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Abstract—Simultaneous localization and mapping (SLAM) has
been extensively researched in past years particularly with regard
to range-based or visual-based sensors. Instead of deploying
dedicated devices that use visual features, it is more pragmatic to
exploit the radio features to achieve this task, due to their ubiq-
uitous nature and the widespread deployment of Wi-Fi wireless
network. This paper presents a novel approach for collaborative
simultaneous localization and radio fingerprint mapping (C-
SLAM-RF) in large unknown indoor environments. The proposed
system uses received signal strengths (RSS) from Wi-Fi access
points (AP) in the existing infrastructure and pedestrian dead
reckoning (PDR) from a smart phone, without a prior knowledge
about map or distribution of AP in the environment. We claim a
loop closure based on the similarity of the two radio fingerprints.
To further improve the performance, we incorporate the turning
motion and assign a small uncertainty value to a loop closure if
a matched turning is identified. The experiment was done in an
area of 130 meters by 70 meters and the results show that our
proposed system is capable of estimating the tracks of four users
with an accuracy of 0.6 meters with Tango-based PDR and 4.76
meters with a step counter-based PDR.

I. INTRODUCTION

With growing applications of the Internet of Things (IoT),
recent research shows an increasing interest in indoor position-
ing due to the rapid demand of location-based services, such as
indoor guidance and asset tracking [1]–[4]. To perform indoor
positioning, the knowledge of the existing infrastructure must
be provided in advance (for example a map of the environment
or locations of the beacons). In the scenario of emergency
response in disaster areas or large scale environments, such
kind of knowledge is not available or difficult to obtain
beforehand, which makes the indoor positioning challenging.
Therefore, recent researchers are focusing on developing ef-
ficient methods and technologies to simultaneously localize
mobile devices (robots and smartphones) and generate a map
of the environment [5]–[8]. The underlying problem is well
known by the term, Simultaneous Localization and Mapping
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(SLAM). Extensive researches have been done with regard to
visual-based [9] or range-based sensors [10].

Loop closure detection is elementary to any SLAM system.
It denotes a situation that the mobile device has entered
a previously-visited location, which permits to correct the
accumulated odometry error. In order to perform loop clo-
sure detection in SLAM, dedicated devices (i.e., laser range
finders or cameras) are required to measure the similarity
of observations by scan matching [11] or feature matching
[9], which are usually computationally expensive. However,
growing popularity of Wi-Fi wireless networks provide a new
opportunity to detect loop closure and perform SLAM in a
different way.

Most existing buildings with Wi-Fi network deployed can
be exploited for localization and mapping with low hardware
requirements and computational cost (for example with the
ubiquitous IoT devices like normal smartphones) due to their
ubiquitous nature of in-built sensing capabilities [1], [12].
The current signal-strength-based SLAM requires an analytical
model to feature the radio signal distribution over distance [6],
[13]. However, it is not practical to build such a model due to
many multiple path issues in uncontrolled environments. On
the other hand, radio fingerprinting [2], [14], [15], represents
a location with a collection of radio signals from Wi-Fi
access points, which is considered to be more robust against
the signal distortions. Therefore, we adopt this technique to
simultaneously determine the location of a user and create a
radio map of the environment.

In addition to the Wi-Fi network, a typical indoor en-
vironment consists of many landmarks, such as turnings,
elevators, rooms, and doors, which can be also considered as
features for the positioning of a device. These landmarks can
be recognized through inertial sensors, which are available
in most commercial off-the-shelf smartphones [16], [17]. In
contrast to large location uncertainty of radio fingerprints due
to the distortion of signals, such kind of landmarks can better
confine the location of a device and enhance the positioning
accuracy of fingerprinting-based approaches [15], [18].

In opposite to the feature map or occupancy map built by
laser range finders or visual cameras, our goal is to build a map
(in particular a radio map) with radio fingerprint as feature,
and use that for the positioning. To ensure a good positioning
accuracy in large scale environment, a fine-grained radio map
is required [1], [2] and it will be time consuming to create
such a map with a single user. Therefore, a low cost method
(e.g., acquire fingerprints via crowdsensing by multiple users)
to create the radio map is a necessity.

This paper presents a system that fuses the pedestrian dead
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reckoning from a smartphone, and received signal strength
(RSS) measurements from surrounding Wi-Fi access points
(AP), to estimate the trajectory of multiple users and map
the radio signals in unknown environment via a collaborative
fashion, using graph SLAM technique. To further improve
the accuracy, we incorporate the turning features and reduce
the uncertainty of loops inferred based on radio fingerprints
similarity. The proposed approach requires neither the map of
the environment nor the locations of the access points. We
tested the system under two different dead reckoning systems,
one is based on Tango that has a high motion tracking accuracy
through vision-based odometry, and the second one is based
on step counter using on-board inertial sensors that has a poor
motion tracking accuracy. By leveraging on in-built sensing
capabilities from smart phones and crowdsensing nature, our
system can generate a radio fingerprint map in a large indoor
environment at low cost as compared with traditional site
surveying methods.

We summarize the contributions of this paper as:

• We present a solution that incorporates Wi-Fi fingerprint
and dead reckoning information for crowdsensing SLAM
in unknown indoor environments;

• We propose an algorithm that automatically learns a
model to characterize the uncertainty of a loop based on
the degree of similarity using the short term odometry
measurement;

• We integrate the turning features to further reduce the
uncertainty of radio fingerprint-based loop closures and
improve the overall accuracy;

• We throughly evaluate our approach in one building at
our campus with an area of approx. 9000 square meters
with two different pedestrian dead reckoning systems.

We organize the rest of this paper as follows. The related
work is discussed in Section II. Section III formulates the
problem and explains the detail of the proposed system.
Section IV presents the experimental results. Conclusions with
possible directions of future work are made in Section V.

