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ABSTRACT 

Pavement roughness measurement is one of the four parameters of measuring the 

pavement condition evaluation, i.e., Pavement roughness measurement, distress 

condition evaluation, skid resistance, and structural capacity evaluation.   

This research aims to improve IRI measurement accuracy by smartphone 

method using a low cost, off the shelf accelerometer without compromising the cost 

aspect. This method collects data from an accelerometer fixed to a vehicle axel. Since 

the vehicle's shock absorbers do not damp the measurement, the readings are much 

more realistic. Data is then forwards to a machine-learning algorithm to analyze the 

collected data and predict the road condition. This algorithm should be trained using a 

training data set before using, which involves collecting and labelling data according 

to prior knowledge and previously collected data. The training was done by collecting 

data using a smartphone application and manually marking the data points. Then this 

data was separated as training and testing data as appropriate, and training data was 

fed into the algorithm with the manually labelled data as a reference. After training the 

algorithm, the testing dataset was provided to the model to measure the accuracy.  

 The second part of the research was carried out to train the algorithm on 

detecting potholes without human involvement. For this, the data collection 

application was slightly modified to label the pothole data points. Then the previous 

training and the testing method were carried out. 

Accurate results were observed during both instances regarding the labelled data. It 

was found that more training data makes the prediction model more accurate.    

Since this is a low-cost method to determine the road surface condition, local road 

authorities can implement this as a network to collect real-time data and carry out 

future road maintenance works effectively. 
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1 INTRODUCTION 

Road roughness is a crucial parameter that used in road maintenance planning and 

managing works. The International Roughness Index (IRI) considered the primary 

measurement related to road roughness. IRI value measured using the quarter- car 

math model with the units of meters per kilometre. The main drawback of this method 

is the cost associated with the measurement accuracy and data collection speed. Highly 

accurate IRI measuring devices like laser-based vehicle-mounted devices are more 

reliable than the Bump Integrator Devices, which generate less accurate 

measurements. This research uses an accelerometer device to measure the road surface 

undulations and uses that data to predict the actual IRI value with machine learning 

assistance. 

An accelerometer is a device that can identify the intensity of physical acceleration (or 

the rate of change of velocity) experienced by an object. A common multi-axis digital 

accelerometer can measure the linear acceleration in 3 axes (x, y, and z-direction) and 

the rotational acceleration around the three axes. Most commonly, acceleration 

measured by the gravitational force equivalent units known as the g-force. Therefore, 

an accelerometer resting on the Earth's surface indicates a 1g-force value. Today, 

digital accelerometers can be purchased off the shelf anywhere in the world for an 

affordable cost. Integrated accelerometers in smartphones are generally less accurate 

and have lower data output rates. 

With a smartphone application, collected accelerometer data is combined with the GPS 

location data from the smartphone.  GPS data used to calculate the speed and position 

of the data collection vehicle. Then the dataset is processed using a machine learning 

algorithm." Machine learning (ML) is the scientific study of algorithms and statistical 

models that computer systems use to perform a specific task without using explicit 

instructions, relying on patterns and inference instead. It is seen as a subset of artificial 

intelligence" (Samuel, 1959). There are many branches of machine learning used in 

the world today. A classification based machine-learning algorithm used in this 

research to classify accelerometer data into IRI values.  
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This research's main objective is to improve the indirect IRI measuring methods' 

accuracy, such as the smartphone accelerometer-based approach while maintaining 

cost-effectiveness. An external accelerometer was used in this research instead of a 

smartphone's built-in accelerometer to improve the test's accuracy. A machine-

learning algorithm was used to improve the result interpretation accuracy. All the 

components and tools used in this method are selected to minimize the cost. 

The scope of this proposed study includes the following components, 

• Study the feasibility of using an external accelerometer and machine learning 

with a smartphone to improve the data collection accuracy. 

• Evaluate the possibility of identifying the road distresses such as potholes and 

road bumps using the accelerometer without any human involvement and  

• Evaluate the accuracy of IRI values' prediction compared to commercially 

available solutions such as laser-based IRI measuring devices. 

.
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2 LITERATURE REVIEW 

2.1 Early Adoption of IRI 

The International Roughness Index (IRI) is an essential parameter for pavement 

management and decision-making in the road development sector. Before having a 

standard measurement system, different parts of the world have been using various 

methods to assess the pavement condition. In 1982, the World Bank initiated the 

International Road Roughness Experiment (IRRE) to establish a standard 

measurement unit. As a result, it was found that different roughness measurements 

were not correlated with one another, partially due to how the measuring instruments 

respond to the road profile and partly due to how the data is processed (Paterson, 1986). 

Hence it was suggested that to have a standard measurement scale to improve the 

reliability of exchanging information related to road roughness.  

(Bennett, 2006) has identified five Information Quality Levels in road surface 

undulation measurement. The decision-making priority decreased with the information 

quality level from having the highest accuracy of the collected data in level 1. The 

main concern in data collection is the repeatability of the data that was collected. A 

research study in 2006 using 68 various road surface profiles found that the accuracy 

varies significantly even among the same types of devices, and none of the profilers 

that evaluated has met all the current IRI bias standard requirements (Wang, 2006). 

That means it is hard to cross-compare the data collected from one device with a 

different kind of device. 

2.2 Road Roughness Measuring Devices 

There are several devices available in the market for roughness data collection. The 

following were found as the most common devices. 

2.2.1 Bump Integrator 

There are two main types of bump integrators available in the market. The Central 

Road Research Institute (India) developed the fifth wheel bump integrator (Fifth 

Wheel Bump Integrator, 2012). The bump integrator towed using a vehicle at 32 kmph 

speed to take the measurements. The other type is the vehicle-mounted bump 
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integrator, which has two separate sensors for calculating bumps and distance 

travelled. This instrument also has a data collection speed of 32 kmph. 

● Strength - Fast, simple, and reliable in taking measurements. Less human 

involvement is needed. No in-depth knowledge of the subject is necessary. 

● Limitations - Both have a data collection speed limitation of 32 kmph. Also, 

vehicle vibrations can be an issue for these devices. 

Figure 2.1: Bump Integrator 

Figure 2.2: Rolling Straight Edge 
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2.2.2 Rolling Straight Edge 

A 3-meter width structure supported by rubber tires, which has a similar tire in the 

middle of the device, can move freely in a vertical direction. The intensity of bumps 

is recorded in a graph sheet with the distance measurement. Rolling straight edge is a 

push-on type device. So, the typical data collection speed is 1-2 kmph. 

● Strength - The accuracy of this device is very high. The reproducibility of this 

device is excellent. 

● Limitations - 3m distance of this device is a limitation. Also, it is not directly 

related to the road roughness that road users are experiencing in the real world. 

 

2.2.3 Road Surface Profiler (Laser-based) 

This equipment is known as the high-speed profiler. The road profile is digitally 

measured using a combination of laser and accelerometer sensors. This device is 

capable of collecting data at a speed of 100 kmph. However, typically, data is collected 

at 80 kmph as a rule of thumb. 

● Strength - Data collection speed and accuracy are the main plus points of this 

device. Also, the data is collected automatically, and little human involvement 

is necessary. 

● Limitations - High cost associated with the device is the main limitation. 

Because of that, developing countries like Sri Lanka are having trouble 

accessing modern decision-making tools. Also, to operate this machine, it must 

have high operating skills. 

2.2.4 Walking Profiler 

 

Walking profiler is a high precision instrument when it comes to road roughness 

measurement. Usually, an inclinometer sensor fixed between 2 supported wheels is 

used to measure the road surface undulations. Since it is a push-on instrument, it has a 

data collecting speed denoted as 800 meters per hour. 

● Strength - High accuracy of the data is the main strength of this device 
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● Limitations - Low data collection speed and skills needed to collect the data is 

the main limitation of this device. 

2.2.5 Smartphone-Based Measurements 

There are many smartphone applications available for both Android and iOS operating 

systems to measure road roughness. (Abeywardana, Abeywikrama, Amarasinghe, & 

Kumarasinghe, 2018) Even homegrown applications are available, which are more 

polished for the Local conditions. Smartphone-based measurement is typically carried 

out using the inbuilt accelerometers in the smartphone and converting it into an IRI 

value. In the data collection, the phone must be rigidly fixed to the vehicle to measure 

accelerometer data accurately. Data collection speed can be varied since the data could 

be normalized with the speed data collected using an in-built GPS sensor. The 

relationship between pavement distress and IRI is often expressed as the root mean 

square value of the accelerometer data. (Firoozi, Mahmoudzadeh, Azizpour, & 

{others}, 2017) Indicate that the IRI = 4.19RMS + 1.73, where RMS is the root mean 

square value of acceleration data. (Sandamal & Pasindu, Applicability of smartphone-

based roughness data for rural road pavement condition evaluation, 2020) has formed 

a relationship with IRI and pavement surface distresses such as ravelling, cracking, 

and edge gap. They have introduced two submodels to account for the ageing of the 

pavement. Submodel 1, IRI = 2.538 + 0.095RAV + 1.545EDG + 1.158PAT . 

Figure 2.3: Walking Profiler 
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Submodel 2, IRI = 6.135 + 0.107RAV + 11.353POT + 0.25CRA. (RAV - Raveling as 

a percentage, EDG - percentage of the edge gap more than 10 cm in linear length along 

both side of the pavement, PAT- Patch area as a percentage, CRA - Cracking area as 

a percentage, POT - Pothole area as a percentage) 

● Strength – Data collection speed can be varied. Anyone who has a decent 

smartphone can access this technology.  

● Limitations - Reproducibility is questionable since measurements can depend 

on the smartphone model, vehicle type, and speed. 

