3 Sri Lanka in Road Roughness Measurement

Even though Sri Lanka is a middle-income country, the road density of Sri Lanka is

higher when compared with similar countries. So, road maintenance is one of the

challenges that Sri Lanka is facing right now. The high cost associated with road

maintenance and high road density makes it crucial to identify the best road

rehabilitation period and level. Because of this, Sri Lanka has looked into the IRI-

based road maintenance prediction models. Currently (as of 2019), the Road

Development Authority has one laser-based road profiler to cover more than 12,000

kilometres of A and B class roads and about 160 kilometres of expressways.

A research study was carried out to adopt smartphone-based road roughness

measurement for low-volume roads in Sri Lanka (Gamage, Pasindu, & Bandara,

2016). Moreover, a methodology for road maintenance planning for low-volume roads

was proposed based on the smartphone-based roughness measurement data (Silva &

Pasindu, 2017). An undergraduate research study (Abeywardana, Abeywikrama,

Amarasinghe, & Kumarasinghe, 2018) conducted extensive research on smartphone-

based roughness measurement data collection.

2.4 Using Accelerometer in Road Roughness Measurement

There are many methods proposed to measure road roughness over the past years.

However, the use of an accelerometer seems to be highly popular mainly due to the

availability and the low cost. Smartphone-based accelerometers are commonly used to

determine road roughness. AndroSensor is one of the applications that use the inbuilt

accelerometer sensor in a smartphone to assess the road roughness (Douangphachanh

& Oneyama, 2013). Similar studies have been carried out in Sri Lanka to evaluate

8

smartphone-based roughness data collections' usability in Sri Lankan conditions

(Abeywardana, Abeywikrama, Amarasinghe, & Kumarasinghe, 2018) (Gamage,

Pasindu, & Bandara, 2016). Nevertheless, using an external accelerometer to

determine the road roughness was not evident in this literature review.

2.5 Use of Machine Learning Algorithms

Even though it is not very clear when the first idea of a machine learning algorithm

was introduced in History, the name 'Machine Learning' was surfaced in 1959 by

Arthur Samuel (Samuel, 1959). In his study, he was researching to develop a digital

counterpart for a professional checker player. The traditional approach to this problem

was to use a decision tree for each move that can play throughout the game. In a game

of checkers, there are 5x1020 possible search spaces. Because of this enormous

possibility number, the traditional path was too much for computers in 1959.

Therefore, he proposed two methods, namely the reward-based approach and the

supervised learning method. A model is required to perform a machine learning task.

In this research, more attention was given to artificial neural network models.

Also, there are three main methods available to train these models to predict future

outcomes.

Figure 2.4: Machine Learning Models

9

2.5.1 Artificial Neural Network

Artificial neural networks are similar to the biological counterparts consisting of inputs

and outputs. An artificial neural network is an interconnected group of nodes with

inputs and outputs. Each link between nodes represents a weightage and a bias. The

initial data is multiplied by the weightage. Then the bias is added. This whole number

goes through an activation function.

2.5.2 Supervised Machine Learning

Supervised machine learning is carried out by training an algorithm with previously

labelled data or with input data that the outcome is known. For example, if we take a

Figure 2.5: Machine Learning Algorithms

Figure 2.6: Neural Network Layers

10

population with known age, gender, weight, and height, we might be able to train an

algorithm to predict an individual's height by inputting the age, gender, and weight.

Figure 2.7: Supervised Learning Example

Recent breakthroughs of these supervised machine learning algorithms can be found

with companies like Google Deepmind and OpenAI. Google has been working on the

board game 'GO' to develop an algorithm to defeat that game's champions (Silver, et

al., 2016). Moreover, the computer game 'Dota 2' was mastered by the OpenAI five

using the available human gameplay as training data to train the algorithm (Nandy,

Abhishek, Biswas, & Manisha, 2018).

2.5.2.1 Classification Model

In classification models, clusters of data are classified into two or more categories

using an algorithm. Classification is considered an instance of supervised machine

learning. Clustering is the counterpart of classification, which is an instance of

unsupervised machine learning where the main difference is that in clustering, it is

done based on inheritance similarities rather than on known expected classification

groups. In this particular research, classification models are used to classify the

accelerometer input patterns as IRI values.

11

Figure 2.8: Classification Model

2.5.2.2 Regression Model

A regression model is used where it is necessary to predict an outcome based on past

data. Such as upcoming weather anomalies prediction using previous weather data.

Figure 2.9: Regression Model

2.5.3 Unsupervised Machine Learning

Unsupervised learning has three main models. Unsupervised machine learning is

similar to natural evolution. Like natural evolution, unsupervised learning is done by

going through several iterations to evolve the model into a better stage than previously.

12

2.5.3.1 Generation (Genetic) Model

This model is heavily based on the natural selection process occurring in nature. It

selects the best outcome and forwards the best features to the next iteration while other

features are naturally ignored in the process. Genetic models were introduced as

computer models in 1975 by John Holland (Holland, 1992). These models are often

used where it is hard to identify the boundaries of a problem, such as where the number

of possible next moves in the board game 'GO'.

2.5.3.2 Clustering / Feature Learning

Clustering is the unsupervised version of the classification. While classification is done

where the problem could be clearly understood, clustering is done often to classify

unknown datasets. Clustering is commonly used in image processing to identify

objects where there could not be previously predicted. As mentioned in (Blashfield &

Aldenderfer, 1988), cluster classification was initially suggested by anthropologists

Driver and Kroeber in 1932.

2.6 Summary

In the past, there were many solutions presented to calculate the IRI value reliably and

fast. This research explores the possibility of calculating IRI value reliably while

lowering the cost associated with the process. Moreover, to remove the barriers to

access the IRI test.

13

3 METHODOLOGY

3.1 Data Collection

Data collection was carried out using an Android smartphone and an accelerometer

sensor. Smartphones also used to save the collected accelerometer data while travelling

on the road.

3.1.1 Accelerometer Sensor

The Accelerometer sensor was purchased locally. The main difficulty of this method

is to extract data from the accelerometer while travelling on the road. Because of that,

an accelerometer with a Bluetooth device is used to collect data. The chosen

accelerometer sensor has the following specifications.

Figure 3.1: Data Collection Methodology

14

Table 3.1: Accelerometer Specifications

Feature Description

Output data Linear acceleration - x, y, and the z-axis direction

Angular acceleration - around x, y, and z-axis

Attitude - Euler angle

Output frequency 100 Hz

Connectivity Bluetooth / USB

Required voltage 3.3 V to 5 V

Size (W x H x L) 15.24 mm x 3 mm x 15.24 mm

This accelerometer sensor was attached to the driven wheel of a vehicle, as in the

following diagram.

Figure 3.2: Accelerometer Sensor

Figure 3.3: Sensor Placement

15

The sensor was placed as close as possible to the wheel to get the vibrations as much

as possible.

3.1.2 Smartphone

In this research, a conventional mid-range Android device was used since the

application that collects the data can is compatible with the Android operating system.

The phone used in this research has the following specifications.

Table 3.2: Smart Phone Specifications

Feature Description

Operating System Android version 8.1

Bluetooth Version 2.0

Global Positioning System With a 2 Hz refresh rate

3.1.3 Smartphone Application

According to the date, a smartphone application was developed to read the

accelerometer data and log these data in a text file. This application was developed

using Android Studio with Python language. Also, this application is responsible for

pulling the global positioning data from the built-in GPS module of the smartphone

and matches that with the instantaneous accelerometer data. In the training phase, the

same application was modified to collect pothole data with user input.

Figure 3.4: Mobile Phone

16

This data was then imported into Microsoft Excel for the initial data cleanup.

Figure 3.5: Data Record Format

Figure 3.6: Mobile Phone Application

17

3.2 Data Pre-processing

Collected data using this method consist of;

● Time in seconds

● GPS data from the smartphone - latitude and longitude

● Linear acceleration - 3 components

● Angular acceleration - 3 components

● Pothole - true or false

For this research, we need to convert these data into more simple inputs for data

analysis. Because of that, speed and distance were calculated using time and GPS data.

Then three components of linear acceleration and angular acceleration were combined

into one parameter. Then each combined acceleration is normalized by the speed to

eliminate the speed factor of the data collection.