II. RELATED WORK

Over the past decades, indoor positioning shows a growing
popularity due to the increasing demand of location-aware
applications [1], [2]. A large number of researches have been
performed regarding indoor positioning given a reference of
the infrastructure (i.e., map of the environment or distributions
of beacons). Obtaining and maintaining such kind of informa-
tion is challenging, particularly in large scale environments
[19] or emergency response for example search and rescue
in disaster scenes [20], [21]. A solution to this problem is
SLAM (Simultaneous Localization and Mapping), which has
been investigated extensively in robotics community. In this
section, we present a summary of the related work in SLAM,
using different kinds of techniques. Throughout the years,
many techniques and algorithms have been proposed, mainly
including filtering-based solutions (for example the Kalman
filter [5] and the particle filter [22]) and graph-based solutions
[7], [23].

Depending on the types of sensors used, one can classify
the SLAM into laser-based SLAM, visual-SLAM, magnetic-
SLAM, WifiSLAM, and FootSLAM. Laser-based SLAM uses
laser-range finders to create a structural map of an envi-
ronment. The detection of loop closure is achieved by scan
matching. Visual-SLAM methods, utilize cameras like Kinect
or Tango [24] to construct a 3D model of the indoor scene.
Bundle adjustment [25] is another popular technique for
SLAM that uses visual images and has been used in commer-
cialized SLAM systems such as Google’s Project Tango [26].
Magnetic-SLAM systems, exploit digital magnetic compass
for localization and mapping of a device [27]. The loop closure
is inferred by examining spatial similarity of a sequence
of magnetic measurements. For example, authors in [18]
correlated motion patterns with the magnetic field to address
the SLAM problem. A unique magnetic fingerprint may not
be guaranteed due to the distortion of the environment, which
makes this solution challenging for real applications.

WifiSLAM [6], [13] techniques use the radio signal and
motion data of the device for localization and signal strength
mapping in unknown environments. With SLAM technique,
the hassle of site surveying can be avoided, and radio map
can be created and updated conveniently whenever needed.
For example, authors in [6] solved the WifiSLAM problem
by mapping the high-dimensional signal strength into a two-
dimensional latent space with a Gaussian process. Authors in
[13] proposed a generalized and effective algorithm to solve
the WifiSLAM using GraphSLAM algorithm. Both approaches
assume the signal strength at two close locations are similar
and the measurement likelihood can be modeled as a Gaussian
process. In contrast, our approach does not require any model
to describe the signal strength distribution, and the closeness
of locations is determined by the similarity of the radio
fingerprints.

FootSLAM [28] uses inertial-based measurements to de-
termine the underlying building structure. No ranging or
visual measurement were required; the only features used are
the probability distributions of human motions at different
locations. Several extensions, for example ActionSlam [29],
incorporate location-orientated actions (for example entering
elevators or door opening) as features to compensate for
the IMU drifting error. Additional information [30] can be
further incorporated into FootSLAM, for example a prior map
or signal strength from a Wi-Fi access point. Authors in
[31] proposed SenseWit that utilizes inertial measurements to
generate a floorplan by identifying featured locations (turning,
water dispenser, and door) in indoor space.

When the indoor environment becomes huge, generating the
radio map with single mobile device becomes time consuming.
The power of crowd comes into play in this scenario. Mobile
crowdsensing is a popular computing paradigm, which enables
ubiquitous devices to collect sensing data at large scales [32]–
[34]. This technique can be utilized to unleash the potential
of mobile phones of people who move inside the indoor
environment [35]. Prior research have harnessed the power
of crowdsensing to reconstruct indoor floor plans by com-
bining user mobility traces, images of landmarks, and Wi-Fi
fingerprints [36], [37]. Localization by combination of 6-DOF
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gyro-odometry and Wi-Fi localization has been done in [38],
using multiple robots. Authors in [39] proposed an approach
to utilize pairwise distance measures between users to reduce
the positioning error in fingerprinting-based approaches.

Our system combines crowdsensed RSS from Wi-Fi APs
and dead reckoning information from a phone to localize a
device and build a radio map of the environment. To improve
the accuracy, we additionally incorporate turning features
extracted from users’ trajectories into our system. Section III
explains the details of the system implementation.

III. COLLABORATIVE SLAM BASED ON POSE GRAPH
OPTIMIZATION

We present a novel approach that incorporates radio finger-
print measurement and motion information for collaborative
SLAM in an unknown environment. The approach presented
here does not require any prior knowledge about the map or
the distribution of the access points nor does it need a labor-
intensive phase to collect the measurements in the existing
infrastructure. Our approach features a cost-effective alterna-
tive to estimate the trajectory of multiple users in unknown
environments. A radio map is created simultaneously, which
can be used as reference to localize other users afterwards.

In our proposed collaborative framework, user walks in
the environment and collects the radio measurements. Our
approach merges the tracks from different users, performs
loop closure detection, and optimizes the graph to generate
a consistent radio fingerprint map. The data collected will
be shared among all users through the server and each user
will contribute to certain part of the map. The collaborative
approach will accelerate the conventional way of map building.
With our collaborative approach, the mapping of a building
will become easier, since all users will participate in the map
creation, which eliminates the expensive on-site survey phase
in the conventional way of fingerprint map generation.

The goal is to estimate the entire trajectories from obser-
vations (i.e., Wi-Fi observations and motion measurements)
taken from different users at different times without a prior
knowledge about the environment. The problem addressed
here is known as SLAM, which has been well studied in the
field of robotics [10], [22], [40], [41]. Among those, the graph-
based approach, which formulates the problem as maximum
likelihood estimation using pose graphs, is regarded as one
of the most effective way to solve SLAM problem. Based
on the raw sensor measurements, graph-based SLAM [22]
creates a graph, where nodes denote the poses of the users
and edges decode the constraints between two nodes. The
problem turns into graph optimization, which determines the
best configuration of the poses by considering all constraints
in the graph.

