PROPER FLOW CONTROL STRATEGY FOR TEA WITHERING PROCESS

Prasanna Saman Maldeniya

07/8214

Thesis submitted in partial fulfillment of the requirements for the degree Master of

Science in Sustainable Process Development

Department of Chemical Engineering

University of Moratuwa Sri Lanka

November 2011

DECLARATION

I hereby declare this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any other university or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books). Electronic Theses & Dissertations

Signature:

Date:

The above candidate has carried out research for the Masters Degree under my supervision.

Signature of the supervisor:

Date:

ACKNOWLEDGEMENT

I am deeply indebted to my supervisor Dr. A.G.T Sugathapala, Senior Lecturer, Department of Mechanical Engineering, University of Moratuwa, Sri Lanka for his suggestions and critical advices to initiate and pursue this valuable study. I would like to express my special gratitude to Mr. M.M.R Padmasiri, Director, Sri Lanka Sustainable Energy Authority for Directing me to the tea factories where the tests were conducted and also wish to thank Mr. V. Ekanayake, Mr.S. Sanjeewa, Mr.Laxshman and Mr.Karunaratne for giving their fullest co-operation in keeping vigil in tea factories for data acquisition. The project would not be a success if not for the literature material provided by tea Research Institute. Hence my sincere thanks extend to Mr.Ravindran and Dr. W S Boteju, Chairman of Tea Research Institute, for the support given in that regard. I also wish to thank all the tea factory personnel for giving their assistance in various tasks throughout this study.

ABSTRACT

In this research project the tea withering process, which accounts for the bulk of electricity consumption in tea manufacturing was investigated. The main objective of the project was to develop a proper flow control strategy for the withering process to conserve energy. The other objective was to devise a method to select a suitable axial flow fan to optimize energy utilization. With the present design of withering troughs, process parameters such as temperature and relative humidity could not be precisely controlled. Due to this, empirical approach involving multiple tests was used to derive the relationship between the drying rate and other major parameters. Air flow rate, temperature and relative humidity of inlet air, pressure inside the trough, and energy consumption of the fans were the measured parameters. Several fans with different make and different operating conditions were studied during the experimental testing.

The results of the study reveal that during the first few hours (around 4 hours) the drying rate was dependent upon both the flow rate and the wet and dry bulb temperature difference. But in the latter hours, drying rate is mainly dependent on wet and dry bulb temperature difference. Therefore, it was concluded that best flow schedule is that the fan runs at full speed at the first 4-5 hours and then the speed is lowered in such a way that the pressure inside the trough does not go below 75 Pa, the recommended minimum pressure. When this flow schedule was coupled with other factors, such as the quality of tea deteriorating due to long withers, uneven withering, and variation of crop, it was revealed that conventional fans, which are usually overdesigned with higher pressure and flow rate capacities, when operated with variable speed drives with the developed flow schedule, can be more effective than the fans recently introduced to the industry. Further research work on thick bed drying is needed to confirm the results. It is recommended to construct a test rig which can regulate the parameters such as flow rate, humidity and temperature and can record the test parameters real time, and hence derive an accurate drying rate equation for tea withering process.

TABLE OF CONTENTS

Declaration		i	
Acknowledgement		ii	
Abstract		iii	
Table of Contents		iv	
List of Figures		vi	
List o	f Tables	5	viii
List o	f Abbre	viations	ix
List o	f Apper	ndices	Х
1.	Introduction		01
	1.1	Rationale	01
	1.2	Background of the Problem and Objectives	02
	1.3	Overview of the Research	04
2.	Tea W	Vithering Process	06
	2.1	Introduction	06
	2.2	Physical Withering of Moratuwa, Sri Lanka.	08
	2.3	Chemical Withering heses & Dissertations	09
	2.4	Withering Troughs II. ac.lk	09
	2.5	Withering Fans	10
3.	Theoretical Concepts of Withering Process		12
	3.1	Introduction	12
	3.2	Drying Rate	13
	3.3	Fixed Bed Analogy for Withering Trough	17
	3.4	Determination of Heat Transfer Coefficient of Tea Leaves	18
	3.5	Fan performance	19
	3.6	Tests on Withering Fans	23
4.	Metho	odology	26
	4.1	Introduction	26
	4.2	Theoretical Approach and Assumptions	26
	4.3	Test Procedure	31
	4.4	Procedure for Data Analysis	33
5.	Anal	ysis	35
	5.1	Introduction	35

	5.2	Tests on Fan Types 1 and 2	36
	5.3	Tests on Fan Type 2 with and without VSD (Tests No 3 and 4)	37
	5.4	Testing with Fan Type 3 (Tests No 5 and 6)	44
	5.5	Variation of effective surface area with other parameters	52
6.	Results		54
	6.1	Relationship between Drying Rate and other parameters	54
	6.2	Development of Flow Schedule for Optimum Energy Use	56
	6.3	Selection Criteria for Best Axial Flow Fan	60
7.	Discu	Discussion	
8.	Recommendations		65
Refere	ences		66
APPENDIX A: Measuring Instruments		68	
APPE	APPENDIX B: Test Result Summary		70