3.2.1 Speed Calculation

Speed is calculated using the recorded time and distance calculated from two GPS

coordinates. The distance calculated with the following formula;

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑚) = 𝑎𝑐𝑜𝑠(𝑠𝑖𝑛(𝑙𝑎𝑡1) × 𝑠𝑖𝑛(𝑙𝑎𝑡2)

+ 𝑐𝑜𝑠(𝑙𝑎𝑡1) × 𝑐𝑜𝑠(𝑙𝑎𝑡2) × 𝑐𝑜𝑠(𝑙𝑜𝑛2 − 𝑙𝑜𝑛1)) × 6371000

Then the speed calculated by this simple equation;

Figure 3.7: Data Preprocessing Procedure

18

𝑆𝑝𝑒𝑒𝑑 =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

(𝑡𝑖𝑚𝑒 2 − 𝑡𝑖𝑚𝑒 1)

3.2.2 Combined Acceleration Calculation

Accelerometer orientation is different each time when it is fixed to the vehicle axle.

Thus, both linear and angular acceleration components are combined using the

following formula to minimize the inconsistency of accelerometer orientation on the

vehicle axle.

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = √(𝑋 𝐴𝑥𝑖𝑠)2 + (𝑌 𝐴𝑥𝑖𝑠)2 + (𝑍 𝐴𝑥𝑖𝑠)2

This calculation was performed in the Microsoft Excel package.

3.2.3 Data Arrangement

In general, the IRI data is noted down for 100-meter sections. Because of that, the

above data had to be separated into 100-meter sections. This calculation was done by

using the distance calculated in 3.2.1.

3.3 Data Analysis

A machine-learning algorithm based on an artificial neural network was used in this

project to analyze data. Tensorflow is a free and open-source library that can be

repurposed easily. Weka is a software that was developed by the University of

Waikato, New Zealand. Both software was used to analyze and predict the IRI values

taken from the sensor and road profiler.

Weka software was used to identify the parameters for machine learning algorithms.

Since many parameters have been fine-tuned before implementing those parameters in

the Tensorflow, this was done because even though Tensorflow is much more flexible

than Weka, it is easy to fine-tune and get the result that we want.

3.3.1 Using Weka Software

Software Information;

19

Table 3.3: Weka Software Specifications

A Multilayer perceptron analysis used to analyze the preprocessed data.

3.3.2 Using Tensorflow Library

Tensorflow JavaScript API 2.0.0 was used in this research to make a neural network

with two inputs, one hidden layer with ten nodes, and one output layer. These changes

made based on the initial analysis done on the Weka software.

The pothole detection analysis carried out initially. The following neural network was

trained based on the previously collected data on the pothole with the accelerometer

data.

Name Waikato Environment for Knowledge Analysis

Version 3.8.3

Year 2018

Developer The University of Waikato Hamilton, New Zealand

20

Figure 3.8: Neural Network Model

Moreover, the same neural network has been used to calibrate the accelerometer data

with the previously collected IRI values by the Road Development Authority on the

same road section.

This library includes several options to fine-tune the outcome of the neural network,

such as the following.

21

Figure 3.9: JavaScript for Tensorflow

22

3.3.2.1 Tensors

Tensors represent inputs or outputs in a neural network. In the Tensorflow library,

tensors can initiate as a scalar, vector, or matrix with multiple dimensions. The type of

tensor has chosen according to the inputs given to these tensors. Humans are good at

identifying the relationships between two variables (in the x and y-axis). However,

machines are better at predicting the relationships with more than two variables. In this

research, the input tensor is initiated as a matrix of '1 x 2 x number of data points'.

Furthermore, data is feed as floating-point values.

3.3.2.2 Layers

In a neural network, there are three significant layers involved.

● Input layer

● Hidden layers

● Output layer

Form this, input layers and output layers are self-explanatory. In a neural network,

inputs taken by the input layers and pass it to hidden layers by multiplying them with

a bias. Links between nodes represent the bias values. Then the hidden layer transfers

those values to the outputs with a similar bias value. The final value is compared with

the given actual values. The difference between the actual value and the output value

is then minimized in the training process.

In the Tensorflow, these layers should be initiated with the following configurations.

● Input shape - number of inputs to the current layer from the previous one

● Units - the number of nodes in the current layer

23

● Activation function - use to pass the data to the next layer when the value meets

the activation function criteria. Rectified linear units, sigmoid, softmax, and

few other functions are used in this research. It found that for the pothole

detection neural network, sigmoid and softmax functions work better, and in

IRI prediction, the linear activation function works better.

3.3.2.3 Compiler

The compiler's function is to bind the inputs and actual outputs in the neural network.

It minimizes the loss between the predicted output and the actual output. Loss can be

calculated as a mean squared error, cousin distance, or absolute difference between

predicted values and actual values.

Figure 3.12: Linear Activation Function Figure 3.12: Sigmoid Activation Function

Figure 3.12: activation Function Process

24

4 RESULTS

4.1 Pothole Detection

The following data were obtained using the accelerometer sensor along the A2 road in

the Matara area. A section of the data is included here.

Table 4.1: A2 Road Accelerometer Data

Time Angular

Acceleration

Linear Acceleration Latitude Longitude Pothole

X Y Z X Y Z

10:18:56 0.92 -0.16 -0.3 1.28 -9.03 16.66 5.93974088 80.47991128 FALSE

10:18:56 0.68 0.03 -0.25 -1.77 11.35 -15.93 5.93974088 80.47991128 FALSE

10:18:56 1 -0.1 -0.23 0.61 11.29 -4.15 5.93974088 80.47991128 FALSE

10:18:56 0.7 -0.16 -0.31 0.43 0 2.87 5.93974088 80.47991128 TRUE

10:18:56 5.32 2.18 0.03 -

46.39

157.47 -390.5 5.93974088 80.47991128 TRUE

10:18:57 1.28 -0.49 -0.52 32.78 -91.06 274.17 5.93974088 80.47991128 TRUE

10:18:57 -1.58 -0.57 0.26 34.06 -53.65 95.15 5.93974088 80.47991128 TRUE

10:18:57 0.08 -0.8 -0.59 28.69 -70.62 343.14 5.93971337 80.47978609 FALSE

10:18:57 0.36 -0.56 -0.01 14.28 -15.14 70.19 5.93971337 80.47978609 FALSE

10:18:57 0.16 -0.82 -0.36 27.47 -

162.96

282.04 5.93971337 80.47978609 TRUE

10:18:57 0.78 -0.49 -0.44 17.52 -34.67 158.94 5.93971337 80.47978609 TRUE

10:18:57 1.01 -0.12 -0.33 2.08 20.14 9.83 5.93971337 80.47978609 FALSE

10:18:57 0.93 -0.17 -0.24 4.52 -13.85 38.7 5.93971337 80.47978609 FALSE

10:18:57 0.74 -0.14 -0.35 2.26 -6.96 12.39 5.93971337 80.47978609 FALSE

10:18:58 1.05 -0.23 -0.35 1.77 22.4 8.97 5.93971337 80.47978609 FALSE

25

10:18:58 1.15 -0.19 -0.43 9.4 -46.14 68.97 5.93971337 80.47978609 FALSE

10:18:58 0.85 0.05 -0.47 0.92 -25.63 0 5.93969077 80.47964384 FALSE

10:18:58 1.54 0.19 -0.35 -2.99 24.84 -38.21 5.93969077 80.47964384 FALSE

10:18:58 0.37 -0.23 -0.41 4.46 -5.07 51.7 5.93969077 80.47964384 FALSE

10:18:58 1.44 0.09 -0.31 -

10.38

43.58 -

108.22

5.93969077 80.47964384 FALSE

10:18:58 -0.26 -0.16 -0.22 23.5 -

108.95

105.77 5.93969077 80.47964384 TRUE

In these graphs, we can see the spike of linear and angular accelerations due to vehicles

travelling on a pothole. Similar data have been fitted into a machine learning

algorithm. The following results from the algorithm have been observed when the

training has been completed. One thousand nine hundred thirty-four data points have

been used in this training.

Figure 4.1: Angular Acceleration

26

Table 4.2: Pothole Detection Results

Correctly classified instances 94.83%

Incorrectly classified instances 5.17%

Mean absolute error 0.0483

Root mean squared error 0.142

Figure 4.2: Linear Acceleration

27

The left image is a map of the Boralasgamuwa area, and the right image is a map of

the Southern Expressway section. Linear accelerations are mapped into that image

using collected latitude and longitude data. The size of the circles represents the

acceleration intensity.

The neural network used the following settings;

Table 4.3: Pothole Detection Neural Network Settings

Number of inputs 2 (Normalized linear acceleration,

Normalized angular acceleration)

Number of hidden layers 1

Number of hidden nodes 10

Activation function in hidden nodes sigmoid

Number of outputs 1

Figure 4.4: Boralasgamuwa Road Figure 4.4: Southern Expressway

28

Activation function in hidden nodes sigmoid

Optimizer Stochastic gradient descent

Loss calculation function mean squared error

4.2 Calibration to IRI Data

IRI data for the Piliyandala bypass road was obtained from the Road Development

Authority, Sri Lanka.

Table 4.4: IRI Data for Piliyandala Bypass Road

Chainage (km) IRI Left IRI Average

0.10 3.38 4.2

0.20 2.61 3.14

0.30 2.22 2.43

0.40 2.31 2.75

0.50 2.29 2.4

0.60 2.59 2.78

0.70 2.16 2.41

0.80 X X

0.90 2.27 2.65

1.00 1.75 2.09

1.10 1.96 2.14

1.20 1.96 2.13

29

1.30 1.9 1.95

1.40 2.51 2.78

1.50 2.29 2.6

1.60 2.4 2.27

1.70 2.7 2.6

1.80 2.12 2.19

1.90 X X

2.00 1.86 1.96

2.10 1.73 1.93

2.20 1.79 1.59

2.30 2.06 2.03

2.40 1.84 1.72

2.50 1.54 1.66

2.60 1.28 1.39

2.70 2.4 2.25

2.80 1.83 1.92

Accelerometer data is collected on the same road section during the same survey

period.

30

Table 4.5: Accelerometer Data for Piliyandala Bypass Road

Chainage (km) Speed (m/s)

Average Liners

Acceleration

Average

Angular

Acceleration

Corresponding

IRI Value

0.00 8.33 5.52 1.00 3.38

0.10 11.11 3.84 0.97 2.61

0.20 12.50 2.84 0.98 2.22

0.30 10.00 3.82 1.04 2.31

0.40 11.11 4.26 0.99 2.29

0.50 11.11 4.59 1.01 2.59

0.60 12.50 3.89 1.02 2.16

0.80 9.09 3.98 1.01 2.27

0.90 10.00 3.62 0.97 1.75

1.00 9.09 3.74 1.01 1.96

0.00 8.33 11.97 0.99 3.38

0.10 12.50 5.45 0.98 2.61

0.20 12.50 7.70 0.98 2.22

0.30 12.50 6.09 1.02 2.31

0.40 12.50 5.65 1.00 2.29

0.50 12.50 5.52 1.01 2.59

0.60 10.00 4.26 1.01 2.16

0.80 12.50 3.66 1.01 2.27

0.90 10.00 2.80 0.98 1.75

1.00 12.50 3.06 0.97 1.96

1.10 9.09 4.60 1.01 1.96

1.20 11.11 4.29 1.01 1.9

31

1.30 6.67 4.99 0.99 2.51

2.20 7.14 3.00 0.99 2.06

2.30 12.50 4.79 0.99 1.84

2.40 12.50 4.51 0.96 1.54

2.50 12.50 6.00 1.00 1.28

2.60 12.50 5.78 0.98 2.4

2.70 12.50 6.91 1.02 1.83

The above data was fed into the neural network. The following parameters were

observed during the training process.

Table 4.6: Results for IRI - Accelerometer Relationship

Mean absolute error 0.1378

Root mean squared error 0.1889

These are the measurement between results and the prediction data. The mean absolute

error and the root mean squared error is higher than the previous pothole detection

calculation. High error values are due to a lower number of training data compared to

the previous case.

Following settings were used in the neural network,

Table 4.7: IRI- Accelerometer Neural Network Settings

Number of inputs 2 (Normalized linear acceleration,

Normalized angular acceleration)

Number of hidden layers 1

Number of hidden nodes 10

The activation function in hidden nodes Linear

Number of outputs 1

32

The activation function in hidden nodes Linear

Optimizer Stochastic gradient descent

Loss calculation function mean squared error

4.3 Real-time Data Processing

For the practical usage of this model, the model should be export as a Tensorflow lite

package. This package can be used in an Android or iOS application to indicate the IRI

value in real-time while collecting the data through an accelerometer.

Another option is to collect the data in the field and run the model on a separate

computer after the data collection. There is no difference between running the model

on a separate computer or having it in a mobile application package.

33

5 DISCUSSION

The machine-learning algorithm is a useful tool to identify patterns and correlations

when there are multi-dimensional data and large datasets. It can identify Multi-

dimensional data patterns that a human mind could not identify. In the sense of

accelerometer data against the IRI value, 3- axis accelerometer data and GPS data

along the time dimension generate a large amount of non-linear data that has an

indirect correlation with the IRI value. In cases like this, machine learning can identify

patterns such as a wheel of a vehicle travels on a pothole or a road bump. Also, it can

be used to predict the IRI value by training the machine-learning algorithm with a

known dataset. These algorithms mostly rely on the quality of the training dataset. The

quality of the training dataset can be expressed by reliability, feature representation

and, skewness.

Reliability refers to the accuracy of the training data. If the dataset is not reliable, the

trained model will output the unreliable predictions as well. It is "Garbage in, garbage

out".

Feature representation is another essential aspect of the training data. First, the training

data should represent all the scenarios that intend to predict by the model. Furthermore,

it should not be skewed as well. A skewed dataset can bias the output predictions of

the model depending on the dataset size and skewness. (Google, 2021)

In IRI prediction, the corresponding accelerometer data's predicted values are not

closely associated with the laser-based mobile unit's data. Typically, the laser-based

mobile unit assesses the total lane width and gives a collective result based on the

measurements. However, the accelerometer-based calculation is calculated based on

the wheel path undulations. This fundamental difference in the data collection can

cause very different results. This difference can lead to an inaccurate machine learning

model in the training phase. A lower variation of the result obtained from the laser-

based IRI measurement and the accelerometer measurement leads to lower absolute

error and lower mean squared error.

Further research should be carried out to determine the feasibility of using the

machine-learning algorithm for IRI prediction using similar measurement methods

such as walking profiler meter or travelling beam method. Also, the laser-based IRI

34

measurement gives the IRI value for every 100m section. However, the accelerometer

has a data output rate of around 50Hz. Due to this measurement difference, gathering

the data for training the machine learning algorithm is difficult. One way around this

problem is to get the mean acceleration values corresponding to every 100m section

of a particular road and compare it with the IRI measurement on the same road.

The pothole detection phase in this research can be categorized under the reinforced

learning. It is similar to the features like step counting applications used in smart

devices. In this research, accelerometer data gathered from several potholes used to

train the machine-learning algorithm. Moreover, a separate road section was used to

test and verify the machine-learning algorithm. The outcome of the testing data

suggests that this algorithm can identify the potholes to an acceptable level. However,

in general principles of machine learning, there is always an opportunity for

improvements through more training. Even though it is evident that the trained model

can identify the potholes to a fair degree of accuracy, it can be suggested to train the

algorithm further with different road sections, different speeds, and using different

vehicles.

The training phase is the most crucial stage of machine learning models. The number

of training cycles with the available data should be carefully selected. While a large

number of training cycles can show very accurate results within the training dataset,

the model may underperform when given a new set of data. Overfitting or overtraining

is a statistical phenomenon that picks up the training dataset's residual variations and

transfers them to the machine learning model (Overfitting, 2021). Thus, it is essential

to find a good balance between the number of training cycles and the training data

variation. Overfitting can be identified with a new set of testing data that is separate

from the training data.

35

6 CONCLUSION

This research was conducted to develop a method to find pavement undulation

detection within a low budget level. The method's accuracy would be at a sufficient

level to detect the distresses prevailing in the roadway. Off-the-shelf accelerometer

sensors with reasonable accuracy can be found in almost every electronic store for a

low price. The main problem of this method is to convert the accelerometer data to

pavement undulations. It is ubiquitous to use mobile phone accelerometer data for

pavement undulation measurement as a cheap alternative to IRI measurement.

However, the data conversion to the IRI values in those researchers is not conducted

thoroughly.

This research can be divided into two major sections. 1. Pothole detection in the road

surface and 2. IRI value predictions using accelerometer data.

In the first section of this research, the results indicate that pothole detection using

accelerometer and machine learning can have promising results. The low mean

absolute error in pothole detection is a direct indication of the accuracy of the results.

This research was carried out with a limited number of data points (1934). Machine

learning algorithms can be improved sharply by using more massive data sets. The

main reason to use machine learning in this research is to find the accelerometer data

patterns, which the regression models could not highlight. Pattern detection with

machine learning is not a new concept. It has been used in many cases, such as step

counters in fitness devices and mobile phones. The same concept can be used to detect

the potholes on the road surface.

The second section of this research was conducted to formulate a machine learning

algorithm that can predict the IRI value using the accelerometer data. The outcome of

the training indicates somewhat accurate results, mainly due to the lack of test data.