Loop closure is important for any SLAM system and is
considered as one of the main challenges in implementing
a SLAM system in large-scale environment. It represents
a situation that users have revisited a previously observed
location. Since the odometry will inevitably drift for long
term run, loop closure allows to correct the accumulated
odometric errors and create a consistent map of the scene. The

loop closure problem has been researched extensively using
visual-based or ranging-based sensors [9], [42], which are
usually costly and computationally expensive. Instead of using
the dedicated devices to perform loop closure detection, we
focus on the radio fingerprints, which are available in existing
indoor infrastructures and can be easily retrieved from every
smartphone.

Formally, let xk
1:T = {xk

1 , ...,x
k
T } be the path of user k we

would like to estimate up to time T , where xk
t = (xk

t , y
k
t , θ

k
t )

represents the global 2D location and heading of the user at
time t. Let zn,jm,i and Σn,j

m,i represent the mean and covariance
of a measurement (i.e., constraint or edge) between node xm

i

and xn
j . We use C to denote the set containing all pairs of

constraints. ẑn,jm,i(x
m
i ,xn

j ) is the prediction of a measurement
based on the current configuration of node xm

i and xn
j . The

graph-based SLAM aims to find the best configuration x∗ to
meet the following criteria:

x∗ = argmin
x

∑
(xm

i ,xn
j )∈C

(zn,jm,i − ẑn,jm,i(x
m
i ,xn

j ))
⊺
Σn,j

m,i

−1

× (zn,jm,i − ẑn,jm,i(x
m
i ,xn

j ))

(1)

In particular for graph-based SLAM, zn,jm,i is known as edge
or constraint which represents a rigid-body transformation
between node xm

i and xn
j . The transformation is a 3×1 vector

which encodes the 2D translation (i.e., xn,j
m,i and yn,jm,i) and the

rotation θn,jm,i. The constraint can be either sequential odom-
etry measurement (i.e., odometry-based constraint) or loop
closure (observation-based constraint), which is determined by
aligning the sensor observations at two non-consecutive poses.
Since observations are usually erroneous, all constraints are
additionally parameterized with a certain degree of uncertainty
(i.e., Σn,j

m,i). For laser range finders, the transformation zn,jm,i

can be determined by matching two scans [11] using model-
based registration, for example iterative closest point (ICP).
Given a signal strength measurement from an AP, it is straight-
forward to know if an area has been visited by a user, since
each reported RSS value is associated with a unique MAC
address. However, estimating the precise transformation zn,jm,i

between two observations turns out to be tricky, since radio
signal neither reports distance nor bearing, and the detection
range of an AP can be up to 50 meters, which is usually
much larger than the accumulated error of a pedestrian dead
reckoning system.

The distance to an access point can be approximated by
the signal strength via an analytical signal-to-distance model.
This model is used by some researchers to address the SLAM
problem [6], [13], [43] and indoor positioning [1], [2]. How-
ever, obtaining such a model is usually not practical, as the
propagation of signal will be distorted by many environmental
factors (for example, multiple path or obstruction from obsta-
cles). Instead of modeling them explicitly, this paper represents
the location with radio fingerprint, which consists of the
address of detected device and the measured signal strength.
These fingerprints are location-dependent and are assumed
to be unique to describe a location in an infrastructure. The
closeness of two locations can be determined by comparing
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Fig. 1. Illustration of our collaborative simultaneous localization and radio
fingerprint mapping (C-SLAM-RF) system. The proposed system automati-
cally creates a radio fingerprint map of an environment using the radio and
odometry measurements from a group of users. The fingerprint-based and
turning-based loops are identified and incorporated into a graph-based SLAM
algorithm for optimization.

the degree of similarity of the fingerprints.
We claim a loop closure if the similarity between two radio

measurements at xm
i and xn

j reaches a threshold ϑs. We then
infer that their locations are the same and add a constraint
zn,jm,i, with all elements zero, to the graph. Actually, the two
locations are unlikely to be exactly the same, which will
produce a small amount of error to the loop closure. The
error can be compensated by associating a covariance Σn,j

m,i

to the constraint. A choice of this can be a diagonal matrix by
setting small values on the main diagonal. Our solution is a
careful examination of the uncertainty of a loop based on the
degree of similarity in a training phase. Based on training data,
we automatically learn a nonparametric model to characterize
the degree of similarity conditioned on the distance of two
locations.

The uncertainty of the loop closure inferred from radio
fingerprints is very high, we therefore exploit the turning
features to improve the accuracy. We identify the turnings
using motion information, match the turnings, and assign the
loop closure with a small covariance if a match is found.
Figure 1 gives an overview of the system. We will describe
the details of each component in our proposed solutions in
the following subsections. We summarize the notations of the
symbols used in this paper in Table I.