2.3 Sri Lanka in Road Roughness Measurement 

Even though Sri Lanka is a middle-income country, the road density of Sri Lanka is 

higher when compared with similar countries. So, road maintenance is one of the 

challenges that Sri Lanka is facing right now. The high cost associated with road 

maintenance and high road density makes it crucial to identify the best road 

rehabilitation period and level. Because of this, Sri Lanka has looked into the IRI-

based road maintenance prediction models. Currently (as of 2019), the Road 

Development Authority has one laser-based road profiler to cover more than 12,000 

kilometres of A and B class roads and about 160 kilometres of expressways. 

A research study was carried out to adopt smartphone-based road roughness 

measurement for low-volume roads in Sri Lanka (Gamage, Pasindu, & Bandara, 

2016). Moreover, a methodology for road maintenance planning for low-volume roads 

was proposed based on the smartphone-based roughness measurement data (Silva & 

Pasindu, 2017). An undergraduate research study (Abeywardana, Abeywikrama, 

Amarasinghe, & Kumarasinghe, 2018) conducted extensive research on smartphone-

based roughness measurement data collection. 

2.4 Using Accelerometer in Road Roughness Measurement 

There are many methods proposed to measure road roughness over the past years. 

However, the use of an accelerometer seems to be highly popular mainly due to the 

availability and the low cost. Smartphone-based accelerometers are commonly used to 

determine road roughness. AndroSensor is one of the applications that use the inbuilt 

accelerometer sensor in a smartphone to assess the road roughness (Douangphachanh 

& Oneyama, 2013). Similar studies have been carried out in Sri Lanka to evaluate 
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smartphone-based roughness data collections' usability in Sri Lankan conditions 

(Abeywardana, Abeywikrama, Amarasinghe, & Kumarasinghe, 2018) (Gamage, 

Pasindu, & Bandara, 2016). Nevertheless, using an external accelerometer to 

determine the road roughness was not evident in this literature review. 

2.5 Use of Machine Learning Algorithms  

Even though it is not very clear when the first idea of a machine learning algorithm 

was introduced in History, the name 'Machine Learning' was surfaced in 1959 by 

Arthur Samuel (Samuel, 1959). In his study, he was researching to develop a digital 

counterpart for a professional checker player. The traditional approach to this problem 

was to use a decision tree for each move that can play throughout the game. In a game 

of checkers, there are 5x1020 possible search spaces. Because of this enormous 

possibility number, the traditional path was too much for computers in 1959. 

Therefore, he proposed two methods, namely the reward-based approach and the 

supervised learning method. A model is required to perform a machine learning task. 

In this research, more attention was given to artificial neural network models. 

Also, there are three main methods available to train these models to predict future 

outcomes.  

 

Figure 2.4: Machine Learning Models 
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2.5.1 Artificial Neural Network 

Artificial neural networks are similar to the biological counterparts consisting of inputs 

and outputs. An artificial neural network is an interconnected group of nodes with 

inputs and outputs.  Each link between nodes represents a weightage and a bias. The 

initial data is multiplied by the weightage. Then the bias is added. This whole number 

goes through an activation function. 

2.5.2 Supervised Machine Learning 

Supervised machine learning is carried out by training an algorithm with previously 

labelled data or with input data that the outcome is known. For example, if we take a 

Figure 2.5: Machine Learning Algorithms 

Figure 2.6: Neural Network Layers 
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population with known age, gender, weight, and height, we might be able to train an 

algorithm to predict an individual's height by inputting the age, gender, and weight.  

 

Figure 2.7: Supervised Learning Example 

Recent breakthroughs of these supervised machine learning algorithms can be found 

with companies like Google Deepmind and OpenAI. Google has been working on the 

board game 'GO' to develop an algorithm to defeat that game's champions (Silver, et 

al., 2016). Moreover, the computer game 'Dota 2' was mastered by the OpenAI five 

using the available human gameplay as training data to train the algorithm (Nandy, 

Abhishek, Biswas, & Manisha, 2018). 

2.5.2.1 Classification Model 

In classification models, clusters of data are classified into two or more categories 

using an algorithm. Classification is considered an instance of supervised machine 

learning. Clustering is the counterpart of classification, which is an instance of 

unsupervised machine learning where the main difference is that in clustering, it is 

done based on inheritance similarities rather than on known expected classification 

groups. In this particular research, classification models are used to classify the 

accelerometer input patterns as IRI values. 
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Figure 2.8: Classification Model 

2.5.2.2 Regression Model 

A regression model is used where it is necessary to predict an outcome based on past 

data. Such as upcoming weather anomalies prediction using previous weather data.  

 

Figure 2.9: Regression Model 

2.5.3 Unsupervised Machine Learning 

Unsupervised learning has three main models. Unsupervised machine learning is 

similar to natural evolution. Like natural evolution, unsupervised learning is done by 

going through several iterations to evolve the model into a better stage than previously. 
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2.5.3.1 Generation (Genetic) Model 

This model is heavily based on the natural selection process occurring in nature. It 

selects the best outcome and forwards the best features to the next iteration while other 

features are naturally ignored in the process. Genetic models were introduced as 

computer models in 1975 by John Holland (Holland, 1992). These models are often 

used where it is hard to identify the boundaries of a problem, such as where the number 

of possible next moves in the board game 'GO'.   

2.5.3.2 Clustering / Feature Learning 

Clustering is the unsupervised version of the classification. While classification is done 

where the problem could be clearly understood, clustering is done often to classify 

unknown datasets. Clustering is commonly used in image processing to identify 

objects where there could not be previously predicted. As mentioned in (Blashfield & 

Aldenderfer, 1988), cluster classification was initially suggested by anthropologists 

Driver and Kroeber in 1932. 

2.6 Summary 

In the past, there were many solutions presented to calculate the IRI value reliably and 

fast. This research explores the possibility of calculating IRI value reliably while 

lowering the cost associated with the process. Moreover, to remove the barriers to 

access the IRI test. 
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3 METHODOLOGY 

3.1 Data Collection 

Data collection was carried out using an Android smartphone and an accelerometer 

sensor. Smartphones also used to save the collected accelerometer data while travelling 

on the road.  

 

 

3.1.1 Accelerometer Sensor 

The Accelerometer sensor was purchased locally. The main difficulty of this method 

is to extract data from the accelerometer while travelling on the road. Because of that, 

an accelerometer with a Bluetooth device is used to collect data. The chosen 

accelerometer sensor has the following specifications. 

 

 

 

Figure 3.1: Data Collection Methodology 
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Table 3.1: Accelerometer Specifications 

Feature Description 

Output data Linear acceleration - x, y, and the z-axis direction 

Angular acceleration - around x, y, and z-axis 

Attitude - Euler angle 

Output frequency 100 Hz 

Connectivity Bluetooth / USB 

Required voltage 3.3 V to 5 V 

Size (W x H x L) 15.24 mm x 3 mm x 15.24 mm 

 

This accelerometer sensor was attached to the driven wheel of a vehicle, as in the 

following diagram. 

 

Figure 3.2: Accelerometer Sensor 

Figure 3.3: Sensor Placement 
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The sensor was placed as close as possible to the wheel to get the vibrations as much 

as possible. 

3.1.2 Smartphone 

In this research, a conventional mid-range Android device was used since the 

application that collects the data can is compatible with the Android operating system. 

The phone used in this research has the following specifications. 

Table 3.2: Smart Phone Specifications 

Feature Description 

Operating System Android version 8.1 

Bluetooth Version 2.0 

Global Positioning System With a 2 Hz refresh rate 

 

3.1.3 Smartphone Application 

According to the date, a smartphone application was developed to read the 

accelerometer data and log these data in a text file. This application was developed 

using Android Studio with Python language. Also, this application is responsible for 

pulling the global positioning data from the built-in GPS module of the smartphone 

and matches that with the instantaneous accelerometer data. In the training phase, the 

same application was modified to collect pothole data with user input. 

Figure 3.4: Mobile Phone 
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This data was then imported into Microsoft Excel for the initial data cleanup. 

Figure 3.5: Data Record Format 

Figure 3.6: Mobile Phone Application 
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3.2 Data Pre-processing 

Collected data using this method consist of; 

● Time in seconds 

● GPS data from the smartphone - latitude and longitude 

● Linear acceleration - 3 components 

● Angular acceleration - 3 components 

● Pothole - true or false 

For this research, we need to convert these data into more simple inputs for data 

analysis. Because of that, speed and distance were calculated using time and GPS data. 

Then three components of linear acceleration and angular acceleration were combined 

into one parameter. Then each combined acceleration is normalized by the speed to 

eliminate the speed factor of the data collection. 

3.2.1 Speed Calculation 

Speed is calculated using the recorded time and distance calculated from two GPS 

coordinates. The distance calculated with the following formula; 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑚) = 𝑎𝑐𝑜𝑠( 𝑠𝑖𝑛(𝑙𝑎𝑡1) × 𝑠𝑖𝑛(𝑙𝑎𝑡2)  

+  𝑐𝑜𝑠(𝑙𝑎𝑡1) × 𝑐𝑜𝑠(𝑙𝑎𝑡2) × 𝑐𝑜𝑠(𝑙𝑜𝑛2 − 𝑙𝑜𝑛1) ) × 6371000 

Then the speed calculated by this simple equation; 

Figure 3.7: Data Preprocessing Procedure 
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𝑆𝑝𝑒𝑒𝑑 =  
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

(𝑡𝑖𝑚𝑒 2 −  𝑡𝑖𝑚𝑒 1)
 

 

3.2.2 Combined Acceleration Calculation 

Accelerometer orientation is different each time when it is fixed to the vehicle axle. 

Thus, both linear and angular acceleration components are combined using the 

following formula to minimize the inconsistency of accelerometer orientation on the 

vehicle axle. 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =  √(𝑋 𝐴𝑥𝑖𝑠)2 + (𝑌 𝐴𝑥𝑖𝑠)2 + (𝑍 𝐴𝑥𝑖𝑠)2 

This calculation was performed in the Microsoft Excel package. 

3.2.3 Data Arrangement 

In general, the IRI data is noted down for 100-meter sections. Because of that, the 

above data had to be separated into 100-meter sections. This calculation was done by 

using the distance calculated in 3.2.1. 