This machine-learning algorithm was trained upon 29 test points due to the lack of

available public domain IRI data, which were obtained recently. Lack of variations

and limited test data points profoundly affected the mean absolute error in these results.

Even though the undulations are identified with the accelerometer data, conversion to

the IRI should be further researched before implementation. However, these results

36

provide new insight to improve the accuracy of mobile phone undulation detection

methods using the machine-learning algorithm as well.

Due to the lack of test data for the accelerometer measurement - the IRI conversion

model could not be validated further. Quality of the training data, machine learning

settings such as the number of hidden nodes, type of the activation function used defy

the accuracy of the prediction. Nevertheless, having a large number of hidden nodes

and training cycles could lead to overfitting of the model. This problem could be

minimized with fewer hidden nodes, and a testing data set separate from the training

data set. A perfect data set should represent all the variables on a measurement, such

as weather conditions, the measuring vehicle's speed, vehicle type, and model. Using

such a dataset, this machine learning model can be improved vastly.

Pothole detection with this method has an acceptable accuracy with a root mean square

error of 0.142. Moreover, the IRI relationship with the accelerometer data also has an

acceptable accuracy with a root mean square error value of 0.1889.

Machine learning is a flexible and valuable tool in the transportation sector, given that

the algorithm is trained with a satisfactory amount of data and quality. Specifically,

the pothole direction of a paved road can be successfully detected using a machine

learning algorithm.

These machine learning algorithms can be improved on the go by having more training

data. Rather than using regression models for IRI and distress relationship, machine

learning can improve the accuracy of those predictions.

It can conclude that with the aid of machine learning combined with a low-cost

accelerometer sensor, road pavement undulations such as potholes can be accurately

identified on the go.

37

7 REFERENCES

Abeywardana, H. M., Abeywikrama, U. M., Amarasinghe, P. T., & Kumarasinghe, R.

P. (2018). iRoads - Smartphone-Based Road Condition Monitoring. University

of Moratuwa, Computer Science & Engineering.

Bennett, C. R. (2006). Data Collection Technologies for Road Management. Retrieved

from

https://books.google.com/books/about/Data_Collection_Technologies_for_R

oad_Ma.html?hl=&id=tSvNwQEACAAJ

Blashfield, R. K., & Aldenderfer, M. S. (1988). The Methods and Problems of Cluster

Analysis. In J. R. Nesselroade, & R. B. Cattell, Handbook of Multivariate

Experimental Psychology (pp. 447-473). Bostan,MA. doi:10.1007/978-1-

4613-0893-5_14

Douangphachanh, V., & Oneyama, H. (2013). Estimation of road roughness condition

from smartphones under realistic settings. doi:10.1109/ITST.2013.6685585

Fifth Wheel Bump Integrator. (2012, March). Retrieved September 09, 2019, from

CSIR - Central Road Research Institute: https://crridom.gov.in/content/bump-

integrator

Firoozi, Y. S., Mahmoudzadeh, A., Azizpour, M. A., & {others}. (2017). Validation

of Smartphone-Based Pavement Roughness Measures. Retrieved from

https://www.sid.ir/en/Journal/ViewPaper.aspx?ID=600013

Gamage, D., Pasindu, H. R., & Bandara, S. (2016, July 27). Pavement Roughness

Evaluation Method for Low Volume Roads. doi:10.3850/978-981-11-0449-7-

199-cd

Google. (2021, 01 05). Data Preparation and Feature Engineering for Machine

Learning. Retrieved from Google Developers:

https://developers.google.com/machine-learning/data-

prep/construct/collect/data-size-quality

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems: An Introductory

Analysis with Applications to Biology, Control, and Artificial Intelligence.

MIT Press. Retrieved from

https://books.google.com/books?hl=en&lr=&id=5EgGaBkwvWcC&oi=fnd&

38

pg=PR7&dq=Adaptation+in+Natural+and+Artificial+Systems&ots=mImr8-

Ojwq&sig=UvO64uPE2cEcw4j2D3i8C68SBXE

Merry, K., & Bettinger, P. (2019, July 18). Smartphone GPS accuracy study in an

urban environment. PLoS One, 14(7). doi:10.1371/journal.pone.0219890

Nandy, Abhishek, Biswas, & Manisha. (2018). OpenAI Basics. doi:10.1007/978-1-

4842-3285-9_3

Overfitting. (2021, 03 29). Retrieved from Wikipedia:

https://en.wikipedia.org/wiki/Overfitting

Paterson, W. D. (1986). Relationship of the International Roughness Index to Other

Measures of Roughness and Riding Quality. Retrieved from

https://books.google.com/books/about/Relationship_of_the_International_Ro

ughn.html?hl=&id=b_ahtgAACAAJ

Russell, S., & Norvig, P. (2016). Artificial Intelligence: A Modern Approach, Global

Edition. Retrieved from

https://books.google.com/books/about/Artificial_Intelligence.html?hl=&id=X

S9CjwEACAAJ

Samuel, A. L. (1959, July). Some Studies in Machine Learning Using the Game of

Checkers. IBM Journal of Research and Development, 3(3), 210-229.

doi:10.1147/rd.33.0210

Sandamal, R. M., & Pasindu, H. R. (2020). Applicability of smartphone-based

roughness data for rural road pavement condition evaluation. International

Journal of Pavement Engineering, 1-10. doi:10.1080/10298436.2020.1765243

Silva, M., & Pasindu, H. R. (2017, October 01). Development of a methodology for

road maintenance planning of low volume roads based on roughness data.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., . . .

Sutske. (2016, January 28). Mastering the game of Go with deep neural

networks and tree search. Nature, 529(7587), 484-489.

doi:10.1038/nature16961

Wang, H. (2006, 07). Road Profiler Performance Evaluation and Accuracy Criteria

Analysis.

39

ANNEX 01 – DATA PRE-PROCESSING WITH JAVASCRIPT (P5)

sketch.js (JavaScript in P5)

let data;

var json = {};

var table;

function preload(){

 data = loadStrings('0292018.txt');

}

function setup(){

 background(200);

 table = new p5.Table();

 var newRow = table.addRow();

 table.addColumn('id');

 table.addColumn('time');

 table.addColumn('x');

 table.addColumn('y');

 table.addColumn('z');

 table.addColumn('x1');

 table.addColumn('y1');

 table.addColumn('z1');

 table.addColumn('xa');

 table.addColumn('ya');

 table.addColumn('za');

 table.addColumn('latitude');

 table.addColumn('longitude');

 table.addColumn('speed');

 for(var i =0; i< data.length; i++){

 let time = data[i].substring(0, 8);

 let x = data[i].substring(19, 24);

 let y = data[i].substring(35, 40);

 let z = data[i].substring(51, 56);

 let x1 = data[i].substring(68, 73);

 let y1 = data[i].substring(85, 90);

 let z1 = data[i].substring(102, 107);

 let xa = data[i].substring(117, 124);

 let ya = data[i].substring(134, 141);

 let za = data[i].substring(151, 158);

 let latIndex = data[i].indexOf("Latitude");

 let longIndex = data[i].indexOf("Longitude");

 let lat = data[i].substring(latIndex+9,latIndex+20);

40

 let long = data[i].substring(longIndex+10,longIndex+22);

 var newRow = table.addRow();

 newRow.setNum('id',i+1);

 newRow.setString('time',time);

 newRow.setString('x',x);

 newRow.setString('y',y);

 newRow.setString('z',z);

 newRow.setString('x1',x1);

 newRow.setString('y1',y1);

 newRow.setString('z1',z1);

 newRow.setString('xa',xa);

 newRow.setString('ya',ya);

 newRow.setString('za',za);

 newRow.setString('latitude',lat);

 newRow.setString('longitude',long);

 if(i>= 11){

 let t1 = table.get(i,'time');

 let t2 = table.get(i-10,'time');

 let lat1 = table.get(i,'latitude');

 let lat2 = table.get(i-10,'latitude');

 let long1 = table.get(i,'longitude');

 let long2 = table.get(i-10,'longitude');

 let finalspeed = speedCalculation(t1,t2,lat1,lat2,long1,long2);

 newRow.setString('speed',finalspeed);

 }

 }

 saveTable(table, 'new.csv');

}

function speedCalculation(t1, t2, lat1, lat2, long1, long2){

 let hour1 = t1.substring(0,2);

 let hour2 = t2.substring(0,2);

 let min1 = t1.substring(3,5);

 let min2 = t2.substring(3,5);

 let sec1 = t1.substring(6,8);

 let sec2 = t2.substring(6,8);

 //angleMode(RADIANS);

 let distance = acos(cos(radians(90-lat2))* cos(radians(90-

lat1))+ sin(radians(90-lat2))* sin(radians(90-

lat1))* cos(radians(long2-long1)))* 6371000;

 let timeDiff = (hour1-hour2)*3600+(min1-min2)*60+(sec1-sec2);

 let speed = distance/timeDiff;

 return speed;

}

41

ANNEX 02 – ACCELEROMETER DATA WITH IRI/POTHOLE

PREDICTION (MACHINE LEARNING WITH TENSORFLOW)

sketch.js (JavaScript in P5)

function preload(){

 xs_data = loadTable('xs.csv','csv','header');

 ys_data = loadTable('ys.csv','csv','header');

}

function setup() {

 noCanvas();

 const inputx = (xs_data.getArray());

 const shapex = [29,3];

 const inputy = (ys_data.getArray());

 const shapey = [29];

 const xs = tf.tensor(inputx, shapex, 'float32');

 const ys = tf.tensor(inputy, shapey, 'float32');

 console.log(ys);

 ys.print();

 const model = tf.sequential();

 const configHidden = {

 inputShape : [3],

 units : 10,

 activation : 'sigmoid'

 }

 const hidden = tf.layers.dense(configHidden);

 const configOutput = {

 units : 1,

 activation : 'sigmoid'

 }

 const output = tf.layers.dense(configOutput);

 model.add(hidden);

 model.add(output);

 const optimizer = tf.train.sgd(0.1);

 const configCompiler = {

 optimizer : optimizer,

42

 loss : 'meanSquaredError',

 epoch: 10

 }

let history;

train().then(()=>{

 let output = model.predict(xs);

 xs.print();

 output.print();

 console.log('Training Complete!');

})

 async function train(){

 for(let i =0; i < 1000; i++){

 model.compile(configCompiler);

 const response = await model.fit(xs, ys);

 console.log(response.history.loss[0]);

 }

 }

}

index.html (P5)

<!DOCTYPE html><html lang="en"><head>

 <script src="p5.js"></script>

 <script src="p5.sound.min.js"></script>

 <script src="tf.min.js"></script>

 <link rel="stylesheet" type="text/css" href="style.css">

 <meta charset="utf-8">

 </head>

 <body>

 <script src="sketch.js"></script>

</body></html>

43

ANNEX 03 - DATA COLLECTION ANDROID APPLICATION

WITH KOTLIN

MainActivity.kt

package com.typeiii.bth

import android.Manifest

import android.databinding.DataBindingUtil

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import com.typeiii.bth.helpers.BluetoothSerial

import com.typeiii.bth.databinding.ActivityMainBinding

import android.graphics.drawable.AnimationDrawable

import android.view.MotionEvent

import android.view.View

import com.karumi.dexter.Dexter

import com.karumi.dexter.MultiplePermissionsReport

import com.karumi.dexter.PermissionToken

import com.karumi.dexter.listener.PermissionRequest

import com.karumi.dexter.listener.multi.MultiplePermissionsListener

import com.karumi.dexter.listener.multi.SnackbarOnAnyDeniedMultiplePerm

issionsListener

import com.karumi.dexter.listener.multi.CompositeMultiplePermissionsLis

tener

import com.typeiii.bth.helpers.LocationManager

import kotlinx.android.synthetic.main.activity_main.*

import android.R.attr.button

import android.content.Context

import android.content.Intent

import android.widget.EditText

import android.widget.Toast

import com.typeiii.bth.helpers.Recorder

import android.content.SharedPreferences

class MainActivity : AppCompatActivity() {

 lateinit var binding: ActivityMainBinding

 private var bluetoothSerial: BluetoothSerial? = null

 private var allPermissionsListener: MultiplePermissionsListener? =

null

 private val deviceName = "HC-06"

44

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 binding = DataBindingUtil.setContentView(this, R.layout.activit

y_main)

 supportActionBar?.hide()

 checkPermissions()

 connectToBluetoothDevice()

 getAccuracy()

 setClickListener()

 onClickListener()

 }

 private fun checkPermissions() {

 val permissionListener = object : MultiplePermissionsListener {

 override fun onPermissionsChecked(report: MultiplePermissio

nsReport) {

 for (response in report.grantedPermissionResponses) {

 if (response.permissionName == Manifest.permission.

ACCESS_FINE_LOCATION) {

 getAccuracy()

 }

 }

 }

 override fun onPermissionRationaleShouldBeShown(permissions

: MutableList<PermissionRequest>?,

 token: Perm

issionToken?) {

 }

 }

 allPermissionsListener = CompositeMultiplePermissionsListener(p

ermissionListener,

 SnackbarOnAnyDeniedMultiplePermissionsListener.Builder.

with(binding.view,

 R.string.all_permissions_denied_feedback)

 .withOpenSettingsButton(R.string.permission_rat

ionale_settings_button_text)

 .build())

 Dexter.withActivity(this)

 .withPermissions(Manifest.permission.BLUETOOTH,

45

 Manifest.permission.ACCESS_COARSE_LOCATION,

 Manifest.permission.ACCESS_FINE_LOCATION,

 Manifest.permission.WRITE_EXTERNAL_STORAGE)

 .withListener(allPermissionsListener)

 .check()

 }

 private fun connectToBluetoothDevice() {

 bluetoothSerial = BluetoothSerial(this, object : BluetoothSeria

l.MessageHandler {

 override fun connected() {

 binding.button.isEnabled = true

 binding.button.text = getString(R.string.record)

 binding.button.setBackgroundResource(R.drawable.ic_btn_

connected)

 }

 override fun disConnected() {

 binding.button.text = getString(R.string.disconnected)

 binding.button.setBackgroundResource(R.drawable.ic_btn_

normal)

 }

 override fun read(x: Float, y: Float, z: Float, temp: Float

, x1: Float, y1: Float, z1: Float, xa: Float, ya: Float, za: Float) {

 runOnUiThread {

 binding.tvXvalue.text = String.format("% 10.2fg", x

)

 binding.tvYvalue.text = String.format("% 10.2fg", y

)

 binding.tvZvalue.text = String.format("% 10.2fg", z

)

 binding.tvTempValue.text = String.format("% 10.2f℃

", temp)

 }

 }

 override fun read(bufferSize: Int, buffer: ByteArray): Int

{

 return 0

 }

 }, deviceName)

 bluetoothSerial?.connect()

 }

46

 private fun getAccuracy() {

 LocationManager(object : LocationManager.PositionListener {

 override fun getAccuracy(accuracy: Float) {

 binding.tvAccuValue.text = String.format("%.2fm", accur

acy)

 }

 }, true).connect()

 }

 private fun setClickListener() {

 binding.button.setOnClickListener {

 if (bluetoothSerial != null && bluetoothSerial!!.isRecordin

g()!!) {

 binding.button.text = getString(R.string.record)

 binding.button.setBackgroundResource(R.drawable.ic_btn_

normal)

 } else {

 binding.button.text = getString(R.string.stop)

 val drawable = AnimationDrawable()

 val image1 = getDrawable(R.drawable.ic_btn_normal)

 val image2 = getDrawable(R.drawable.ic_btn_recoding)

 drawable.addFrame(image1, 1000)

 drawable.addFrame(image2, 1000)

 drawable.isOneShot = false

 binding.button.background = drawable

 drawable.start()

 }

 bluetoothSerial?.setRecord()

 }

 }

 fun onClickListener(){

 var btnPress = false

 button2.setOnTouchListener { v, event ->

47

 val mypref = this.getSharedPreferences("mypref", Context.MO

DE_PRIVATE)

 val editor =mypref.edit()

 if(event.getAction()== MotionEvent.ACTION_DOWN){

 btnPress = true

 editor.putString("btnValue",btnPress.toString())

 editor.apply()

 }

 if(event.getAction() == MotionEvent.ACTION_UP){

 btnPress = false

 editor.putString("btnValue",btnPress.toString())

 editor.apply()