A. Radio Fingerprints and the Similarity

Radio fingerprinting represents location with radio signals
from radio-based sensors, for example Wi-Fi APs, Bluetooth
beacons, and RFID tags. These fingerprints are robust against
location-dependent distortions as compared to the model-based
approaches, since the propagation of the radio signal in an
environment is hard to predict due to the blockage of obstacles
and multipath fading issue. This is quite similar to appearance-
based approach, where the scene is represented by a number
of visual features. Extracting visual features involves a large
amount of computation, while this process can be ignored for

TABLE I
SUMMARY OF IMPORTANT VARIABLES USED IN THIS PAPER

Symbol Meaning

xk
t

the pose of user k at time t, i.e., xk
t =

(xk
t , y

k
t , θ

k
t )

xk
1:T the trajectories of user k up to time T

zn,jm,i

the transformation (i.e., translation and rota-
tion) between node xm

i and xn
j

Σn,j
m,i

the covariance of the transformation zn,jm,i be-
tween node xm

i and xn
j

Fk
t

the radio fingerprint and pose of user k
recorded at time t, i.e., Fk

t = (fkt ,x
k
t )

fkt

the radio fingerprint at pose xk
t , which

consists of the RSS from L APs: fkt =
{fk

t,1, ..., f
k
t,L}

sn,jm,i the cosine similarity between fmi and fnj

d(xm
i ,xn

j )
the relative distance between pose xm

i and xn
j

where fingerprints Fm
i and Fn

j are recorded

θ(xm
i ,xn

j )
the relative orientation between pose xm

i

and xn
j where fingerprints Fm

i and Fn
j are

recorded

ϑs
the threshold used to claim a loop closure
based on the cosine similarity sn,jm,i

ϑr
the threshold used to filter out the low RSS
measurement

r
the binning size to train the model (i.e., the
uncertainty given a measured similarity)

{sk, dk}Kk=1

the K training samples, where sk denotes
the similarity and dk denotes the distance
between a fingerprint pair

b(s, r)
a set of samples that sits in an interval r
around a similarity s

var(d|s) variance of the samples given a similarity s

c(b(s, r))
the number of samples that sits in an interval
r around a similarity s

akt
the acceleration measurement of user k at
time t

s
the step length of the step counter-based
pedestrian dead reckoning

Rk
t (τ)

the normalized auto-correlation of the ac-
celerometer data for lag τ at the tth sample
of user k

µk
t (τ)

mean of the sequential acceleration measure-
ments for a lag τ at time t

σk
t (τ)

standard deviation of the sequential accelera-
tion measurements for a lag τ at time t

ckt the step counter at timestamp t of user k

w
the window size to segment the inertial mea-
surements for turning detection and matching

Ck
t the track segmentation of user k at time t

Ck

t the relative positions of Ck
t with respect to xk

t

θk
−

t , θk
+

t
the mean orientation of poses with timestamps
smaller or larger than t in segmentation Ck

t

ϑf
the threshold used to claim a valid turning
match
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the radio fingerprint, since the AP can be regarded as the
unique feature for the positioning.

We represent a fingerprint of user k at time t as a pair
Fk

t = (fkt ,x
k
t ). xk

t = (xk
t , y

k
t , θ

k
t ) denotes the odometry at

time t when user k traverses the environment. fkt represents the
radio measurement at location xk

t , which consists of the RSS
values from L access points: fkt = {fk

t,1, ..., f
k
t,L}. Let Lm

i and
Ln
j denote the number of detections in fmi and fnj , respectively.

Ln,j
m,i =

∣∣fmi ∩ fnj
∣∣ is used to represent the common APs

in both fmi and fnj . The similarity function sim(Fm
i ,Fn

j )
yields a positive value, representing the similarity between two
radio measurements, namely fmi and fnj . We apply the cosine
similarity which has been extensively used in the literature
[44] [45].

sn,jm,i = sim(Fm
i ,Fn

j ) =

∑Ln,j
m,i

l=1 fm
i,lf

n
j,l√∑Lm

i

l=1

(
fm
i,l

)2
√∑Ln

j

l=1

(
fn
j,l

)2

(2)
We refer the readers to [2] [46] for a comparison between

different similarity measures.

B. Pedestrian Dead Reckoning

The spatial relationship between sequential poses in Equa-
tion 1 can be determined by the odometry measurements,
which is known as odometry-based constraint. Nowadays,
smartphones are equipped with various types of sensors,
including IMU sensor, camera, light sensor, and proximity
sensor. This enables one to implement a variety of pedestrian
dead reckoning systems using different techniques. We eval-
uated our system under two pedestrian dead reckoning sys-
tems (PDR): Tango-based PDR using visual-inertial odometry
(VIO) and step counter-based PDR using accelerometers and
compass. The goal is to compare the approach under various
tracking systems with different tracking accuracies.

Tango is developed by Google that uses visual-inertial
odometry, to estimate the location of a device without GPS
or any external referencing. It uses visual features with a
combination of inertial measurements from accelerometer and
gyroscope to track the movement of a device in 3D space.
Lenovo Phab 2 Pro and Asus Zenfone AR are two examples
of commercially available Tango phones.

Alternatively, the IMU sensor embedded inside a phone can
be used to implement a step counter-based dead reckoning.
A typical IMU system is comprised of accelerometer, gyro-
scope, and magnetometer for motion or orientation sensing.
Following Zee [47], we implemented the step counting based
on auto-correlation. Given the acceleration measurement akt of
user k at time t, the step counting is achieved by examining
the periodic step patterns through normalized auto-correlation
Rk

t (τ) for a lag τ :

Rk
t (τ) =

∑l=τ−1
l=0

[
(akt+l − µk

t (τ))
(akt+l+τ − µk

t+τ (τ))

]
τσk

t (τ)σ
k
t+τ (τ)

, (3)

where µk
t (τ) and σk

t (τ) are mean and standard deviation of the
sequential acceleration measurements {akt , akt+1, ..., a

k
t+τ−1}.

The algorithm first identifies an optimal τopt to maximize
Rk

t (τ). Then τopt is used as a replacement of τ to count
further steps. Similar to Zee [47], the sampling rate of the
IMU is 50Hz, we therefore set the initial searching window τ
to [40, 100].

During the walking of a person, we assume the phone is
always held in front of him. Therefore, we use the magne-
tometer reading to approximate the orientation of the user.
Let ckt and θkt be the step counting and the orientation of user
k at time t respectively, the position (i.e., xk

t and ykt ) of user
k is determined by:

xk
t = xk

t−1 + s · (ckt − ckt−1) · cos(θkt−1) (4)

ykt = ykt−1 + s · (ckt − ckt−1) · sin(θkt−1), (5)

where s is the step length, which is assumed to be fixed
throughout the experiments. The estimation of the pose in
odometry frame works in recursive fashion. The initial values
of x and y are set to zero. The initial headings of different
PDR systems are treated differently. For Tango-based PDR, the
initial heading of a user is set to zero. For step counter-based
PDR, the heading is determined by the in-built magnetometer
based on geographic cardinal directions. The magnetic materi-
als in the building might affect the accuracy of the orientation
estimation. In the future, we would like to compensate for the
orientation by incorporating the gyroscope readings [48].

The odometry-based edge is determined based on the rela-
tive translation and rotation between the sequential odometry
measurements. For a user k, the rigid-body transformation
(∆xk

t , ∆ykt and ∆θkt ) between the pose at time t − 1 and
time t can be computed as:

∆xk
t

∆ykt
∆θkt

 =

cos(θkt−1) − sin(θkt−1) 0
sin(θkt−1) cos(θkt−1) 0

0 0 1

⊤ xk
t − xk

t−1

ykt − ykt−1

θkt − θkt−1


(6)

C. RSS Thresholding
The time required to compute the similarity in Equation (2)

grows linearly with the number of APs in the two fingerprints.
The computational time can be significant in densely AP cov-
ered environment, which is the typical case in modern office or
commercial buildings. A large amount of computational time
can be saved if the size of the measurements can be reduced.
Therefore, we propose to filter out the RSS observation with
value below a threshold ϑr.

Thresholding prunes observations with small RSS values,
which represent spurious readings due to multiple propagation
issues in indoor environment. In addition, larger RSS values
indicate a location close to the access point with more confi-
dence. These measurements are expected to better confine the
location of the user. In the experimental section, we show that
thresholding technique can provide a better accuracy while
consuming less computational time.

D. Finding Loop Closure Candidates
To find the observation-based edge (i.e., constraint) between

the non-consecutive poses in Equation 1, we need to perform



2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2957293, IEEE Internet of
Things Journal

WIFI access point

(a) Experimental snapshot in our
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Fig. 2. (a) Snapshot of a person holding a phone and walking in the
environment; (b) The trained variance model at two different buildings.
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Fig. 3. Scatter plot of similarity versus distance from experimental data in
building 1.

loop closure detection. The observation-based edge consists of
two different types of edges, namely similarity-based edge and
turning-based edge. In our approach, each fingerprint carries
the odometry information where the fingerprint is recorded
(i.e., x, y, and the orientation θ of a user). We first compute
the relative distance d(xm

i ,xn
j ) and orientation θ(xm

i ,xn
j )

between the odometric poses of two fingerprints Fm
i and Fn

j . If
these values are smaller than pre-defined thresholds (50 meters
and 0.3 radians for distance and orientation respectively), we
compute the similarity sn,jm,i between them. We add a tuple
< xm

i ,xn
j , s

n,j
m,i > as a candidate of the loop closure if the

similarity sn,jm,i exceeds a threshold ϑs, which is one of the
few parameters that has to be supplied by the user. The impact
of ϑs on the performance is not too critical, as shown in
our experiments. In most cases, ϑs = 0.7 gives good results.
We reject the similarity with values smaller than ϑs, to avoid
false positive loop closures. To improve the accuracy of the
system, we further check if this loop is a turning-based loop.
We identify a turn by examining the orientation changes and
checked the fitness of their respective tracks by a matching
algorithm. If the fitness score is higher than a threshold, we
consider this loop as a turning-based loop. The detail of the
detection of turning-based loop can be found in Section III-G.

E. Model Training

To optimize Equation 1, an uncertainty estimation of the
constraint is necessary for all edges in SLAM graph. For
odometry-based edges, the parameter is obtained from the
motion model. We now need to derive a model to represent
the uncertainty of the observation-based edges. Our solution
is to train such model by passing over the observation data
(i.e., odometry and radio fingerprints), which is recorded by
the smart phone as shown in Figure 1.

Our goal is to generate an uncertainty model to feature
the distance variance of two radio fingerprints given their
similarity. To build such a model, we need to know the
true locations where the fingerprints are recorded or relative
distance between the recorded positions, which is not possible
without any external reference system. Although the error from
odometry accumulates in the long term, it is sufficiently small
for a short time of duration. In this work, we assume odometry
is accurate enough for the distance traveled less than 100
meters, which is suitable for most inertial tracking platforms
[48] [49] [50]. For example, authors in [49] evaluated the
visual odometry with wide angle and fisheye cameras, and
showed a relative positioning error of less than 1.4% with
a distance of 538 meters traveled. Therefore, we compute the
degree of similarity for close fingerprint pairs. These values are
annotated with the distance between the two locations using
the PDR system. As a result, we will get a set of K training
samples: {sk, dk}Kk=1, where sk is the similarity and dk is the
distance of the fingerprint pair. Figure 3 shows the scatter plot
of distance versus similarity in one of the buildings. We then
train a model which features the variance of distance given
a similarity by binning. That is, for a similarity value s, we
compute the variance of the samples that sites in the small
interval r around s:

var(d|s) = 1

c(b(s, r))

∑
k∈b(s,r)

dk
2 (7)

where c(b) counts the number of samples in interval r.
var(d|s) denotes the variance of the distance d given a
similarity s. Although binning is a simple way for smoothing,
the computation is efficient, since assigning the sample into a
bin is straightforward. One example of the variance computed
in two different buildings is shown in Figure 2(b). The resulted
variance is stored in a look up table, which could be used in
the second stage of SLAM, as shown in Figure 1.

F. Merging Tracks at Different Times

To leverage the power of crowdsourcing, we utilize the
measurements captured from different users to generate a
radio map of the environment. This involves the loop closure
detection between different users in order to correct their
paths using the power of crowdsourcing. The tracks recorded
from different users are based on different reference systems,
for example different starting positions. The determination of
orientation is different for the two pedestrian dead reckoning
systems. The Tango-based PDR estimates the orientation by
visual-inertial odometry based on the starting pose and the step
counter-based PDR determines the orientation based on the
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compass readings and is not relevant to any starting position.
Therefore, these trajectories are needed to be merged into the
same coordinate system to guarantee a robust loop closure
detection between different users.

In this paper, we start the tracking by assuming all users
passing by the same place. This is quite reasonable since users
may pass through several key landmarks in an environment
for example entrance of a building or the elevator. One might
argue that in large buildings for example airport, not all users
share the common place. It is possible to first build several
sub-maps, and then merge them into a large and consistent
map [51] [52] [53]. An edge is added to connect the first
nodes in different tracks. For the transformation matrix zn,jm,i,
we set xn,j

m,i and yn,jm,i to zero and the covariance is obtained
by checking the covariance table as detailed in Section III-E.
Due to the omnidirectional characteristics of antennas, the
facing of a user has very little impact on the radio signals,
therefore the radio fingerprint does not deliver any orientation
information. This is the reason why Section III-E does not
model orientation variance with respect to the similarity. Based
on two fingerprint observations, we have no knowledge about
how accurate is the relative orientation between two poses,
we therefore set θn,jm,i to zero and give a very large covariance
value (i.e., 1000) to the edge, meaning that we are not able to
infer the relative angle from two radio fingerprint observations.
For users starting from arbitrary locations, we refer to [54] [55]
[56] [57] to merge the paths based on the radio measurements
and activity landmarks in our future work.

G. Turning Identification and Matching

A typical indoor infrastructure often contains various land-
marks, such as turnings, elevators, and staircases. These land-
marks are unique in an existing infrastructure and can be used
as a good feature for loop closure identification in a SLAM
system. In this case, a loop closure can be claimed if two
landmarks match each other. Due to the physical constraint
of an environment, such kind of loop closure provides lower
positioning uncertainty as compared to fingerprinting-based
loops. For example, the size of an elevator is usually less
than 3 meters, and the turning radius during human walking
is smaller than a typical corridor width (i.e., 5 meters), while
the positioning error using fingerprinting-based approach is
usually larger than 5 meters.

Here we only focus on the turning features in a trajec-
tory, which is regarded as one of the most common indoor
landmarks. A slide window is used to produce segmentations
of the track. In particular, we define a segmentation Ck

t of
user k at time t as a collection of sequential poses with a
window size of w, i.e., Ck

t = {xk
t′ | − w

2 ≤ t′ − t ≤ w
2 }.

For each loop closure candidate < xm
i ,xn

j >, we check if
there are turnings at these poses by examining the orientation
change in segment Cm

i and Cn
j . If yes, we try to match the two

segmentations Cm
i and Cn

j using ICP (Iterative Closest Point)
[58]. If the fitness score (i.e., average of squared distances
between the correspondence points) between Cm

i and Cn
j

is smaller than a predefined threshold ϑf , we regard loop
< xm

i ,xn
j > as the turning-based loop. Otherwise, this loop
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Fig. 4. Example of the track (blue color) and turnings detected (red circles)
with a window size of 20 based on the approach described in Section III-G.
In total, 111 turnings are identified. These turnings are further examined by
turning matching module to find the potential turning-based loops.

x(m)
-1 0 1 2 3

y(
m

)
0

1

2

3

-1

Segmentation 
Segmentation 

Correspondence

4 5 6 7

-5

-4

-3

-2

-6

-7

Fig. 5. Example of two track segmentations (i.e., Cm
i and Cn

j in blue and
red color, respectively), and the correspondence points found using ICP (green
color). A fitness score is calculated to determine if this candidate is a turning-
based loop.

closure is referred to as fingerprint-based loop, as shown in
Figure 1. The transformation zn,jm,i of both types of loop is set
to zero. We treat the covariance matrix Σn,j

m,i differently: for
fingerprint-based loop, the covariance along x and y can be
found at the looking up table computed previously in Section
III-E; for turning-based loop, we set the covariance along x
and y to 5.0, which is smaller than fingerprint-based loop (i.e.,
8.0 in Figure 2(a) with the highest fingerprint similarity). The
orientation covariance in Σn,j

m,i is set to 1000, meaning that
we do not have any knowledge about the orientation of the
two poses by the radio observations or the matching of two
turnings. The details of turning identification and matching
will be described in subsequent parts:

1) Turning Identification: We first segment the compass
data and find the potential turnings [16]. For the pose xk

t ,
we calculate the mean orientations for the poses with times-
tamps smaller and larger than t in the segmentation Ck

t , i.e.,
θk

−

t = µ{θkt′ |t′ − t ≤ 0} and θk
+

t = µ{θkt′ |t′ − t ≥ 0}.
If |θk+

t − θk
−

t | is higher than a threshold (for example π
3 as

suggested in [16]), a turning is identified. The window size w
here has the impact on the performance of turning detection
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and we show its impact on the accuracy in the experimental
section. One example of the track and turnings detected are
shown in Figure 4. A better approach to improve the accuracy
of turning detection can be found in [59].

2) Turning Matching: The ICP aims to find a transfor-
mation (translation and rotation) between two point clouds
that minimizes the sum of the square distance between the
correspondence points. This approach has been extensively
used to match 2D laser scans in the field of robotics.

To find the correct transformation using ICP, an appropriate
initial transformation has to be provided, otherwise ICP will
fall into the local minimum. Rather than using the global raw
odometry for a segmentation Ck

t , we use the relative translation
between xk

t′ and xk
t , i.e., Ct = {Txk

t′

xk
t
| − w

2 ≤ t′ − t ≤ w
2 }.

Since the sampling rate of our pedestrian tracking system is too
low (less than 1.0 HZ), we further interpolate the trajectory
to get a large amount of locations for performing ICP. An
illustration of the turning matching using ICP is shown in
Figure 5.

We finally considers < xm
i ,xn

j > as a valid match (i.e.,
turning-based loop) if the fitness score is smaller than a
threshold ϑf . Robust loop closure detection is essential to
a SLAM system, as incorrect loop closures will ruin the
consistency of trajectory and the map. Other heuristic approach
can be applied to further examine the loops and filter out
the suspicious ones. Authors in [60], for example, proposed
an approach to group the close loop closures and check
the temporal and spatial consistency for robust loop closure
detection. However, this technique goes beyond the scope of
this paper, hence, we add the loop closures without performing
futher consistency check.

H. Pose Graph Optimization

The Equation 1, which represents a graph consisting of
poses (i.e., nodes) and constraints (i.e., edges), is finally
optimized through the pose graph optimization algorithm
GraphSLAM. For the implementation, we choose Levenberg-
Marquardt in g2o [23], which is freely available and is one of
the state-of-the-art SLAM algorithms1.

IV. EXPERIMENTAL RESULTS

A. Experimental Details

We program two smart phones (Lenovo Phab 2 Pro with
Android 6.0.1 and Sony Xperia Z3 with Android 5.0.2) to
receive the signal strength from APs and perform pedestrian
dead reckoning. In particular, the Lenovo phone uses the
Tango for position tracking and the motion tracking data is
recorded every five seconds due to its high tracking accuracy.
We implement the step counting on a Sony phone and record
the step counting and the compass readings every one second.
To evaluate the performance of the proposed approach, we
conducted experiments on the Level 3 of Building 2 at
Singapore University of Technology and Design with a size
of 130m×70m (see Fig. 6). This environment is comprised of
corridors, concrete walls, and wide open space. We asked a

1https://github.com/RainerKuemmerle/g2o

Ground truthEstimation Odometry

(a) Evaluation of Tango-based pedestrian dead reckoning system

Ground truthEstimation Odometry

(b) Evaluation of step counter-based pedestrian dead reckoning system

Fig. 6. Ground truth, odometry, and estimated path with our proposed
approach under two different pedestrian dead reckoning (PDR) systems,
namely Tango-based PDR and step counter-based PDR.
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Fig. 7. Part of the estimated track over time using Tango-based pedestrian
dead reckoning and fingerprint-based constraints inferred with a similarity
threshold of ϑs = 0.7.

person to hold two phones (i.e., Lenovo Phab 2 Pro and Sony)
and walk in the building along different paths with a regular
walking speed. Four tracks were recorded at different times to
show the power of the collaborative SLAM. For each track,
the user started from the same position. The total distance
traveled is 1906 meters with a duration of 2179 seconds and
a number of 1702 unique MAC addresses are detected. This
results in four log files with a duration of 687, 582, 439, and
471 seconds respectively. The step length s is fixed to 0.7m
throughout this paper. Fig. 2(a) shows a snapshot during the
experiment.
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(b) Visualization of track from
user2 using Tango-based PDR
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(c) Visualization of track from user3 using
Tango-based PDR
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(d) Visualization of track from
user4 using Tango-based PDR
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(e) Visualization of track from user1
using step counter-based PDR
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(f) Visualization of track from user2
using step counter-based PDR
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(g) Visualization of track from user3
using step counter-based PDR

x(m)
-20 0 20 40 60

y(
m
)

-20

0

20

40

60

80

100

120

-40

GT

Est.

Odom.

-40

(h) Visualization of track from user4
using step counter-based PDR

Fig. 8. A comparison between ground truth from point cloud-based SLAM, estimated track using our approach, and raw odometry of the three individual
users using two different pedestrian dead reckoning systems (i.e., Tango and step counter).

TABLE II
THE ROLE OF PARAMETERS IN THE PROPOSED METHOD AND GUIDELINES ON HOW TO CHOOSE THEIR VALUES.

Parameter Range Guidelines to choose the parameters

ϑs [0, 1]
Threshold used to claim a loop closure based on similarity between two radio fingerprints.
A large ϑs will produce less loop closures and a small ϑs will result in false loop closures.
A setting of ϑs = 0.7 is recommended in our approach.

ϑr [-90, -50]
Threshold used to filter out the low RSS measurements. The choice of ϑr depends on the
distribution of the received signal strength in a radio environment. A value of ϑr = −70
is suggested in our approach.

r [0, 1]
Binning size to train the variance model. A small r requires more training time and training
samples. A large r is not able to characterize the detail of the variance model. A setting
of r = 0.2 produces the best results in our approach.

w [0, 200]
Window size to identify a turn. A large w will result in more false turnings and a small w
is not able to infer the correct turnings. w = 40 is suggested in our approach.

ϑf [0, 1]
Threshold used to claim a valid turning match. A large ϑf will discard the true turning
loop candidates and a small ϑf will incorporate too many false turning loops. ϑf = 0.5 is
appropriate for the application.



2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2957293, IEEE Internet of
Things Journal

TABLE III
EVALUATION OF THE SYSTEM PERFORMANCE WITH RESPECT TO DIFFERENT RSS THRESHOLDS ϑr . THE TABLE SHOWS THE POSITIONING ACCURACY

(MEAN, STANDARD DEVIATION, MAXIMUM, AND MEDIAN) IN METERS, AVERAGE NUMBER OF MAC ADDRESSES DETECTED, AND AVERAGE
COMPUTATIONAL TIME FOR LOOP CLOSURE DETECTION.