3.3 Data Analysis  

A machine-learning algorithm based on an artificial neural network was used in this 

project to analyze data. Tensorflow is a free and open-source library that can be 

repurposed easily. Weka is a software that was developed by the University of 

Waikato, New Zealand. Both software was used to analyze and predict the IRI values 

taken from the sensor and road profiler. 

Weka software was used to identify the parameters for machine learning algorithms. 

Since many parameters have been fine-tuned before implementing those parameters in 

the Tensorflow, this was done because even though Tensorflow is much more flexible 

than Weka, it is easy to fine-tune and get the result that we want. 

3.3.1 Using Weka Software 

Software Information; 
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Table 3.3: Weka Software Specifications 

A Multilayer perceptron analysis used to analyze the preprocessed data.  

3.3.2 Using Tensorflow Library 

Tensorflow JavaScript API 2.0.0 was used in this research to make a neural network 

with two inputs, one hidden layer with ten nodes, and one output layer. These changes 

made based on the initial analysis done on the Weka software.  

The pothole detection analysis carried out initially. The following neural network was 

trained based on the previously collected data on the pothole with the accelerometer 

data. 

Name Waikato Environment for Knowledge Analysis 

Version 3.8.3 

Year 2018 

Developer The University of Waikato Hamilton, New Zealand 
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Figure 3.8: Neural Network Model 

Moreover, the same neural network has been used to calibrate the accelerometer data 

with the previously collected IRI values by the Road Development Authority on the 

same road section. 

This library includes several options to fine-tune the outcome of the neural network, 

such as the following. 
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Figure 3.9: JavaScript for Tensorflow 
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3.3.2.1 Tensors 

Tensors represent inputs or outputs in a neural network. In the Tensorflow library, 

tensors can initiate as a scalar, vector, or matrix with multiple dimensions. The type of 

tensor has chosen according to the inputs given to these tensors. Humans are good at 

identifying the relationships between two variables (in the x and y-axis). However, 

machines are better at predicting the relationships with more than two variables. In this 

research, the input tensor is initiated as a matrix of '1 x 2 x number of data points'. 

Furthermore, data is feed as floating-point values. 

3.3.2.2 Layers  

In a neural network, there are three significant layers involved. 

● Input layer 

● Hidden layers 

● Output layer 

Form this, input layers and output layers are self-explanatory. In a neural network, 

inputs taken by the input layers and pass it to hidden layers by multiplying them with 

a bias. Links between nodes represent the bias values. Then the hidden layer transfers 

those values to the outputs with a similar bias value. The final value is compared with 

the given actual values. The difference between the actual value and the output value 

is then minimized in the training process. 

In the Tensorflow, these layers should be initiated with the following configurations. 

● Input shape - number of inputs to the current layer from the previous one 

● Units - the number of nodes in the current layer 
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● Activation function - use to pass the data to the next layer when the value meets 

the activation function criteria. Rectified linear units, sigmoid, softmax, and 

few other functions are used in this research. It found that for the pothole 

detection neural network, sigmoid and softmax functions work better, and in 

IRI prediction, the linear activation function works better. 

3.3.2.3 Compiler 

The compiler's function is to bind the inputs and actual outputs in the neural network. 

It minimizes the loss between the predicted output and the actual output. Loss can be 

calculated as a mean squared error, cousin distance, or absolute difference between 

predicted values and actual values. 

Figure 3.12: Linear Activation Function Figure 3.12: Sigmoid Activation Function 

Figure 3.12: activation Function Process 
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4 RESULTS 

4.1 Pothole Detection 

The following data were obtained using the accelerometer sensor along the A2 road in 

the Matara area. A section of the data is included here. 

Table 4.1: A2 Road Accelerometer Data 

Time Angular 

Acceleration 

Linear Acceleration Latitude Longitude Pothole 

X Y Z X Y Z 

10:18:56 0.92 -0.16 -0.3 1.28 -9.03 16.66 5.93974088 80.47991128 FALSE 

10:18:56 0.68 0.03 -0.25 -1.77 11.35 -15.93 5.93974088 80.47991128 FALSE 

10:18:56 1 -0.1 -0.23 0.61 11.29 -4.15 5.93974088 80.47991128 FALSE 

10:18:56 0.7 -0.16 -0.31 0.43 0 2.87 5.93974088 80.47991128 TRUE 

10:18:56 5.32 2.18 0.03 -

46.39 

157.47 -390.5 5.93974088 80.47991128 TRUE 

10:18:57 1.28 -0.49 -0.52 32.78 -91.06 274.17 5.93974088 80.47991128 TRUE 

10:18:57 -1.58 -0.57 0.26 34.06 -53.65 95.15 5.93974088 80.47991128 TRUE 

10:18:57 0.08 -0.8 -0.59 28.69 -70.62 343.14 5.93971337 80.47978609 FALSE 

10:18:57 0.36 -0.56 -0.01 14.28 -15.14 70.19 5.93971337 80.47978609 FALSE 

10:18:57 0.16 -0.82 -0.36 27.47 -

162.96 

282.04 5.93971337 80.47978609 TRUE 

10:18:57 0.78 -0.49 -0.44 17.52 -34.67 158.94 5.93971337 80.47978609 TRUE 

10:18:57 1.01 -0.12 -0.33 2.08 20.14 9.83 5.93971337 80.47978609 FALSE 

10:18:57 0.93 -0.17 -0.24 4.52 -13.85 38.7 5.93971337 80.47978609 FALSE 

10:18:57 0.74 -0.14 -0.35 2.26 -6.96 12.39 5.93971337 80.47978609 FALSE 

10:18:58 1.05 -0.23 -0.35 1.77 22.4 8.97 5.93971337 80.47978609 FALSE 
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10:18:58 1.15 -0.19 -0.43 9.4 -46.14 68.97 5.93971337 80.47978609 FALSE 

10:18:58 0.85 0.05 -0.47 0.92 -25.63 0 5.93969077 80.47964384 FALSE 

10:18:58 1.54 0.19 -0.35 -2.99 24.84 -38.21 5.93969077 80.47964384 FALSE 

10:18:58 0.37 -0.23 -0.41 4.46 -5.07 51.7 5.93969077 80.47964384 FALSE 

10:18:58 1.44 0.09 -0.31 -

10.38 

43.58 -

108.22 

5.93969077 80.47964384 FALSE 

10:18:58 -0.26 -0.16 -0.22 23.5 -

108.95 

105.77 5.93969077 80.47964384 TRUE 

 

In these graphs, we can see the spike of linear and angular accelerations due to vehicles 

travelling on a pothole. Similar data have been fitted into a machine learning 

algorithm. The following results from the algorithm have been observed when the 

training has been completed. One thousand nine hundred thirty-four data points have 

been used in this training.  

Figure 4.1: Angular Acceleration 
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Table 4.2: Pothole Detection Results 

Correctly classified instances 94.83% 

Incorrectly classified instances 5.17% 

Mean absolute error 0.0483 

Root mean squared error 0.142 

Figure 4.2: Linear Acceleration 
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The left image is a map of the Boralasgamuwa area, and the right image is a map of 

the Southern Expressway section. Linear accelerations are mapped into that image 

using collected latitude and longitude data. The size of the circles represents the 

acceleration intensity.  

The neural network used the following settings; 

 

Table 4.3: Pothole Detection Neural Network Settings 

Number of inputs 2 (Normalized linear acceleration, 

Normalized angular acceleration) 

Number of hidden layers 1 

Number of hidden nodes 10 

Activation function in hidden nodes sigmoid 

Number of outputs 1 

Figure 4.4: Boralasgamuwa Road Figure 4.4: Southern Expressway 
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Activation function in hidden nodes sigmoid 

Optimizer Stochastic gradient descent 

Loss calculation function mean squared error 

 

4.2 Calibration to IRI Data 

IRI data for the Piliyandala bypass road was obtained from the Road Development 

Authority, Sri Lanka.  

 

Table 4.4: IRI Data for Piliyandala Bypass Road 

Chainage (km) IRI Left IRI Average 

0.10 3.38 4.2 

0.20 2.61 3.14 

0.30 2.22 2.43 

0.40 2.31 2.75 

0.50 2.29 2.4 

0.60 2.59 2.78 

0.70 2.16 2.41 

0.80 X X 

0.90 2.27 2.65 

1.00 1.75 2.09 

1.10 1.96 2.14 

1.20 1.96 2.13 
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1.30 1.9 1.95 

1.40 2.51 2.78 

1.50 2.29 2.6 

1.60 2.4 2.27 

1.70 2.7 2.6 

1.80 2.12 2.19 

1.90 X X 

2.00 1.86 1.96 

2.10 1.73 1.93 

2.20 1.79 1.59 

2.30 2.06 2.03 

2.40 1.84 1.72 

2.50 1.54 1.66 

2.60 1.28 1.39 

2.70 2.4 2.25 

2.80 1.83 1.92 

 

Accelerometer data is collected on the same road section during the same survey 

period. 
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Table 4.5: Accelerometer Data for Piliyandala Bypass Road 

Chainage (km) Speed (m/s) 

Average Liners 

Acceleration 

Average 

Angular 

Acceleration 

Corresponding 

IRI Value 

0.00 8.33 5.52 1.00 3.38 

0.10 11.11 3.84 0.97 2.61 

0.20 12.50 2.84 0.98 2.22 

0.30 10.00 3.82 1.04 2.31 

0.40 11.11 4.26 0.99 2.29 

0.50 11.11 4.59 1.01 2.59 

0.60 12.50 3.89 1.02 2.16 

0.80 9.09 3.98 1.01 2.27 

0.90 10.00 3.62 0.97 1.75 

1.00 9.09 3.74 1.01 1.96 

0.00 8.33 11.97 0.99 3.38 

0.10 12.50 5.45 0.98 2.61 

0.20 12.50 7.70 0.98 2.22 

0.30 12.50 6.09 1.02 2.31 

0.40 12.50 5.65 1.00 2.29 

0.50 12.50 5.52 1.01 2.59 

0.60 10.00 4.26 1.01 2.16 

0.80 12.50 3.66 1.01 2.27 

0.90 10.00 2.80 0.98 1.75 

1.00 12.50 3.06 0.97 1.96 

1.10 9.09 4.60 1.01 1.96 

1.20 11.11 4.29 1.01 1.9 
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1.30 6.67 4.99 0.99 2.51 

2.20 7.14 3.00 0.99 2.06 

2.30 12.50 4.79 0.99 1.84 

2.40 12.50 4.51 0.96 1.54 

2.50 12.50 6.00 1.00 1.28 

2.60 12.50 5.78 0.98 2.4 

2.70 12.50 6.91 1.02 1.83 

 

The above data was fed into the neural network. The following parameters were 

observed during the training process. 