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF FIGURES

		Page
Figure 1.1	Place of tea industry in national electricity demand	02
Figure 2.1	Flow diagram for tea manufacturing process	07
Figure 2.2	Withering curves for different drying times	08
Figure 2.3	Withering trough	10
Figure 2.4	Withering fan	11
Figure 3.1	Moisture movement in drying process	13
Figure 3.2	Typical drying rate curve	14
Figure 3.3	Variation of drying rate with moisture content for tea leaves for	15
	different temperatures	
Figure 3.4	Variation of drying rate with moisture content for tea leaves for	16
	different temperatures and relative humidity	
Figure 3.5	Test rig for determination of heat transfer coefficient of tea leaves	19
	for thick bed drying	
Figure 3.6	Test chamber for AMCA 210 standard Sri Lanka.	20
Figure 3.7	Axial flow fan characteristic curve Dissertations	21
Figure 3.8	Fan characteristic curve for different speeds and impellor diameters	22
Figure 3.9	Fan curves for commonly used withering fans	25
Figure 3.10	Fan efficiency curves for commonly used withering fans	
Figure 4.1	Locations of measuring at the withering trough	32
Figure 4.2	Wire mesh bin used for weight measurements	33
Figure 4.3	Point selection for flow measurements in circular ducts	34
Figure 4.4	Point selection for flow measurements in square ducts	34
Figure 5.1	Variation of air flow rate with time (Test 3)	38
Figure 5.2	Progressive variation of drying rate and wet and dry bulb	39
	temperature difference (Test 3)	
Figure 5.3	Progressive variation of drying rate and flow rate (Test 3)	40
Figure 5.4	Variation of drying rate with wet and dry bulb temperature	40
	difference for the latter hours of operation (Test 3)	
Figure 5.5	Variation of drying rate vs flow rate $\!\!\!\times$ wet and dry bulb temperature	42
	difference \times effective surface area for the first four hours of	
	operation (Test 4)	

Figure 5.6	Variation of drying rate with wet and dry bulb temperature	42
	difference for the latter hours of operation (Test 4)	
Figure 5.7	Progressive variation of drying rate and flow rate (Test 4)	43
Figure 5.8	Progressive variation of drying rate and wet and dry bulb	43
	temperature difference (Test 4)	
Figure 5.9	Pressure change due to mechanical conveyor system	45
Figure 5.10	Variation of drying rate vs flow rate×wet and dry bulb temperature	46
	difference×effective surface area for the first four hours of operation	
	(Test 5)	
Figure 5.11	Progressive variation of drying rate and flow rate (Test 5)	47
Figure 5.12	Progressive variation of drying rate and wet and dry bulb	47
	temperature difference (Test 5)	
Figure 5.13	Variation of drying rate with wet and dry bulb temperature	48
	difference for the latter hours of operation (Test 5)	
Figure 5.14	Demand and power factor variation for test 5	48
Figure 5.15	Efficiency curves for fan type 3	
Figure 5.16	Variation of air flow rate with time (Test 6)	51
Figure 5.17	Demand and power factor variation for test 6	51
Figure 5.18	Variation of effective surface area with free moisture content	52
Figure 5.19	Variation of effective surface area with pressure	53
Figure 5.20	Variation of effective surface area with air flow rate	53
Figure 6.1	Relationship between drying rate and wet and dry bulb temperature	55
	difference in latter part of withering	
Figure 6.2	Proposed speed regulation for fan type 2	56
Figure 6.3	Pressure flow characteristics for fan type 2 for different speeds	57
Figure 6.4	Possible flow variation with VSD	58
Figure 6.5	Pressure variation due to proposed schedule	58

LIST OF TABLES

		Page
Table 1.1	Electrical energy consumption in (in kWh/kg) in unit operations of	03
	tea manufacturing	
Table 3.1	Summary of results for withering fan testing	23
Table 5.1	Technical details of test equipment	35
Table 5.2	Data on test on fan type 1	36
Table 5.3	Data on test on fan type 2	37
Table 5.4	Summary of test data for fan type 2 without VSD	38
Table 5.5	Summary of test data for fan type 2 with VSD	41
Table 5.6	Summary of test data for fan type 3 with no VSD fixed	46
Table 5.7	Summary of test data for fan type 3 with VSD fixed	50
Table 5.8	Comparison of drying rates at two fan speeds	50
Table 6.1	R ² values for selected relationships	54
Table 6.2	Intercept and gradient values for selected relationships	55
Table 6.3	Comparison between fans Moratuwa, Sri Lanka.	61
	Electronic Theses & Dissertations	
	www.lib.mrt.ac.lk	

LIST OF ABBREVIATIONS

Abbreviation	Description
SLSEA	Sri Lanka Sustainable Energy Authority
TOE	Tons of Oil Equivalents
TRI	Tea Research Institute
VSD	Variable Speed Drive

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF APPENDICES

Appendix	Description	Page
Appendix A	Measuring Instruments	68
Appendix B	Summary of Tests Conducted	70

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk