COMPARATIVE STUDY OF DESIGN INPUTS IN DESIGN OF OVERHEAD TRANSMISSION LINE TOWERS

Aluthwaththegerdara Gam Hewayalage Abhaya Duminda Aluthwaththa

199186D

Dissertation submitted in Partial fulfilment of the requirement for the Degree of Master of Engineering in Structural Engineering

Department of Civil Engineering

University of Moratuwa Sri Lanka

June 2021

DECLARATION

I declare that this is my own work, and this dissertation does not incorporate without acknowledgment any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgment is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as article or book).

Signature

Date

The above candidate has carried out research for the Master Dissertation under my supervision.

Signature of the supervisor

Date

ABSTRACT

The Ceylon electricity board is the main electricity producer in Sri Lanka. The supply arm of the Ceylon electricity board is divided into three categories: Generation, Transmission and Distribution. The power lines having the capacity 132 kV and above comes under the transmission category. The transmission lines may be spanning over a few kilometres to hundreds of kilometres, depending on the power station location. The lattice towers are the main supporting structures in the transmission line. The cost of the transmission towers is ranging from 28 to 40 percent of the total cost of a transmission line project.

Every year the power demand may increase by around 10 %. To have uninterrupted power supply the Ceylon Electricity Board must increase its supply capability simultaneously. With this huge power demand CEB must move to 400 kV lines in the near future. The scarcity of new corridors to build new lines demands increase the capacity of the existing lines by using the same corridors. Both requirements demand heavy towers.

The design of the transmission towers and foundations is done according to the CEB specifications, which were produced long ago. The CEB specification is based on the probabilistic method with safety factors while the world is moving towards the reliability-based method.

The CEB towers are known to be the heaviest towers in the region. The largest existing tower uses the maximum available angle iron as the leg members. When increase the tower capacity and the number of circuits to four circuits from two, star angles or combined angles must be used as the leg members. The foundations have to be designed either as raft foundations instead of single footings or pile foundations in fairly good soils.

The towers need to be optimized in order to overcome the limitations in the design as well as to reduce the cost of the projects. The lattice towers are designed for decades and the optimum tower configuration have been already identified by the designers. The optimization of the design input is the next possible approach to design an optimized tower.

The design inputs mainly depend on the code of practice used in the design. In this research, an attempt was made to identify the economic viability of the CEB design inputs against IS 802:1:1 (2015) and IEC 60826 (2017) design inputs. The objective of the research was achieved by identifying the different design inputs against different codes of practices and design two type towers, one line tower (TDL) and one angle tower (TD3) in PLS tower software by using the identified design inputs. The design was carried out according to the ASCE 10:97 and IS 802:1:2 (2016).

To identify the economic viability of the design inputs the support reactions and the member capacity usages were compared using the output of the FEM.

As per the results that the tower weight and the foundation size could be reduced by a significant margin if the design was carried out by using either IS or IEC codes instead of the CEB specifications.

Key words: CEB specification, Optimizing tower cost, Transmission tower, Design inputs

ACKNOWLEDGEMENT

I would like to express my sincere gratitude and appreciation to all who deserve acknowledgement for their contribution towards successful completion of this research.

First, I would like to express my gratitude to my supervisor, Dr. K. Baskaran for his valuable advice, guidance, and assistance throughout the entire period of study.

I am much grateful to the Head of the Department of Civil Engineering, the Course Coordinator of Master of Engineering in Structural Engineering Design, Academic staff, and the general staff of the Department of Civil Engineering for their valuable guidance.

Further, I extend my gratitude to Eng. (Mrs) Deepika Wijesinghe, Chief Engineer (Transmission Design) of Ceylon Electricity Board, where I render my service at present, for giving me the opportunity to follow the course and guidance given throughout the entire period of study.

My special thanks go to my son, wife and her parents, my sister and her family for their continuous encouragement and assistance during the entire period. Finally, my friends and colleagues who have not been personally mentioned, but deserve acknowledgement for their contribution during the course of study to make it successful.

TABLE OF CONTENT

	Page	
DECLARATION	i	
ABSTRACT		
ACKNOWLEDGEMENT		
LIST OF FIGURES		
LIST OF TABLES	vii	
LIST OF ABBREVIATIONS	viii	
1. CHAPTER 1 – INTRODUCTION	1	
1.1. General	1	
1.2. Objective	3	
1.3. Activities Involved.	3	
1.4. Arrangement of the Report	4	
2. CHAPTER 2 – LITERATURE REVIEW	5	
2.1. Lattice Towers	5	
2.2. Different Code of Practices Used in Tower Design	5	
2.3. Design Inputs	8	
2.3.1. Wind	8	
2.3.2. Temperature	9	
2.3.3. Reliability Loadings / Climatic Loadings	10	
2.3.4. Security Loadings	15	
2.3.5. Construction and Maintenance Loads - Safety Requirements	18	
2.3.6. Sag-Tension Calculations	21	
2.3.7. Other Considerations	23	
2.4. Design Input Summary	24	
3. CHAPTER 3 – IDENTIFIED DESIGN INPUT DATA	27	
3.1. Identifying the Design Inputs	27	
3.1.1. Wind Velocity	27	
3.1.2. Temperature	27	
3.1.3. Design Span	27	
3.1.4. Wind and Temperature Combination	28	

3.1.5. Construction and Maintenance Loadings	30	
3.1.6. Failure Containment Loadings	32	
3.1.7. Special Requirement	34	
3.1.8. Load Combinations.	35	
3.2. Loading Calculations.	35	
3.3. Model Tower Using FEM and Analysis	43	
3.4. Comparison of the Results	45	
4. CHAPTER 4 – FINITE ELEMENT ANALYSIS	47	
4.1. Model Geometry	47	
4.2. Load Combinations	52	
4.3. Results	58	
5. CHAPTER 5 – ANALYSIS AND DISCUSSION	62	
5.1. Design Inputs	62	
5.2. Analysis Results	66	
5.3. Structural Design Results	68	
5.4. Comparison of the Results	70	
5.4.1. Design Inputs	70	
5.4.2. Analysis Results	71	
5.4.3. Structural Design Results	72	
6. CHAPTER 6 – CONCLUSION AND RECOMMENDATIONS	74	
6.1. Conclusion	74	
6.2. Recommendation	76	
6.3. Recommendation for Future Works	77	
References	78	
Appendix 1: Wind Load and Sag Tension Calculations		

LIST OF FIGURES

Figure 1-1: (a) Two circuit tower (b) Four circuit tower	2
Figure 2-1: Wind zones proposed by Maduranga et al, (2018)	9
Figure 3-1: Proposed tower location	36
Figure 3-2: Basic tower configurations (a) TDL (b) TD3	43
Figure 3-3: Member usage comparison – TDL tower	45
Figure 3-4: Member usage comparison – TD3 tower	45
Figure 4-1: TDL tower finite element model	48
Figure 4-2: TD3 tower finite element model	48
Figure 5-1: TDL tower with CEB load case DC-NC-Vmax	66
Figure 5-2: TDL tower with IS load case REL_NC_WIND_Vmax	66
Figure 5-3: TDL tower with IEC load case SAF-TL-SC-Vmax	67
Figure 5-4: TD3 tower with CEB load case DC-NC-Vmax	67
Figure 5-5: TD3 tower with IS load case SEC_TCL+MCL_BWC_Vmax	67
Figure 5-6: TD3 tower with IEC load case SAF-BL-SC-Vmax	68
Figure 5-7: Comparison of the compression force in leg members of TDL tower	71
Figure 5-8: Comparison of the compression force in leg members of TD3 tower	72

LIST OF TABLES

	Page
Table 2-1: Tower classification as per the CEB (2018)	5
Table 2-2: Weather related condition as per the CEB (2018).	11
Table 2-3: Extract of table 13-additional security requirement IEC (2017)	18
Table 2-4: Minimum safety factors: table 5.14 of CEB (2018)	24
Table 2-5: Summary of design inputs	25
Table 3-1: Summary of wind and weight span abstracted from CEB (2018)	28
Table 3-2: Summary of wind and temperature combination	29
Table 3-3: Summary of design inputs under safety loading.	30
Table 3-4: Summary of design inputs under failure containment loadings.	32
Table 3-5: Wind pressure values on conductor with oblique angles.	37
Table 3-6: Wind pressure values on tower members with oblique angles.	37
Table 3-7: Total wind pressure on TDL tower – oblique and normal wind case.	38
Table 3-8: Wind velocity for different wind zones	39
Table 3-9: Summary of wind pressure values for different wind zones.	39
Table 3-10: Summary of wind pressure values.	40
Table 3-11: Sag-tension calculation summary	41
Table 3-12: Wind force on each tower panel.	42
Table 3-13: Limiting KL/R values - abstract of table 5.15 of CEB (2018)	44
Table 4-1: Assigned member sizes in TDL tower.	49
Table 4-2: Assigned member sizes in TD3 tower.	50
Table 4-3 : Load combinations used in TDL tower for CEB design inputs.	52
Table 4-4: Load combinations used in the TD3 tower for CEB design inputs	53
Table 4-5: Load combinations used in the TDL tower for IS design inputs	54
Table 4-6: Load combinations used in the TD3 tower for IS design inputs	55
Table 4-7: Load combinations used in the TDL tower for IEC design inputs	57
Table 4-8: Load combinations used in the TD3 tower for IEC design inputs	58
Table 4-9: Maximum support reaction under each input type.	59
Table 5-1: Sag-tension values	63
Table 5-2: The wind force applied to the towers	65
Table 5-3: Member usage of TDL tower under each design input.	69
Table 5-4: Member usage of TD3 tower under each design input.	69