Table 4.6: Results for IRI - Accelerometer Relationship 

Mean absolute error 0.1378 

Root mean squared error 0.1889 

 

These are the measurement between results and the prediction data. The mean absolute 

error and the root mean squared error is higher than the previous pothole detection 

calculation. High error values are due to a lower number of training data compared to 

the previous case. 

Following settings were used in the neural network, 

Table 4.7: IRI- Accelerometer Neural Network Settings 

Number of inputs 2 (Normalized linear acceleration, 

Normalized angular acceleration) 

Number of hidden layers 1 

Number of hidden nodes 10 

The activation function in hidden nodes Linear 

Number of outputs 1 
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The activation function in hidden nodes Linear 

Optimizer Stochastic gradient descent 

Loss calculation function mean squared error 

 

4.3 Real-time Data Processing 

For the practical usage of this model, the model should be export as a Tensorflow lite 

package. This package can be used in an Android or iOS application to indicate the IRI 

value in real-time while collecting the data through an accelerometer. 

Another option is to collect the data in the field and run the model on a separate 

computer after the data collection. There is no difference between running the model 

on a separate computer or having it in a mobile application package.  
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5 DISCUSSION 

The machine-learning algorithm is a useful tool to identify patterns and correlations 

when there are multi-dimensional data and large datasets. It can identify Multi-

dimensional data patterns that a human mind could not identify. In the sense of 

accelerometer data against the IRI value, 3- axis accelerometer data and GPS data 

along the time dimension generate a large amount of non-linear data that has an 

indirect correlation with the IRI value. In cases like this, machine learning can identify 

patterns such as a wheel of a vehicle travels on a pothole or a road bump. Also, it can 

be used to predict the IRI value by training the machine-learning algorithm with a 

known dataset. These algorithms mostly rely on the quality of the training dataset. The 

quality of the training dataset can be expressed by reliability, feature representation 

and, skewness.  

Reliability refers to the accuracy of the training data. If the dataset is not reliable, the 

trained model will output the unreliable predictions as well. It is "Garbage in, garbage 

out". 

Feature representation is another essential aspect of the training data. First, the training 

data should represent all the scenarios that intend to predict by the model. Furthermore, 

it should not be skewed as well. A skewed dataset can bias the output predictions of 

the model depending on the dataset size and skewness. (Google, 2021) 

In IRI prediction, the corresponding accelerometer data's predicted values are not 

closely associated with the laser-based mobile unit's data. Typically, the laser-based 

mobile unit assesses the total lane width and gives a collective result based on the 

measurements. However, the accelerometer-based calculation is calculated based on 

the wheel path undulations. This fundamental difference in the data collection can 

cause very different results. This difference can lead to an inaccurate machine learning 

model in the training phase. A lower variation of the result obtained from the laser-

based IRI measurement and the accelerometer measurement leads to lower absolute 

error and lower mean squared error. 

Further research should be carried out to determine the feasibility of using the 

machine-learning algorithm for IRI prediction using similar measurement methods 

such as walking profiler meter or travelling beam method. Also, the laser-based IRI 
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measurement gives the IRI value for every 100m section. However, the accelerometer 

has a data output rate of around 50Hz. Due to this measurement difference, gathering 

the data for training the machine learning algorithm is difficult. One way around this 

problem is to get the mean acceleration values corresponding to every 100m section 

of a particular road and compare it with the IRI measurement on the same road. 

The pothole detection phase in this research can be categorized under the reinforced 

learning. It is similar to the features like step counting applications used in smart 

devices. In this research, accelerometer data gathered from several potholes used to 

train the machine-learning algorithm. Moreover, a separate road section was used to 

test and verify the machine-learning algorithm. The outcome of the testing data 

suggests that this algorithm can identify the potholes to an acceptable level. However, 

in general principles of machine learning, there is always an opportunity for 

improvements through more training. Even though it is evident that the trained model 

can identify the potholes to a fair degree of accuracy, it can be suggested to train the 

algorithm further with different road sections, different speeds, and using different 

vehicles. 

The training phase is the most crucial stage of machine learning models. The number 

of training cycles with the available data should be carefully selected. While a large 

number of training cycles can show very accurate results within the training dataset, 

the model may underperform when given a new set of data. Overfitting or overtraining 

is a statistical phenomenon that picks up the training dataset's residual variations and 

transfers them to the machine learning model (Overfitting, 2021). Thus, it is essential 

to find a good balance between the number of training cycles and the training data 

variation. Overfitting can be identified with a new set of testing data that is separate 

from the training data. 
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6 CONCLUSION 

This research was conducted to develop a method to find pavement undulation 

detection within a low budget level. The method's accuracy would be at a sufficient 

level to detect the distresses prevailing in the roadway. Off-the-shelf accelerometer 

sensors with reasonable accuracy can be found in almost every electronic store for a 

low price. The main problem of this method is to convert the accelerometer data to 

pavement undulations. It is ubiquitous to use mobile phone accelerometer data for 

pavement undulation measurement as a cheap alternative to IRI measurement. 

However, the data conversion to the IRI values in those researchers is not conducted 

thoroughly. 

This research can be divided into two major sections. 1. Pothole detection in the road 

surface and 2. IRI value predictions using accelerometer data. 

In the first section of this research, the results indicate that pothole detection using 

accelerometer and machine learning can have promising results. The low mean 

absolute error in pothole detection is a direct indication of the accuracy of the results. 

This research was carried out with a limited number of data points (1934). Machine 

learning algorithms can be improved sharply by using more massive data sets. The 

main reason to use machine learning in this research is to find the accelerometer data 

patterns, which the regression models could not highlight. Pattern detection with 

machine learning is not a new concept. It has been used in many cases, such as step 

counters in fitness devices and mobile phones. The same concept can be used to detect 

the potholes on the road surface. 

The second section of this research was conducted to formulate a machine learning 

algorithm that can predict the IRI value using the accelerometer data. The outcome of 

the training indicates somewhat accurate results, mainly due to the lack of test data. 

This machine-learning algorithm was trained upon 29 test points due to the lack of 

available public domain IRI data, which were obtained recently.  Lack of variations 

and limited test data points profoundly affected the mean absolute error in these results. 

Even though the undulations are identified with the accelerometer data, conversion to 

the IRI should be further researched before implementation. However, these results 
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provide new insight to improve the accuracy of mobile phone undulation detection 

methods using the machine-learning algorithm as well.  

Due to the lack of test data for the accelerometer measurement - the IRI conversion 

model could not be validated further. Quality of the training data, machine learning 

settings such as the number of hidden nodes, type of the activation function used defy 

the accuracy of the prediction. Nevertheless, having a large number of hidden nodes 

and training cycles could lead to overfitting of the model. This problem could be 

minimized with fewer hidden nodes, and a testing data set separate from the training 

data set. A perfect data set should represent all the variables on a measurement, such 

as weather conditions, the measuring vehicle's speed, vehicle type, and model. Using 

such a dataset, this machine learning model can be improved vastly. 

Pothole detection with this method has an acceptable accuracy with a root mean square 

error of 0.142. Moreover, the IRI relationship with the accelerometer data also has an 

acceptable accuracy with a root mean square error value of 0.1889. 

Machine learning is a flexible and valuable tool in the transportation sector, given that 

the algorithm is trained with a satisfactory amount of data and quality. Specifically, 

the pothole direction of a paved road can be successfully detected using a machine 

learning algorithm.  

These machine learning algorithms can be improved on the go by having more training 

data. Rather than using regression models for IRI and distress relationship, machine 

learning can improve the accuracy of those predictions.   

It can conclude that with the aid of machine learning combined with a low-cost 

accelerometer sensor, road pavement undulations such as potholes can be accurately 

identified on the go.
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ANNEX 01 – DATA PRE-PROCESSING WITH JAVASCRIPT (P5) 

sketch.js (JavaScript in P5) 

let data; 

var json = {}; 

var table; 

 

function preload(){ 

  data = loadStrings('0292018.txt'); 

} 

 

function setup(){ 

  background(200); 

  table = new p5.Table(); 

  var newRow = table.addRow(); 

 

  table.addColumn('id'); 

  table.addColumn('time'); 

  table.addColumn('x'); 

  table.addColumn('y'); 

  table.addColumn('z'); 

  table.addColumn('x1'); 

  table.addColumn('y1'); 

  table.addColumn('z1'); 

  table.addColumn('xa'); 

  table.addColumn('ya'); 

  table.addColumn('za'); 

  table.addColumn('latitude'); 

  table.addColumn('longitude'); 

  table.addColumn('speed'); 