 }

 textView.text = btnPress.toString()

 btnPress

 }

 }

}

MyApplication.kt

package com.typeiii.bth

import android.app.Application

import android.content.Context

class MyApplication: Application() {

 init {

 instance = this

 }

 companion object{

 private var instance: MyApplication? = null

 fun applicationContext() : Context {

 return instance!!.applicationContext

 }

 lateinit var sApplication: Application

 private fun getApplication(): Application? {

 return sApplication

 }

48

 fun getContext(): Context? {

 return getApplication()?.applicationContext

 }

 }

 override fun onCreate() {

 super.onCreate()

 sApplication = this

 }

}

BluetoothSerial.kt

package com.typeiii.bth.helpers

import android.annotation.SuppressLint

import android.bluetooth.BluetoothSocket

import android.bluetooth.BluetoothDevice

import android.support.v4.content.LocalBroadcastManager

import android.content.Intent

import android.os.AsyncTask

import android.bluetooth.BluetoothAdapter

import android.content.IntentFilter

import android.content.BroadcastReceiver

import android.content.Context

import android.util.Log

import java.io.IOException

import java.io.InputStream

import java.io.OutputStream

import java.util.*

class BluetoothSerial(internal var context: Context, internal var messa

geHandler: MessageHandler, devicePrefix: String) {

 internal var connected = false

 internal var bluetoothDevice: BluetoothDevice? = null

 internal var serialSocket: BluetoothSocket? = null

 internal var serialInputStream: InputStream? = null

49

 internal var serialOutputStream: OutputStream? = null

 private var serialReader: SerialReader? = null

 internal var connectionTask: AsyncTask<Void, Void, BluetoothDevice>

? = null

 internal var devicePrefix: String

 private val MAX_BYTES = 125

 internal var mConnectedThread: ConnectedThread? = null

 /**

 * Listens for discount message from bluetooth system and restablis

hing a connection

 */

 private val bluetoothReceiver = object : BroadcastReceiver() {

 override fun onReceive(context: Context, intent: Intent) {

 val action = intent.action

 val eventDevice = intent.getParcelableExtra<BluetoothDevice

>(BluetoothDevice.EXTRA_DEVICE)

 if (BluetoothDevice.ACTION_ACL_DISCONNECTED == action) {

 if (bluetoothDevice != null && bluetoothDevice == event

Device) {

 Log.i(BMX_BLUETOOTH, "Received bluetooth disconnect

 notice")

 //clean up any streams

 close()

 //reestablish connect

 connect()

 LocalBroadcastManager.getInstance(context).sendBroa

dcast(Intent(BLUETOOTH_DISCONNECTED))

 }

 }

 }

 }

 init {

 this.devicePrefix = devicePrefix.toUpperCase()

50

 }

 fun onPause() {

 context.unregisterReceiver(bluetoothReceiver)

 }

 fun onResume() {

 //listen for bluetooth disconnect

 val disconnectIntent = IntentFilter(BluetoothDevice.ACTION_ACL_

DISCONNECTED)

 context.registerReceiver(bluetoothReceiver, disconnectIntent)

 //reestablishes a connection is one doesn't exist

 if (!connected) {

 connect()

 } else {

 val intent = Intent(BLUETOOTH_CONNECTED)

 LocalBroadcastManager.getInstance(context).sendBroadcast(in

tent)

 }

 }

 /**

 * Initializes the bluetooth serial connections, uses the LocalBroa

dcastManager when

 * connection is established

 *

 */

 fun connect() {

 if (connected) {

 Log.e(BMX_BLUETOOTH, "Connection request while already conn

ected")

 return

 }

 if (connectionTask != null && connectionTask!!.status == AsyncT

ask.Status.RUNNING) {

 Log.e(BMX_BLUETOOTH, "Connection request while attempting c

onnection")

 return

 }

 val bluetoothAdapter = BluetoothAdapter.getDefaultAdapter()

 if (bluetoothAdapter == null || !bluetoothAdapter.isEnabled) {

51

 return

 }

 val pairedDevices = ArrayList(bluetoothAdapter.bondedDevices)

 if (pairedDevices.size > 0) {

 bluetoothAdapter.cancelDiscovery()

 /**

 * AsyncTask to handle the establishing of a bluetooth conn

ection

 */

 connectionTask = @SuppressLint("StaticFieldLeak")

 object : AsyncTask<Void, Void, BluetoothDevice>() {

 internal var MAX_ATTEMPTS = 30

 internal var attemptCounter = 0

 override fun doInBackground(vararg params: Void): Bluet

oothDevice? {

 while (!isCancelled) { //need to kill without calli

ng onCancel

 for (device in pairedDevices) {

 if (device.name.toUpperCase().startsWith(de

vicePrefix)) {

 Log.i(BMX_BLUETOOTH, attemptCounter.toS

tring() + ": Attempting connection to " + device.name)

 try {

 try {

 // Standard SerialPortService I

D

 val uuid = UUID.fromString("000

01101-0000-1000-8000-00805F9B34FB")

 serialSocket = device.createRfc

ommSocketToServiceRecord(uuid)

 } catch (ce: Exception) {

 serialSocket = connectViaReflec

tion(device)

 }

 //setup the connect streams

 serialSocket!!.connect()

52

 serialInputStream = serialSocket!!.

inputStream

 serialOutputStream = serialSocket!!

.outputStream

 connected = true

 Log.i(BMX_BLUETOOTH, "Connected to

" + device.name)

 return device

 } catch (e: Exception) {

 serialSocket = null

 serialInputStream = null

 serialOutputStream = null

 Log.i(BMX_BLUETOOTH, e.message)

 }

 }

 }

 try {

 attemptCounter++

 if (attemptCounter > MAX_ATTEMPTS)

 this.cancel(false)

 else

 Thread.sleep(1000)

 } catch (e: InterruptedException) {

 break

 }

 }

 Log.i(BMX_BLUETOOTH, "Stopping connection attempts"

)

 val intent = Intent(BLUETOOTH_FAILED)

 LocalBroadcastManager.getInstance(context).sendBroa

dcast(intent)

 return null

 }

 override fun onPostExecute(result: BluetoothDevice) {

 super.onPostExecute(result)

 bluetoothDevice = result

53

 //start thread responsible for reading from inputst

ream

 serialReader = SerialReader()

 serialReader!!.start()

 //send connection message

 val intent = Intent(BLUETOOTH_CONNECTED)

 LocalBroadcastManager.getInstance(context).sendBroa

dcast(intent)

 if (serialSocket != null) {

 mConnectedThread = ConnectedThread(serialSocket

!!, messageHandler)

 messageHandler.connected()

 mConnectedThread!!.start()

 }

 }

 }

 connectionTask!!.execute()

 }

 }

 @Throws(Exception::class)

 private fun connectViaReflection(device: BluetoothDevice): Bluetoot

hSocket {

 val m = device.javaClass.getMethod("createRfcommSocket", *array

Of<Class<*>>(Int::class.javaPrimitiveType!!))

 return m.invoke(device, 1) as BluetoothSocket

 }

 @Throws(IOException::class)

 fun available(): Int {

 if (connected)

 return serialInputStream!!.available()

 throw RuntimeException("Connection lost, reconnecting now.")

 }

 @Throws(IOException::class)

 fun read(): Int {

 if (connected)

 return serialInputStream!!.read()

54

 throw RuntimeException("Connection lost, reconnecting now.")

 }

 @Throws(IOException::class)

 fun read(buffer: ByteArray): Int {

 if (connected)

 return serialInputStream!!.read(buffer)

 throw RuntimeException("Connection lost, reconnecting now.")

 }

 @Throws(IOException::class)

 fun read(buffer: ByteArray, byteOffset: Int, byteCount: Int): Int {

 if (connected)

 return serialInputStream!!.read(buffer, byteOffset, byteCou

nt)

 throw RuntimeException("Connection lost, reconnecting now.")

 }

 @Throws(IOException::class)

 fun write(buffer: ByteArray) {

 if (connected)

 serialOutputStream!!.write(buffer)

 throw RuntimeException("Connection lost, reconnecting now.")

 }

 @Throws(IOException::class)

 fun write(oneByte: Int) {

 if (connected)

 serialOutputStream!!.write(oneByte)

 throw RuntimeException("Connection lost, reconnecting now.")

 }

 @Throws(IOException::class)

 fun write(buffer: ByteArray, offset: Int, count: Int) {

 serialOutputStream!!.write(buffer, offset, count)

 throw RuntimeException("Connection lost, reconnecting now.")

 }

 private inner class SerialReader : Thread() {

 internal var buffer = ByteArray(MAX_BYTES)

55

 internal var bufferSize = 0

 override fun run() {

 Log.i("serialReader", "Starting serial loop")

 while (!isInterrupted) {

 try {

 /*

 * check for some bytes, or still bytes still left

in

 * buffer

 */

 if (available() > 0) {

 val newBytes = read(buffer, bufferSize, MAX_BYT

ES - bufferSize)

 if (newBytes > 0)

 bufferSize += newBytes

 //Log.d(BMX_BLUETOOTH, "read $newBytes")

 }

 if (bufferSize > 0) {

 val read = messageHandler.read(bufferSize, buff

er)

 // shift unread data to start of buffer

 if (read > 0) {

 var index = 0

 for (i in read until bufferSize) {

 buffer[index++] = buffer[i]

 }

 bufferSize = index

 }

 } else {

 try {

 Thread.sleep(10)

 } catch (ie: InterruptedException) {

 break

 }

 }

 } catch (e: Exception) {

56

 Log.e(BMX_BLUETOOTH, "Error reading serial data", e

)

 }

 }

 Log.i(BMX_BLUETOOTH, "Shutting serial loop")

 }

 }

 /**

 * Reads from the serial buffer, processing any available messages.