LIST OF ABBREVIATIONS

IS 802-1-	$\frac{1}{(2015)}$	IEC 60826	IEC 60826:2017	
A _e	Total net surface area of	A _c	Wind force on conductor	
1 10	member			
Ai	Area of the insulator string	Ai	Wind force on insulators	
C _{dc}	Drag coefficient for Conductor	At	Wind force acting on a tower panel made of steel angles	
C_{di}	Drag coefficient for Insulator	C _{xc}	Drag coefficient of the conductor	
C_{dt}	Drag coefficient for tower	C_{xi}	Drag coefficient of insulator	
D	Diameter of the cable	C _{xt}	Drag coefficient of supports	
F_{wc}	Resultant wind load on Conductor	d	Conductor Diameter	
F_{wc}	Resultant wind load on Insulator	Gc	Combined wind factor of conductors	
F_{wt}	Resultant wind load on tower	G_L	Span factor for wind calculation	
Ge	Gust Respond Factor for Conductor	Gt	Combined wind factor of towers	
G_i	Gust Respond Factor for Insulator	L	Span length or Wind Span	
GT	Gust Respond Factor for tower	q 0	Dynamic reference wind pressure due to due to reference wind speed V _R	
L	Wind span	$\mathbf{S}_{\mathbf{i}}$	Projected area of insulator	
\mathbf{P}_{d}	Design wind pressure	$\mathbf{S}_{\mathbf{t}}$	Projected area of tower panel	
		Ω	Angle between wind direction and the Conductor (degrees)	
ASCE	American Society of Civil Engineers	DC-TC	Double Circuit Top Conductor	
BC	Bottom Cross Arm	CEB	Ceylon Electricity Board	
BCL	Bottom Conductor, Left	DC	Double Circuit	
BCR	Bottom Conductor Right	DC-BC	Double Circuit Bottom Conductor	
BL	Bottom Conductor, Left	DC-EW	Double Circuit Ground wire	
BR	Bottom Conductor Right	DC-MC	Double Circuit Middle Conductor	
BWC	Broken Wire Condition	DK1/2	Dambulla-Kalundawa tower 1/2	
DK2n	Dambulla-Kalundawa tower 2 new	SSL	Single Circuit Left	

EBCL	Ground wire & Bottom Conductor, Left	SSR	Single Circuit Right
EBCR	Ground wire & Bottom	TBCL	Top & Bottom Conductor,
EDS	Conductor Right Every Day Stress	TBCR	Left Top & Bottom Conductor
EMCL	Ground wire & Middle	TC	Right Top Cross arm
EMCR	Conductor Left Ground wire & Middle	TCL	Top Conductor, Left
ETCL	Conductor Right Ground wire & Top	TCR	Top Conductor Right
ETCR	Conductor, Left Ground wire & Top Conductor	TD3	Double Circuit Angle Tower-
EEM	Right Finite Element Model	TDL	3 Double Circuit Line Tower
FEM			
FOS	Factor of Safety	TL	Top Conductor, Left
GL	Ground wire Left	TMCL	Top & Middle Conductor, Left
GR	Ground wire Right	TMCR	Top & Middle Conductor Right
GWL	Earth wire Left	TR	Top Conductor Right
GWR	Earth wire Right	Vb	Basic Wind Speed
HT	High-tensile Steels	Vmax	Maximum Vertical Loading
IEC	International Electrotechnical	Vmin	Minimum Vertical Loading
	Commission		
IS	Indian Standard	$V_{ m R}$	Reference Wind Speed
MBCL	Middle & Bottom Conductor, Left		
MBCR	Middle & Bottom Conductor		
	Right		
MC	Middle Cross Arm		
MCL	Middle Conductor, Left		
MCR	Middle Conductor, Right		
ML	Middle Conductor, Left		
MR	Middle Conductor, Right		
MS	Mild Steel		
NC	Normal Condition		
OPGW	Optical Ground Wire		
REL	Reliability		
RSL	Residual Static Load		
Saf /	Safety		
SAF			
SC	Stinging Condition		
SC-L	Single Circuit Left		
SC D	Single Circuit Dight		

SC-R Single Circuit Right