 

  for(var i =0; i< data.length; i++){ 

      let time = data[i].substring(0, 8); 

      let x = data[i].substring(19, 24); 

      let y = data[i].substring(35, 40); 

      let z = data[i].substring(51, 56); 

      let x1 = data[i].substring(68, 73); 

      let y1 = data[i].substring(85, 90); 

      let z1 = data[i].substring(102, 107); 

      let xa = data[i].substring(117, 124); 

      let ya = data[i].substring(134, 141); 

      let za = data[i].substring(151, 158); 

      let latIndex = data[i].indexOf("Latitude"); 

      let longIndex = data[i].indexOf("Longitude"); 

      let lat = data[i].substring(latIndex+9,latIndex+20); 
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      let long = data[i].substring(longIndex+10,longIndex+22); 

      var newRow = table.addRow(); 

      newRow.setNum('id',i+1); 

      newRow.setString('time',time); 

      newRow.setString('x',x); 

      newRow.setString('y',y); 

      newRow.setString('z',z); 

      newRow.setString('x1',x1); 

      newRow.setString('y1',y1); 

      newRow.setString('z1',z1); 

      newRow.setString('xa',xa); 

      newRow.setString('ya',ya); 

      newRow.setString('za',za); 

      newRow.setString('latitude',lat); 

      newRow.setString('longitude',long); 

      if(i>= 11){ 

        let t1 = table.get(i,'time'); 

        let t2 = table.get(i-10,'time'); 

        let lat1 = table.get(i,'latitude'); 

        let lat2 = table.get(i-10,'latitude'); 

        let long1 = table.get(i,'longitude'); 

        let long2 = table.get(i-10,'longitude'); 

        let finalspeed = speedCalculation(t1,t2,lat1,lat2,long1,long2); 

        newRow.setString('speed',finalspeed); 

      } 

  } 

  saveTable(table, 'new.csv'); 

} 

 

function speedCalculation(t1, t2, lat1, lat2, long1, long2){ 

  let hour1 = t1.substring(0,2); 

  let hour2 = t2.substring(0,2); 

  let min1 = t1.substring(3,5); 

  let min2 = t2.substring(3,5); 

  let sec1 = t1.substring(6,8); 

  let sec2 = t2.substring(6,8); 

  //angleMode(RADIANS); 

  let distance = acos(cos(radians(90-lat2))* cos(radians(90-

lat1))+ sin(radians(90-lat2))* sin(radians(90-

lat1))* cos(radians(long2-long1)))* 6371000; 

  let timeDiff = (hour1-hour2)*3600+(min1-min2)*60+(sec1-sec2); 

  let speed = distance/timeDiff; 

  return speed; 

} 
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ANNEX 02 – ACCELEROMETER DATA WITH IRI/POTHOLE 

PREDICTION (MACHINE LEARNING WITH TENSORFLOW) 

sketch.js (JavaScript in P5) 

 

function preload(){ 

  xs_data = loadTable('xs.csv','csv','header'); 

  ys_data = loadTable('ys.csv','csv','header'); 

 

} 

 

function setup() { 

  noCanvas(); 

 

  const inputx = (xs_data.getArray()); 

  const shapex = [29,3]; 

  const inputy = (ys_data.getArray()); 

  const shapey = [29]; 

  const xs = tf.tensor(inputx, shapex, 'float32'); 

  const ys = tf.tensor(inputy, shapey, 'float32'); 

  console.log(ys); 

  ys.print(); 

 

  const model = tf.sequential(); 

  const configHidden = { 

    inputShape : [3], 

    units : 10, 

    activation : 'sigmoid' 

  } 

  const hidden = tf.layers.dense(configHidden); 

 

  const configOutput = { 

    units : 1, 

    activation : 'sigmoid' 

  } 

 

  const output = tf.layers.dense(configOutput); 

 

  model.add(hidden); 

  model.add(output); 

 

  const optimizer = tf.train.sgd(0.1); 

  const configCompiler = { 

    optimizer : optimizer, 
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    loss : 'meanSquaredError', 

    epoch: 10 

  } 

let history; 

 

train().then(()=>{ 

  let output = model.predict(xs); 

  xs.print(); 

  output.print(); 

  console.log('Training Complete!'); 

}) 

  async function train(){ 

    for(let i =0; i < 1000; i++){ 

      model.compile(configCompiler); 

      const response = await model.fit(xs, ys); 

      console.log(response.history.loss[0]); 

    } 

  } 

 

} 

 

index.html (P5) 

<!DOCTYPE html><html lang="en"><head> 

    <script src="p5.js"></script> 

    <script src="p5.sound.min.js"></script> 

    <script src="tf.min.js"></script> 

    <link rel="stylesheet" type="text/css" href="style.css"> 

    <meta charset="utf-8"> 

 

  </head> 

  <body> 

    <script src="sketch.js"></script> 

   

 

</body></html> 
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ANNEX 03 - DATA COLLECTION ANDROID APPLICATION 

WITH KOTLIN 

MainActivity.kt 

package com.typeiii.bth 

 

import android.Manifest 

import android.databinding.DataBindingUtil 

import android.support.v7.app.AppCompatActivity 

import android.os.Bundle 

import com.typeiii.bth.helpers.BluetoothSerial 

import com.typeiii.bth.databinding.ActivityMainBinding 

import android.graphics.drawable.AnimationDrawable 

import android.view.MotionEvent 

import android.view.View 

import com.karumi.dexter.Dexter 

import com.karumi.dexter.MultiplePermissionsReport 

import com.karumi.dexter.PermissionToken 

import com.karumi.dexter.listener.PermissionRequest 

import com.karumi.dexter.listener.multi.MultiplePermissionsListener 

import com.karumi.dexter.listener.multi.SnackbarOnAnyDeniedMultiplePerm

issionsListener 

import com.karumi.dexter.listener.multi.CompositeMultiplePermissionsLis

tener 

import com.typeiii.bth.helpers.LocationManager 

import kotlinx.android.synthetic.main.activity_main.* 

import android.R.attr.button 

import android.content.Context 

import android.content.Intent 

import android.widget.EditText 

import android.widget.Toast 

import com.typeiii.bth.helpers.Recorder 

import android.content.SharedPreferences 

 

class MainActivity : AppCompatActivity() { 

 

    lateinit var binding: ActivityMainBinding 

    private var bluetoothSerial: BluetoothSerial? = null 

    private var allPermissionsListener: MultiplePermissionsListener? = 

null 

 

    private val deviceName = "HC-06" 
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    override fun onCreate(savedInstanceState: Bundle?) { 

        super.onCreate(savedInstanceState) 

        binding = DataBindingUtil.setContentView(this, R.layout.activit

y_main) 

        supportActionBar?.hide() 

        checkPermissions() 

        connectToBluetoothDevice() 

        getAccuracy() 

        setClickListener() 

        onClickListener() 

    } 

 

    private fun checkPermissions() { 

 

        val permissionListener = object : MultiplePermissionsListener { 

            override fun onPermissionsChecked(report: MultiplePermissio

nsReport) { 

                for (response in report.grantedPermissionResponses) { 

                    if (response.permissionName == Manifest.permission.

ACCESS_FINE_LOCATION ) { 

                        getAccuracy() 

                    } 

                } 

            } 

 

            override fun onPermissionRationaleShouldBeShown(permissions

: MutableList<PermissionRequest>?, 

                                                            token: Perm

issionToken?) { 

            } 

 

        } 

 

        allPermissionsListener = CompositeMultiplePermissionsListener(p

ermissionListener, 

                SnackbarOnAnyDeniedMultiplePermissionsListener.Builder.

with(binding.view, 

                        R.string.all_permissions_denied_feedback) 

                        .withOpenSettingsButton(R.string.permission_rat

ionale_settings_button_text) 

                        .build()) 

 

        Dexter.withActivity(this) 

                .withPermissions(Manifest.permission.BLUETOOTH, 
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                        Manifest.permission.ACCESS_COARSE_LOCATION, 

                        Manifest.permission.ACCESS_FINE_LOCATION, 

                        Manifest.permission.WRITE_EXTERNAL_STORAGE) 

                .withListener(allPermissionsListener) 

                .check() 

    } 

 

    private fun connectToBluetoothDevice() { 

        bluetoothSerial = BluetoothSerial(this, object : BluetoothSeria

l.MessageHandler { 

            override fun connected() { 

                binding.button.isEnabled = true 

                binding.button.text = getString(R.string.record) 

                binding.button.setBackgroundResource(R.drawable.ic_btn_

connected) 

            } 

 

            override fun disConnected() { 

                binding.button.text = getString(R.string.disconnected) 

                binding.button.setBackgroundResource(R.drawable.ic_btn_

normal) 

            } 

 

            override fun read(x: Float, y: Float, z: Float, temp: Float

, x1: Float, y1: Float, z1: Float, xa: Float, ya: Float, za: Float) { 

 

                runOnUiThread { 

                    binding.tvXvalue.text = String.format("% 10.2fg", x

) 

                    binding.tvYvalue.text = String.format("% 10.2fg", y

) 

                    binding.tvZvalue.text = String.format("% 10.2fg", z

) 

                    binding.tvTempValue.text = String.format("% 10.2f℃

", temp) 

                } 

            } 

 

            override fun read(bufferSize: Int, buffer: ByteArray): Int 

{ 

                return 0 

            } 

        }, deviceName) 

        bluetoothSerial?.connect() 

    } 
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    private fun getAccuracy() { 

        LocationManager(object : LocationManager.PositionListener { 

            override fun getAccuracy(accuracy: Float) { 

                binding.tvAccuValue.text = String.format("%.2fm", accur

acy) 

            } 

 

        }, true).connect() 

    } 

 

    private fun setClickListener() { 

        binding.button.setOnClickListener { 

 

            if (bluetoothSerial != null && bluetoothSerial!!.isRecordin

g()!!) { 

                binding.button.text = getString(R.string.record) 

                binding.button.setBackgroundResource(R.drawable.ic_btn_

normal) 

            } else { 

                binding.button.text = getString(R.string.stop) 

 

                val drawable = AnimationDrawable() 

                val image1 = getDrawable(R.drawable.ic_btn_normal) 

                val image2 = getDrawable(R.drawable.ic_btn_recoding) 

                drawable.addFrame(image1, 1000) 

                drawable.addFrame(image2, 1000) 

                drawable.isOneShot = false 

 

                binding.button.background = drawable 

                drawable.start() 

            } 

 

            bluetoothSerial?.setRecord() 