 Must return the number of bytes

 * consumer from the buffer

 *

 * by @author jpetrocik

 */

 interface MessageHandler {

 fun connected()

 fun disConnected()

 fun read(bufferSize: Int, buffer: ByteArray): Int

 fun read(x: Float, y:Float, z:Float, temp:Float , x1: Float, y1

: Float, z1: Float, xa: Float, ya: Float, za: Float)

 }

 fun close() {

 connected = false

 messageHandler.disConnected()

 if (serialReader != null) {

 serialReader!!.interrupt()

 try {

 serialReader!!.join(1000)

 } catch (ie: InterruptedException) {

 }

 }

 try {

 serialInputStream!!.close()

 } catch (e: Exception) {

 Log.e(BMX_BLUETOOTH, "Failed releasing inputstream connecti

on")

 }

57

 try {

 serialOutputStream!!.close()

 } catch (e: Exception) {

 Log.e(BMX_BLUETOOTH, "Failed releasing outputstream connect

ion")

 }

 try {

 serialSocket!!.close()

 } catch (e: Exception) {

 Log.e(BMX_BLUETOOTH, "Failed closing socket")

 }

 Log.i(BMX_BLUETOOTH, "Released bluetooth connections")

 }

 fun setRecord() {

 mConnectedThread?.setRecord()

 }

 fun isRecording(): Boolean? {

 return mConnectedThread?.getRecord()

 }

 companion object {

 private val BMX_BLUETOOTH = "BMXBluetooth"

 var BLUETOOTH_CONNECTED = "bluetooth-connection-started"

 var BLUETOOTH_DISCONNECTED = "bluetooth-connection-lost"

 var BLUETOOTH_FAILED = "bluetooth-connection-failed"

 }

}

ConnectedThred.kt

package com.typeiii.bth.helpers

import android.bluetooth.BluetoothSocket

import android.os.Bundle

import android.widget.Toast

import java.io.IOException

58

import java.io.InputStream

import java.io.OutputStream

import java.util.*

internal class ConnectedThread(private val mmSocket: BluetoothSocket,

 var messageHandler: BluetoothSerial.Mess

ageHandler) : Thread() {

 private val mmInStream: InputStream?

 private val mmOutStream: OutputStream?

 private val fData = FloatArray(31)

 private var strDate: String? = null

 private var strTime: String? = null

 private val queueBuffer = LinkedList<Byte>()

 private val packBuffer = ByteArray(11)

 private var isRecord = false

 private val RecordTimeDifference = 0.5 // seconds

 init {

 var tmpIn: InputStream? = null

 var tmpOut: OutputStream? = null

 // Get the BluetoothSocket input and output streams

 try {

 tmpIn = mmSocket.inputStream

 tmpOut = mmSocket.outputStream

 } catch (e: IOException) {

 }

 mmInStream = tmpIn

 mmOutStream = tmpOut

 }

 override fun run() {

 val tempInputBuffer = ByteArray(1024)

 var acceptedLen: Int

 var sHead: Byte

 // Keep listening to the InputStream while connected

 var lLastTime = System.currentTimeMillis() // 获取开始时间

 var lLastRecoderTime = System.currentTimeMillis()

 while (true) {

 try {

59

 acceptedLen = mmInStream!!.read(tempInputBuffer)

 //Log.d("BTL1", "" + acceptedLen)

 for (i in 0 until acceptedLen) queueBuffer.add(tempInpu

tBuffer[i])

 while (queueBuffer.size >= 11) {

 if (queueBuffer.poll() != 0x55.toByte()) continue

 sHead = queueBuffer.poll()

 for (j in 0..8) packBuffer[j] = queueBuffer.poll()

 when (sHead) {

 //

 0x50.toByte() -> {

 val ms = packBuffer[7].toInt() shl 8 or (pa

ckBuffer[6].toInt() and 0xff)

 strDate = String.format("20%02d-%02d-

%02d", packBuffer[0], packBuffer[1], packBuffer[2])

 strTime = String.format(" %02d:%02d:%02d.%0

3d", packBuffer[3], packBuffer[4], packBuffer[5], ms)

 }

 0x51.toByte() -> {

 fData[0] = (packBuffer[1].toInt() shl 8 or

(packBuffer[0].toInt() and 0xff)) / 32768.0f * 16

 fData[1] = (packBuffer[3].toInt() shl 8 or

(packBuffer[2].toInt() and 0xff)) / 32768.0f * 16

 fData[2] = (packBuffer[5].toInt() shl 8 or

(packBuffer[4].toInt() and 0xff)) / 32768.0f * 16

 fData[17] = (packBuffer[7].toInt() shl 8 or

 (packBuffer[6].toInt() and 0xff)) / 100.0f

 }

 0x52.toByte() -> {

 fData[3] = (packBuffer[1].toInt() shl 8 or

(packBuffer[0].toInt() and 0xff)) / 32768.0f * 2000

 fData[4] = (packBuffer[3].toInt() shl 8 or

(packBuffer[2].toInt() and 0xff)) / 32768.0f * 2000

 fData[5] = (packBuffer[5].toInt() shl 8 or

(packBuffer[4].toInt() and 0xff)) / 32768.0f * 2000

 fData[17] = (packBuffer[7].toInt() shl 8 or

 (packBuffer[6].toInt() and 0xff)) / 100.0f

 }

 0x53.toByte() -> {

 fData[6] = (packBuffer[1].toInt() shl 8 or

(packBuffer[0].toInt() and 0xff)) / 32768.0f * 180

60

 fData[7] = (packBuffer[3].toInt() shl 8 or

(packBuffer[2].toInt() and 0xff)) / 32768.0f * 180

 fData[8] = (packBuffer[5].toInt() shl 8 or

(packBuffer[4].toInt() and 0xff)) / 32768.0f * 180

 fData[17] = (packBuffer[7].toInt() shl 8 or

 (packBuffer[6].toInt() and 0xff)) / 100.0f

 }

 0x54.toByte() //magnetic field

 -> {

 fData[9] = (packBuffer[1].toInt() shl 8 or

(packBuffer[0].toInt() and 0xff)).toFloat()

 fData[10] = (packBuffer[3].toInt() shl 8 or

 (packBuffer[2].toInt() and 0xff)).toFloat()

 fData[11] = (packBuffer[5].toInt() shl 8 or

 (packBuffer[4].toInt() and 0xff)).toFloat()

 fData[17] = (packBuffer[7].toInt() shl 8 or

 (packBuffer[6].toInt() and 0xff)) / 100.0f

 }

 0x55.toByte() //port

 -> {

 fData[12] = (packBuffer[1].toInt() shl 8 or

 (packBuffer[0].toInt() and 0xff)).toFloat()

 fData[13] = (packBuffer[3].toInt() shl 8 or

 (packBuffer[2].toInt() and 0xff)).toFloat()

 fData[14] = (packBuffer[5].toInt() shl 8 or

 (packBuffer[4].toInt() and 0xff)).toFloat()

 fData[15] = (packBuffer[7].toInt() shl 8 or

 (packBuffer[6].toInt() and 0xff)).toFloat()

 }

 0x56.toByte() //Pressure, height

 -> {

 fData[16] = (packBuffer[3].toLong() shl 24

or (packBuffer[2].toLong() shl 16) or (packBuffer[1].toLong() shl 8) or

 packBuffer[0].toLong()).toFloat()

 fData[17] = (packBuffer[7].toLong() shl 24

or (packBuffer[6].toLong() shl 16) or (packBuffer[5].toLong() shl 8) or

 packBuffer[4].toLong()).toFloat()

 fData[17] /= 100f

 }

 0x57.toByte() //Latitude and longitude

 -> {

 val longitude = packBuffer[3].toLong() shl

24 or (packBuffer[2].toLong() shl 16) or (packBuffer[1].toLong() shl 8)

 or packBuffer[0].toLong()