        } 

 

    } 

 

     fun onClickListener(){ 

 

        var btnPress = false 

 

        button2.setOnTouchListener { v, event -> 
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            val mypref = this.getSharedPreferences("mypref", Context.MO

DE_PRIVATE) 

            val editor =mypref.edit() 

            if(event.getAction()== MotionEvent.ACTION_DOWN){ 

                btnPress = true 

                editor.putString("btnValue",btnPress.toString()) 

                editor.apply() 

            } 

            if(event.getAction() == MotionEvent.ACTION_UP){ 

                btnPress = false 

                editor.putString("btnValue",btnPress.toString()) 

                editor.apply() 

            } 

            textView.text = btnPress.toString() 

            btnPress 

        } 

    } 

 

} 

 

 

MyApplication.kt 

package com.typeiii.bth 

import android.app.Application 

import android.content.Context 

class MyApplication: Application() { 

 

    init { 

        instance = this 

    } 

 

    companion object{ 

 

        private var instance: MyApplication? = null 

 

        fun applicationContext() : Context { 

            return instance!!.applicationContext 

        } 

 

        lateinit var sApplication: Application 

 

        private fun getApplication(): Application? { 

            return sApplication 

        } 
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        fun getContext(): Context? { 

            return getApplication()?.applicationContext 

        } 

    } 

 

    override fun onCreate() { 

        super.onCreate() 

        sApplication = this 

 

    } 

 

} 

 

BluetoothSerial.kt 

package com.typeiii.bth.helpers 

 

import android.annotation.SuppressLint 

import android.bluetooth.BluetoothSocket 

import android.bluetooth.BluetoothDevice 

import android.support.v4.content.LocalBroadcastManager 

import android.content.Intent 

import android.os.AsyncTask 

import android.bluetooth.BluetoothAdapter 

import android.content.IntentFilter 

import android.content.BroadcastReceiver 

import android.content.Context 

import android.util.Log 

import java.io.IOException 

import java.io.InputStream 

import java.io.OutputStream 

import java.util.* 

 

class BluetoothSerial(internal var context: Context, internal var messa

geHandler: MessageHandler, devicePrefix: String) { 

 

    internal var connected = false 

 

    internal var bluetoothDevice: BluetoothDevice? = null 

 

    internal var serialSocket: BluetoothSocket? = null 

 

    internal var serialInputStream: InputStream? = null 
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    internal var serialOutputStream: OutputStream? = null 

 

    private var serialReader: SerialReader? = null 

 

    internal var connectionTask: AsyncTask<Void, Void, BluetoothDevice>

? = null 

 

    internal var devicePrefix: String 

 

    private val MAX_BYTES = 125 

 

    internal var mConnectedThread: ConnectedThread? = null 

 

    /** 

     * Listens for discount message from bluetooth system and restablis

hing a connection 

     */ 

    private val bluetoothReceiver = object : BroadcastReceiver() { 

        override fun onReceive(context: Context, intent: Intent) { 

            val action = intent.action 

            val eventDevice = intent.getParcelableExtra<BluetoothDevice

>(BluetoothDevice.EXTRA_DEVICE) 

 

            if (BluetoothDevice.ACTION_ACL_DISCONNECTED == action) { 

                if (bluetoothDevice != null && bluetoothDevice == event

Device) { 

                    Log.i(BMX_BLUETOOTH, "Received bluetooth disconnect

 notice") 

 

                    //clean up any streams 

                    close() 

 

                    //reestablish connect 

                    connect() 

 

                    LocalBroadcastManager.getInstance(context).sendBroa

dcast(Intent(BLUETOOTH_DISCONNECTED)) 

                } 

            } 

        } 

    } 

 

    init { 

        this.devicePrefix = devicePrefix.toUpperCase() 
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    } 

 

    fun onPause() { 

        context.unregisterReceiver(bluetoothReceiver) 

    } 

 

    fun onResume() { 

        //listen for bluetooth disconnect 

        val disconnectIntent = IntentFilter(BluetoothDevice.ACTION_ACL_

DISCONNECTED) 

        context.registerReceiver(bluetoothReceiver, disconnectIntent) 

 

        //reestablishes a connection is one doesn't exist 

        if (!connected) { 

            connect() 

        } else { 

            val intent = Intent(BLUETOOTH_CONNECTED) 

            LocalBroadcastManager.getInstance(context).sendBroadcast(in

tent) 

        } 

    } 

 

    /** 

     * Initializes the bluetooth serial connections, uses the LocalBroa

dcastManager when 

     * connection is established 

     * 

     */ 

    fun connect() { 

 

        if (connected) { 

            Log.e(BMX_BLUETOOTH, "Connection request while already conn

ected") 

            return 

        } 

 

        if (connectionTask != null && connectionTask!!.status == AsyncT

ask.Status.RUNNING) { 

            Log.e(BMX_BLUETOOTH, "Connection request while attempting c

onnection") 

            return 

        } 

 

        val bluetoothAdapter = BluetoothAdapter.getDefaultAdapter() 

        if (bluetoothAdapter == null || !bluetoothAdapter.isEnabled) { 
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            return 

        } 

 

        val pairedDevices = ArrayList(bluetoothAdapter.bondedDevices) 

        if (pairedDevices.size > 0) { 

            bluetoothAdapter.cancelDiscovery() 

 

            /** 

             * AsyncTask to handle the establishing of a bluetooth conn

ection 

             */ 

            connectionTask = @SuppressLint("StaticFieldLeak") 

            object : AsyncTask<Void, Void, BluetoothDevice>() { 

 

                internal var MAX_ATTEMPTS = 30 

 

                internal var attemptCounter = 0 

 

                override fun doInBackground(vararg params: Void): Bluet

oothDevice? { 

                    while (!isCancelled) { //need to kill without calli

ng onCancel 

 

                        for (device in pairedDevices) { 

                            if (device.name.toUpperCase().startsWith(de

vicePrefix)) { 

                                Log.i(BMX_BLUETOOTH, attemptCounter.toS

tring() + ": Attempting connection to " + device.name) 

 

                                try { 

 

                                    try { 

                                        // Standard SerialPortService I

D 

                                        val uuid = UUID.fromString("000

01101-0000-1000-8000-00805F9B34FB") 

                                        serialSocket = device.createRfc

ommSocketToServiceRecord(uuid) 

                                    } catch (ce: Exception) { 

                                        serialSocket = connectViaReflec

tion(device) 

                                    } 

 

                                    //setup the connect streams 

                                    serialSocket!!.connect() 
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                                    serialInputStream = serialSocket!!.

inputStream 

                                    serialOutputStream = serialSocket!!

.outputStream 

 

                                    connected = true 

                                    Log.i(BMX_BLUETOOTH, "Connected to 

" + device.name) 

 

                                    return device 

                                } catch (e: Exception) { 

                                    serialSocket = null 

                                    serialInputStream = null 

                                    serialOutputStream = null 

                                    Log.i(BMX_BLUETOOTH, e.message) 

                                } 

 

                            } 

                        } 

 

                        try { 

                            attemptCounter++ 

                            if (attemptCounter > MAX_ATTEMPTS) 

                                this.cancel(false) 

                            else 

                                Thread.sleep(1000) 

                        } catch (e: InterruptedException) { 

                            break 

                        } 

 

                    } 

 

                    Log.i(BMX_BLUETOOTH, "Stopping connection attempts"

) 

 

                    val intent = Intent(BLUETOOTH_FAILED) 

                    LocalBroadcastManager.getInstance(context).sendBroa

dcast(intent) 

 

                    return null 

                } 

 

                override fun onPostExecute(result: BluetoothDevice) { 

                    super.onPostExecute(result) 

 

                    bluetoothDevice = result 
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                    //start thread responsible for reading from inputst

ream 

                    serialReader = SerialReader() 

                    serialReader!!.start() 

 

                    //send connection message 

                    val intent = Intent(BLUETOOTH_CONNECTED) 

                    LocalBroadcastManager.getInstance(context).sendBroa

dcast(intent) 

 

                    if (serialSocket != null) { 

                        mConnectedThread = ConnectedThread(serialSocket

!!, messageHandler) 

                        messageHandler.connected() 

                        mConnectedThread!!.start() 

                    } 

 

                } 

 

            } 

            connectionTask!!.execute() 

        } 

    } 

 

    @Throws(Exception::class) 

    private fun connectViaReflection(device: BluetoothDevice): Bluetoot

hSocket { 

        val m = device.javaClass.getMethod("createRfcommSocket", *array

Of<Class<*>>(Int::class.javaPrimitiveType!!)) 

        return m.invoke(device, 1) as BluetoothSocket 

    } 

 

    @Throws(IOException::class) 

    fun available(): Int { 

        if (connected) 

            return serialInputStream!!.available() 

 

        throw RuntimeException("Connection lost, reconnecting now.") 

    } 

 

    @Throws(IOException::class) 

    fun read(): Int { 

        if (connected) 

            return serialInputStream!!.read() 
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        throw RuntimeException("Connection lost, reconnecting now.") 

    } 

 

    @Throws(IOException::class) 

    fun read(buffer: ByteArray): Int { 

        if (connected) 

            return serialInputStream!!.read(buffer) 

 

        throw RuntimeException("Connection lost, reconnecting now.") 

    } 

 

    @Throws(IOException::class) 

    fun read(buffer: ByteArray, byteOffset: Int, byteCount: Int): Int { 

        if (connected) 

            return serialInputStream!!.read(buffer, byteOffset, byteCou

nt) 

 

        throw RuntimeException("Connection lost, reconnecting now.") 

    } 

 

    @Throws(IOException::class) 

    fun write(buffer: ByteArray) { 

        if (connected) 

            serialOutputStream!!.write(buffer) 

 

        throw RuntimeException("Connection lost, reconnecting now.") 

    } 

 

    @Throws(IOException::class) 

    fun write(oneByte: Int) { 

        if (connected) 

            serialOutputStream!!.write(oneByte) 

 

        throw RuntimeException("Connection lost, reconnecting now.") 

    } 

 

    @Throws(IOException::class) 

    fun write(buffer: ByteArray, offset: Int, count: Int) { 

        serialOutputStream!!.write(buffer, offset, count) 

 

        throw RuntimeException("Connection lost, reconnecting now.") 

    } 

 

    private inner class SerialReader : Thread() { 

 

        internal var buffer = ByteArray(MAX_BYTES) 
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        internal var bufferSize = 0 

 

        override fun run() { 

            Log.i("serialReader", "Starting serial loop") 

            while (!isInterrupted) { 

                try { 

 

                    /* 

                     * check for some bytes, or still bytes still left 

in 

                     * buffer 

                     */ 

                    if (available() > 0) { 

 

                        val newBytes = read(buffer, bufferSize, MAX_BYT

ES - bufferSize) 

                        if (newBytes > 0) 

                            bufferSize += newBytes 

 

                        //Log.d(BMX_BLUETOOTH, "read $newBytes") 

                    } 

 

                    if (bufferSize > 0) { 

                        val read = messageHandler.read(bufferSize, buff

er) 

 

                        // shift unread data to start of buffer 

                        if (read > 0) { 

                            var index = 0 

                            for (i in read until bufferSize) { 

                                buffer[index++] = buffer[i] 

                            } 

                            bufferSize = index 

                        } 

                    } else { 

 

                        try { 

                            Thread.sleep(10) 

                        } catch (ie: InterruptedException) { 

                            break 

                        } 

 

                    } 

                } catch (e: Exception) { 
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                    Log.e(BMX_BLUETOOTH, "Error reading serial data", e

) 

                } 

 

            } 

            Log.i(BMX_BLUETOOTH, "Shutting serial loop") 

        } 

    } 

 

    /** 

     * Reads from the serial buffer, processing any available messages.

  Must return the number of bytes 

     * consumer from the buffer 

     * 

     * by @author jpetrocik 

     */ 

    interface MessageHandler { 

        fun connected() 

        fun disConnected() 

        fun read(bufferSize: Int, buffer: ByteArray): Int 

        fun read(x: Float, y:Float, z:Float, temp:Float , x1: Float, y1

: Float, z1: Float, xa: Float, ya: Float, za: Float) 

    } 

 

    fun close() { 

 

        connected = false 

        messageHandler.disConnected() 

 

        if (serialReader != null) { 

            serialReader!!.interrupt() 

 

            try { 

                serialReader!!.join(1000) 

            } catch (ie: InterruptedException) { 

            } 

 

        } 

 

        try { 

            serialInputStream!!.close() 

        } catch (e: Exception) { 

            Log.e(BMX_BLUETOOTH, "Failed releasing inputstream connecti

on") 

        } 
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        try { 

            serialOutputStream!!.close() 

        } catch (e: Exception) { 

            Log.e(BMX_BLUETOOTH, "Failed releasing outputstream connect

ion") 

        } 

 

        try { 

            serialSocket!!.close() 

        } catch (e: Exception) { 

            Log.e(BMX_BLUETOOTH, "Failed closing socket") 

        } 

 

        Log.i(BMX_BLUETOOTH, "Released bluetooth connections") 

 

    } 

 

    fun setRecord() { 

        mConnectedThread?.setRecord() 

    } 

 

    fun isRecording(): Boolean? { 

        return  mConnectedThread?.getRecord() 

    } 

 

    companion object { 

        private val BMX_BLUETOOTH = "BMXBluetooth" 

 

        var BLUETOOTH_CONNECTED = "bluetooth-connection-started" 

 

        var BLUETOOTH_DISCONNECTED = "bluetooth-connection-lost" 

 

        var BLUETOOTH_FAILED = "bluetooth-connection-failed" 

    } 

 

} 

 

ConnectedThred.kt 

package com.typeiii.bth.helpers 

 

import android.bluetooth.BluetoothSocket 

import android.os.Bundle 

import android.widget.Toast 

import java.io.IOException 
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import java.io.InputStream 

import java.io.OutputStream 

import java.util.* 

 

internal class ConnectedThread(private val mmSocket: BluetoothSocket, 

                               var messageHandler: BluetoothSerial.Mess

ageHandler) : Thread() { 

    private val mmInStream: InputStream? 

    private val mmOutStream: OutputStream? 

 

    private val fData = FloatArray(31) 

    private var strDate: String? = null 

    private var strTime: String? = null 

 

    private val queueBuffer = LinkedList<Byte>() 

    private val packBuffer = ByteArray(11) 

 

    private var isRecord = false 

    private val RecordTimeDifference = 0.5 // seconds 

 

    init { 

        var tmpIn: InputStream? = null 

        var tmpOut: OutputStream? = null 

 

        // Get the BluetoothSocket input and output streams 

        try { 

            tmpIn = mmSocket.inputStream 

            tmpOut = mmSocket.outputStream 

        } catch (e: IOException) { 

        } 

 

        mmInStream = tmpIn 

        mmOutStream = tmpOut 

    } 

 

    override fun run() { 

        val tempInputBuffer = ByteArray(1024) 

        var acceptedLen: Int 

        var sHead: Byte 

        // Keep listening to the InputStream while connected 

        var lLastTime = System.currentTimeMillis() // 获取开始时间 

        var lLastRecoderTime = System.currentTimeMillis() 

        while (true) { 

 

            try { 
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                acceptedLen = mmInStream!!.read(tempInputBuffer) 

                //Log.d("BTL1", "" + acceptedLen) 

                for (i in 0 until acceptedLen) queueBuffer.add(tempInpu

tBuffer[i]) 

 

                while (queueBuffer.size >= 11) { 

                    if (queueBuffer.poll() != 0x55.toByte()) continue 

                    sHead = queueBuffer.poll() 

                    for (j in 0..8) packBuffer[j] = queueBuffer.poll() 

 

                    when (sHead) { 

                    // 

                        0x50.toByte() -> { 

                            val ms = packBuffer[7].toInt() shl 8 or (pa

ckBuffer[6].toInt() and 0xff) 

                            strDate = String.format("20%02d-%02d-

%02d", packBuffer[0], packBuffer[1], packBuffer[2]) 

                            strTime = String.format(" %02d:%02d:%02d.%0

3d", packBuffer[3], packBuffer[4], packBuffer[5], ms) 

                        } 

                        0x51.toByte() -> { 

                            fData[0] = (packBuffer[1].toInt() shl 8 or 

(packBuffer[0].toInt() and 0xff)) / 32768.0f * 16 

                            fData[1] = (packBuffer[3].toInt() shl 8 or 

(packBuffer[2].toInt() and 0xff)) / 32768.0f * 16 

                            fData[2] = (packBuffer[5].toInt() shl 8 or 

(packBuffer[4].toInt() and 0xff)) / 32768.0f * 16 

                            fData[17] = (packBuffer[7].toInt() shl 8 or

 (packBuffer[6].toInt() and 0xff)) / 100.0f 

                        } 

                        0x52.toByte() -> { 

                            fData[3] = (packBuffer[1].toInt() shl 8 or 

(packBuffer[0].toInt() and 0xff)) / 32768.0f * 2000 

                            fData[4] = (packBuffer[3].toInt() shl 8 or 

(packBuffer[2].toInt() and 0xff)) / 32768.0f * 2000 

                            fData[5] = (packBuffer[5].toInt() shl 8 or 

(packBuffer[4].toInt() and 0xff)) / 32768.0f * 2000 

                            fData[17] = (packBuffer[7].toInt() shl 8 or

 (packBuffer[6].toInt() and 0xff)) / 100.0f 

                        } 

                        0x53.toByte() -> { 

                            fData[6] = (packBuffer[1].toInt() shl 8 or 

(packBuffer[0].toInt() and 0xff)) / 32768.0f * 180 
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                            fData[7] = (packBuffer[3].toInt() shl 8 or 

(packBuffer[2].toInt() and 0xff)) / 32768.0f * 180 

                            fData[8] = (packBuffer[5].toInt() shl 8 or 

(packBuffer[4].toInt() and 0xff)) / 32768.0f * 180 

                            fData[17] = (packBuffer[7].toInt() shl 8 or

 (packBuffer[6].toInt() and 0xff)) / 100.0f 

                        } 

                        0x54.toByte() //magnetic field 

                        -> { 

                            fData[9] = (packBuffer[1].toInt() shl 8 or 

(packBuffer[0].toInt() and 0xff)).toFloat() 

                            fData[10] = (packBuffer[3].toInt() shl 8 or

 (packBuffer[2].toInt() and 0xff)).toFloat() 

                            fData[11] = (packBuffer[5].toInt() shl 8 or

 (packBuffer[4].toInt() and 0xff)).toFloat() 

                            fData[17] = (packBuffer[7].toInt() shl 8 or

 (packBuffer[6].toInt() and 0xff)) / 100.0f 

                        } 

                        0x55.toByte() //port 

                        -> { 

                            fData[12] = (packBuffer[1].toInt() shl 8 or

 (packBuffer[0].toInt() and 0xff)).toFloat() 

                            fData[13] = (packBuffer[3].toInt() shl 8 or

 (packBuffer[2].toInt() and 0xff)).toFloat() 

                            fData[14] = (packBuffer[5].toInt() shl 8 or

 (packBuffer[4].toInt() and 0xff)).toFloat() 

                            fData[15] = (packBuffer[7].toInt() shl 8 or

 (packBuffer[6].toInt() and 0xff)).toFloat() 

                        } 

                        0x56.toByte() //Pressure, height 

                        -> { 

                            fData[16] = (packBuffer[3].toLong() shl 24 

or (packBuffer[2].toLong() shl 16) or (packBuffer[1].toLong() shl 8) or

 packBuffer[0].toLong()).toFloat() 