61

 fData[18] = (longitude.toFloat() / 10000000

 + (longitude % 10000000).toFloat().toDouble() / 100000.0 / 60.0).toFlo

at()

 val latitude = packBuffer[7].toLong() shl 2

4 or (packBuffer[6].toLong() shl 16) or (packBuffer[5].toLong() shl 8)

or packBuffer[4].toLong()

 fData[19] = (latitude.toFloat() / 10000000

+ (latitude % 10000000).toFloat().toDouble() / 100000.0 / 60.0).toFloat

()

 }

 0x58.toByte() //Altitude, heading, ground speed

 -> {

 fData[20] = ((packBuffer[3].toLong() shl 24

 or (packBuffer[2].toLong() shl 16) or (packBuffer[1].toLong() shl 8) o

r packBuffer[0].toLong()) / 10).toFloat()

 fData[21] = ((packBuffer[5].toInt() shl 8 o

r (packBuffer[4].toInt() and 0xff)) / 10).toFloat()

 fData[22] = ((packBuffer[7].toInt() shl 8 o

r (packBuffer[6].toInt() and 0xff)) / 1000).toFloat()

 }

 0x59.toByte() //Quaternion

 -> {

 fData[23] = (packBuffer[1].toInt() shl 8 or

 (packBuffer[0].toInt() and 0xff)) / 32768.0f

 fData[24] = (packBuffer[3].toInt() shl 8 or

 (packBuffer[2].toInt() and 0xff)) / 32768.0f

 fData[25] = (packBuffer[5].toInt() shl 8 or

 (packBuffer[4].toInt() and 0xff)) / 32768.0f

 fData[26] = (packBuffer[7].toInt() shl 8 or

 (packBuffer[6].toInt() and 0xff)) / 32768.0f

 }

 0x5a.toByte() //Number of satellites

 -> {

 fData[27] = (packBuffer[1].toInt() shl 8 or

 (packBuffer[0].toInt() and 0xff)) / 32768.0f

 fData[28] = (packBuffer[3].toInt() shl 8 or

 (packBuffer[2].toInt() and 0xff)) / 32768.0f

 fData[29] = (packBuffer[5].toInt() shl 8 or

 (packBuffer[4].toInt() and 0xff)) / 32768.0f

 fData[30] = (packBuffer[7].toInt() shl 8 or

 (packBuffer[6].toInt() and 0xff)) / 32768.0f

 }

 }

 }

62

 val lTimeNow = System.currentTimeMillis() // Get start

time

 if (lTimeNow - lLastTime > 80) {

 lLastTime = lTimeNow

 val bundle = Bundle()

 bundle.putFloatArray("Data", fData)

 bundle.putString("Date", strDate)

 bundle.putString("Time", strTime)

 messageHandler.read(fData[0], fData[1], fData[2], f

Data[17],fData[3], fData[4], fData[5], fData[6], fData[7], fData[8])

 if (isRecord && (lTimeNow - lLastRecoderTime > (Rec

ordTimeDifference * 1000))) {

 Recorder.getInstance().saveToTextFile(fData[0],

 fData[1], fData[2], fData[17], fData[3], fData[4], fData[5], fData[6],

 fData[7], fData[8])

 lLastRecoderTime = lTimeNow

 }

 }

 } catch (e: IOException) {

 //connectionLost()

 break

 }

 }

 }

 fun write(buffer: ByteArray) {

 try {

 mmOutStream!!.write(buffer)

 } catch (e: IOException) {

 }

 }

 fun cancel() {

 try {

 mmSocket.close()

 } catch (e: IOException) {

 }

 }

 fun setRecord() {

63

 isRecord = !isRecord

 }

 fun getRecord(): Boolean {

 return isRecord

 }

}

LocationManager.kt

package com.typeiii.bth.helpers

import android.content.Context

import android.location.Location

import android.location.LocationListener

import android.location.LocationManager

import android.os.Bundle

import android.os.Looper

import android.util.Log

import com.typeiii.bth.MyApplication

class LocationManager(var listener: PositionListener, var needAccuracy:

 Boolean) {

 interface PositionListener {

 fun getLatLong(latitude:Double, longitude:Double) { }

 fun getAccuracy(accuracy:Float) { }

 }

 fun connect() {

 val locationListener = object: LocationListener {

 override fun onStatusChanged(p0: String?, p1: Int, p2: Bund

le?) {

 }

 override fun onProviderEnabled(p0: String?) {

 }

 override fun onProviderDisabled(p0: String?) {

 }

 override fun onLocationChanged(location: Location?) {

 if (location != null){

64

 listener.getLatLong(location.latitude, location.lon

gitude)

 }

 }

 }

 val lm = MyApplication.getContext()?.getSystemService(Context.L

OCATION_SERVICE)

 as LocationManager

 try {

 val location = lm.getLastKnownLocation(LocationManager.GPS_

PROVIDER)

 lm.requestLocationUpdates(LocationManager.GPS_PROVIDER, 200

0, 1f,

 locationListener, Looper.getMainLooper())

 if (location != null) {

 listener.getLatLong(location.latitude, location.longitu

de)

 if (needAccuracy) listener.getAccuracy(location.accurac

y)

 }

 } catch (e: SecurityException) {

 Log.e("ERROR", "location permission error")

 } catch (e: NullPointerException) {

 e.printStackTrace()

 }

 }

}

Recorder.kt

package com.typeiii.bth.helpers

import android.content.Context

import android.content.Intent.getIntent

import android.content.Intent.parseIntent

import android.os.Environment

import android.widget.EditText

import java.text.SimpleDateFormat

import java.util.*

import java.io.*

import android.content.SharedPreferences

import com.typeiii.bth.MainActivity

import com.typeiii.bth.MyApplication

import com.typeiii.bth.R

65

import kotlinx.android.synthetic.main.activity_main.*

class Recorder {

 companion object {

 private var instance : Recorder? = null

 fun getInstance(): Recorder {

 if (instance == null)

 instance = Recorder()

 return instance!!

 }

 }

 private val fileName: String

 get() = "BTH_$currentDate.txt"

 private val currentDate: String

 get() {

 return SimpleDateFormat("ddMyyyy", Locale.US).format(Date()

)

 }

 private val currentTime: String

 get() {

 return SimpleDateFormat("H:mm:ss", Locale.US).format(Date()

)

 }

 private var locationLatitude: Double = 0.0

 private var locationLongitude: Double = 0.0

 private fun btnCame():String{

 val mypref = MyApplication.getContext()?.getSharedPreferences("

mypref", Context.MODE_PRIVATE)

 val send = mypref?.getString("btnValue","false")

 return send.toString()

 }

 private fun convertValesToString(x: Float, y: Float, z: Float, tem

p: Float, x1: Float, y1: Float, z1: Float, xa: Float, ya: Float, za: Fl

oat) : String {

 val xStr = String.format("% 10.2f", x)

 val yStr = String.format("% 10.2f", y)

66

 val zStr = String.format("% 10.2f", z)

 //val tempStr = String.format("% 10.2f℃", temp)

 val x1Str = String.format("% 10.2f", x1)

 val y1Str = String.format("% 10.2f", y1)

 val z1Str = String.format("% 10.2f", z1)

 val xaStr = String.format("% 10.2f", xa)

 val yaStr = String.format("% 10.2f", ya)

 val zaStr = String.format("% 10.2f", za)

 return "$currentTime | X: $xStr | Y: $yStr | Z: $zStr | X1: $x1

Str | Y1: $y1Str | Z1: $z1Str | Xa: $xaStr | Ya: $yaStr | Za: $zaStr" +

 "| Latitude: $locationLatitude | Longitude: $locationLo

ngitude " + "| Pothole: ${btnCame()}|"

 }

 fun saveToTextFile(x: Float, y: Float, z: Float, temp: Float, x1:

Float, y1: Float, z1: Float, xa: Float, ya: Float, za: Float) {

 getLocation()

 try {

 val path = Environment.getExternalStorageDirectory().absolu

tePath + "/BTH"

 val folder = File(path)

 if (!folder.exists()) folder.mkdirs()

 val file = File(folder, fileName)

 if (!file.exists()) file.createNewFile()

 //open file for writing

 val out = OutputStreamWriter(FileOutputStream(file, true))

 out.write(convertValesToString(x, y, z, temp, x1, y1, z1, x

a, ya, za))

 out.write("\n")

 //close file

 out.close()

 } catch (e: java.io.IOException) {

 e.printStackTrace()

 }

 }

 private fun getLocation() {

67

 LocationManager(object : LocationManager.PositionListener{

 override fun getLatLong(latitude: Double, longitude: Double

) {

 locationLatitude = latitude

 locationLongitude = longitude

 }

 }, false).connect()

 }

}