                            fData[17] = (packBuffer[7].toLong() shl 24 

or (packBuffer[6].toLong() shl 16) or (packBuffer[5].toLong() shl 8) or

 packBuffer[4].toLong()).toFloat() 

                            fData[17] /= 100f 

                        } 

                        0x57.toByte() //Latitude and longitude 

                        -> { 

                            val longitude = packBuffer[3].toLong() shl 

24 or (packBuffer[2].toLong() shl 16) or (packBuffer[1].toLong() shl 8)

 or packBuffer[0].toLong() 
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                            fData[18] = (longitude.toFloat() / 10000000

 + (longitude % 10000000).toFloat().toDouble() / 100000.0 / 60.0).toFlo

at() 

                            val latitude = packBuffer[7].toLong() shl 2

4 or (packBuffer[6].toLong() shl 16) or (packBuffer[5].toLong() shl 8) 

or packBuffer[4].toLong() 

                            fData[19] = (latitude.toFloat() / 10000000 

+ (latitude % 10000000).toFloat().toDouble() / 100000.0 / 60.0).toFloat

() 

                        } 

                        0x58.toByte() //Altitude, heading, ground speed 

                        -> { 

                            fData[20] = ((packBuffer[3].toLong() shl 24

 or (packBuffer[2].toLong() shl 16) or (packBuffer[1].toLong() shl 8) o

r packBuffer[0].toLong()) / 10).toFloat() 

                            fData[21] = ((packBuffer[5].toInt() shl 8 o

r (packBuffer[4].toInt() and 0xff)) / 10).toFloat() 

                            fData[22] = ((packBuffer[7].toInt() shl 8 o

r (packBuffer[6].toInt() and 0xff)) / 1000).toFloat() 

                        } 

                        0x59.toByte() //Quaternion 

                        -> { 

                            fData[23] = (packBuffer[1].toInt() shl 8 or

 (packBuffer[0].toInt() and 0xff)) / 32768.0f 

                            fData[24] = (packBuffer[3].toInt() shl 8 or

 (packBuffer[2].toInt() and 0xff)) / 32768.0f 

                            fData[25] = (packBuffer[5].toInt() shl 8 or

 (packBuffer[4].toInt() and 0xff)) / 32768.0f 

                            fData[26] = (packBuffer[7].toInt() shl 8 or

 (packBuffer[6].toInt() and 0xff)) / 32768.0f 

                        } 

                        0x5a.toByte() //Number of satellites 

                        -> { 

                            fData[27] = (packBuffer[1].toInt() shl 8 or

 (packBuffer[0].toInt() and 0xff)) / 32768.0f 

                            fData[28] = (packBuffer[3].toInt() shl 8 or

 (packBuffer[2].toInt() and 0xff)) / 32768.0f 

                            fData[29] = (packBuffer[5].toInt() shl 8 or

 (packBuffer[4].toInt() and 0xff)) / 32768.0f 

                            fData[30] = (packBuffer[7].toInt() shl 8 or

 (packBuffer[6].toInt() and 0xff)) / 32768.0f 

                        } 

                    } 

 

                } 
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                val lTimeNow = System.currentTimeMillis() // Get start 

time 

                if (lTimeNow - lLastTime > 80) { 

                    lLastTime = lTimeNow 

                    val bundle = Bundle() 

                    bundle.putFloatArray("Data", fData) 

                    bundle.putString("Date", strDate) 

                    bundle.putString("Time", strTime) 

 

                    messageHandler.read(fData[0], fData[1], fData[2], f

Data[17],fData[3], fData[4], fData[5], fData[6], fData[7], fData[8]) 

                    if (isRecord && (lTimeNow - lLastRecoderTime > (Rec

ordTimeDifference * 1000))) { 

                        Recorder.getInstance().saveToTextFile(fData[0],

 fData[1], fData[2], fData[17], fData[3], fData[4], fData[5], fData[6],

 fData[7], fData[8]) 

                        lLastRecoderTime = lTimeNow 

                    } 

                } 

 

            } catch (e: IOException) { 

                //connectionLost() 

 

                break 

            } 

 

        } 

    } 

 

    fun write(buffer: ByteArray) { 

        try { 

            mmOutStream!!.write(buffer) 

        } catch (e: IOException) { 

        } 

 

    } 

 

    fun cancel() { 

        try { 

            mmSocket.close() 

        } catch (e: IOException) { 

        } 

 

    } 

 

    fun setRecord() { 
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        isRecord = !isRecord 

    } 

 

    fun getRecord(): Boolean { 

        return isRecord 

    } 

} 

 

LocationManager.kt 

package com.typeiii.bth.helpers 

 

import android.content.Context 

import android.location.Location 

import android.location.LocationListener 

import android.location.LocationManager 

import android.os.Bundle 

import android.os.Looper 

import android.util.Log 

import com.typeiii.bth.MyApplication 

 

class LocationManager(var listener: PositionListener, var needAccuracy:

 Boolean) { 

 

    interface PositionListener { 

        fun getLatLong(latitude:Double, longitude:Double) { } 

        fun getAccuracy(accuracy:Float) { } 

    } 

 

    fun connect() { 

        val locationListener = object: LocationListener { 

            override fun onStatusChanged(p0: String?, p1: Int, p2: Bund

le?) { 

            } 

 

            override fun onProviderEnabled(p0: String?) { 

            } 

 

            override fun onProviderDisabled(p0: String?) { 

            } 

 

            override fun onLocationChanged(location: Location?) { 

 

                if (location != null){ 
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                    listener.getLatLong(location.latitude, location.lon

gitude) 

                } 

            } 

        } 

        val lm = MyApplication.getContext()?.getSystemService(Context.L

OCATION_SERVICE) 

                as LocationManager 

        try { 

            val location = lm.getLastKnownLocation(LocationManager.GPS_

PROVIDER) 

            lm.requestLocationUpdates(LocationManager.GPS_PROVIDER, 200

0, 1f, 

                    locationListener, Looper.getMainLooper()) 

 

            if (location != null) { 

                listener.getLatLong(location.latitude, location.longitu

de) 

                if (needAccuracy) listener.getAccuracy(location.accurac

y) 

            } 

        } catch (e: SecurityException) { 

            Log.e("ERROR", "location permission error") 

        } catch (e: NullPointerException) { 

            e.printStackTrace() 

        } 

    } 

} 

 

Recorder.kt 

package com.typeiii.bth.helpers 

 

import android.content.Context 

import android.content.Intent.getIntent 

import android.content.Intent.parseIntent 

import android.os.Environment 

import android.widget.EditText 

import java.text.SimpleDateFormat 

import java.util.* 

import java.io.* 

import android.content.SharedPreferences 

import com.typeiii.bth.MainActivity 

import com.typeiii.bth.MyApplication 

import com.typeiii.bth.R 
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import kotlinx.android.synthetic.main.activity_main.* 

 

class Recorder { 

 

    companion object { 

        private var instance : Recorder? = null 

 

        fun  getInstance(): Recorder { 

            if (instance == null) 

                instance = Recorder() 

 

            return instance!! 

        } 

    } 

 

    private val fileName: String 

        get() = "BTH_$currentDate.txt" 

 

    private val currentDate: String 

        get() { 

            return SimpleDateFormat("ddMyyyy", Locale.US).format(Date()

) 

        } 

 

    private val currentTime: String 

        get() { 

            return SimpleDateFormat("H:mm:ss", Locale.US).format(Date()

) 

        } 

 

    private var locationLatitude: Double = 0.0 

    private var locationLongitude: Double = 0.0 

 

    private fun btnCame():String{ 

        val mypref = MyApplication.getContext()?.getSharedPreferences("

mypref", Context.MODE_PRIVATE) 

        val send = mypref?.getString("btnValue","false") 

        return send.toString() 

    } 

 

    private fun convertValesToString( x: Float, y: Float, z: Float, tem

p: Float, x1: Float, y1: Float, z1: Float, xa: Float, ya: Float, za: Fl

oat) : String { 

        val xStr = String.format("% 10.2f", x) 

        val yStr = String.format("% 10.2f", y) 
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        val zStr = String.format("% 10.2f", z) 

        //val tempStr = String.format("% 10.2f℃", temp) 

        val x1Str = String.format("% 10.2f", x1) 

        val y1Str = String.format("% 10.2f", y1) 

        val z1Str = String.format("% 10.2f", z1) 

        val xaStr = String.format("% 10.2f", xa) 

        val yaStr = String.format("% 10.2f", ya) 

        val zaStr = String.format("% 10.2f", za) 

 

        return "$currentTime | X: $xStr | Y: $yStr | Z: $zStr | X1: $x1

Str | Y1: $y1Str | Z1: $z1Str | Xa: $xaStr | Ya: $yaStr | Za: $zaStr" + 

                "| Latitude: $locationLatitude | Longitude: $locationLo

ngitude " + "| Pothole: ${btnCame()}|" 

    } 

 

    fun saveToTextFile( x: Float, y: Float, z: Float, temp: Float, x1: 

Float, y1: Float, z1: Float, xa: Float, ya: Float, za: Float) { 

 

        getLocation() 

 

        try { 

 

            val path = Environment.getExternalStorageDirectory().absolu

tePath + "/BTH" 

            val folder = File(path) 

            if (!folder.exists()) folder.mkdirs() 

 

            val file = File(folder, fileName) 

            if (!file.exists()) file.createNewFile() 

            //open file for writing 

            val out = OutputStreamWriter(FileOutputStream(file, true)) 

 

            out.write(convertValesToString(x, y, z, temp, x1, y1, z1, x

a, ya, za)) 

            out.write("\n") 

 

            //close file 

            out.close() 

 

        } catch (e: java.io.IOException) { 

            e.printStackTrace() 

        } 

 

    } 

 

    private fun getLocation() { 
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        LocationManager(object : LocationManager.PositionListener{ 

            override fun getLatLong(latitude: Double, longitude: Double

) { 

                locationLatitude = latitude 

                locationLongitude = longitude 

            } 

 

        }, false).connect() 

    } 

} 

 