ϑr

Tango-based Step counter-based
Mean±

Std. Dev. Max./Median
Number
of MAC

Comput.
time (s)

Mean±
Std. Dev. Max./Median

Number
of MAC

Comput.
time (s)

-90 1.39±1.51 7.86/1.37 179.23 24.50 14.95±7.09 37.72/14.85 129.36 426.37
-80 1.26±1.21 6.30/1.19 137.81 19.53 5.91±3.76 20.87/5.14 70.08 212.07
-75 1.06±0.49 4.53/0.94 81.29 12.31 5.40±3.60 21.52/4.56 43.36 127.67
-70 0.77±0.46 3.79/0.73 47.97 5.73 5.19±3.48 21.64/4.47 25.49 72.34
-65 0.92±0.44 3.87/0.84 28.94 3.29 5.43±3.43 20.40/4.70 13.41 37.78
-60 1.24±0.89 4.91/1.13 16.22 1.76 5.95±3.82 22.78/5.06 6.08 20.36
-50 2.44±0.95 5.81/2.12 3.29 0.37 11.51±5.82 35.03/11.52 0.67 3.08

odom. 8.03±7.80 31.55/4.22 NA NA 15.39±7.89 41.23/14.58 NA NA

B. Ground Truth and Accuracy Comparisons

To extract the ground truth as comparison, we optimized the
track from Tango using GraphSLAM taken 3D point clouds
as input. We implement loop closure detection based on the
point cloud library (PCL) [61]. We identify Harris keypoints in
a pair of point clouds and compute the corresponding SHOT
(Signature of Histograms of OrienTations) descriptors [62].
We match these descriptors with k-nearest neighbors algorithm
(k-NN) and find an initial transformation using SVD (singular
value decomposition). The transformation is further refined by
ICP. If the number of matched points exceeds a threshold (half
size of the point cloud), a loop closure is confirmed and added
to the graph as constraints. We treat this optimized path as the
ground truth to evaluate the accuracy of our system.

We show the accuracy by the root mean square error
(RMSE) between the ground truth and the estimation. Our
experiments show that we are able to achieve an accuracy
of 0.6 meters with Tango-based PDR and 4.76 meters of
a step counter-based PDR with a size of 130m×70m, as
shown in Figure 6. The optimized track is annotated with the
radio measurement and can serve as the radio map for the
positioning of another user. In Table II, we show the important
parameters used in this paper and the remarks of how to choose
these parameters. The final positioning error is calculated at
the end of the process after the loop closure detection, turning
matching, and pose graph optimization. Larger positioning
errors are expected in a real time system, since we have to
process the incoming data in a sequential way and provide
pose estimation at regular intervals before loop closures are
detected.

To implement a practical indoor localization system, the
mechanism to deal with the change of the radio environment
is a necessity. The evolution of the radio environment (for ex-
ample adding or removing the access points) can be examined
by looking at the signal variance at similar locations, as shown
in [63] [64] [65] [66] [67]. Some MAC addresses might be
static for a fixed duration of time, but are essentially mobile
for example personal hotspots. A good way to address the
mobile hotspots issue is to filter out the MAC addresses by
the organizationally unique identifier (OUI), which is used to

uniquely identify a vendor2. The MAC address from a phone
manufacturer should be removed from the detection list to
prevent the uncertainty of incorporating the additional mobile
hotspot observations. Another approach to filter out the mobile
hotspots is to look at the spatial relations of the detected
positions of a particular MAC address [68] [69] [70].

C. Impact of Different RSS Threshold ϑr

We examined the influence of RSS thresholding on the
accuracy in this series of experiments. We set the similarity
threshold ϑs = 0.7 and use a binning size r = 0.2. We chose
ϑr values between -90 and -50 to evaluate the mean accuracy,
as listed in Table III. As compared to the raw odometry, our
approach can effectively reduce the accumulated odometry
error: with the setting of ϑr = −70, our approach improves
the positioning accuracy by 90.4% and 66.3% for Tango (from
8.03m to 0.77m) and step counter (from 15.39m to 5.19m)
respectively. In addition, the accuracy of the PDR has a very
high impact on the accuracy achieved with our SLAM system:
Tango shows a good motion tracking performance and we
achieved an accuracy of 0.77m with a threshold ϑr = −70.
The accuracy achieved with Tango is better than state-of-the-
art fingerprinting-based approaches [1], [12]. While the step
counter results in a large amount of accumulated odometry
error and the accuracy obtained with our approach is worse
(5.19m). A further investigation to the PDR system will help
to improve the accuracy, which will be one of our future work.
One has to note that the accuracy is achieved without training
as opposed to the fingerprinting-based approaches, where a
time-consuming phase to collect and annotate the fingerprints
is prerequisite to guarantee a good positioning accuracy.

Table III also shows that we maintain a good accuracy
with an RSS threshold between -75 and -65, while the com-
putational time decreases considerably with the thresholding
technique. As an example, for Tango-based system, a threshold
of -70 reduces the computation time to 5.73 seconds as
compared to a threshold of -90 (i.e., 24.28 seconds). At the
same time, the accuracy even increases by 0.62 meters (error
drops from 1.39m to 0.77m). A suitable threshold produces

2http://standards-oui.ieee.org/oui.txt
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TABLE IV
EVALUATION OF THE PROPOSED APPROACH WITH TWO DIFFERENT

PEDESTRIAN DEAD RECKONING SYSTEMS UNDER DIFFERENT SETTINGS
OF SIMILARITY THRESHOLD ϑs . THE TABLE SHOWS THE POSITIONING
ACCURACY (MEAN AND STANDARD DEVIATION) IN METERS AND THE

NUMBER OF CONSTRAINTS INFERRED.

ϑs

Tango-based Step counter-based
Mean ±
Std. Dev

No. of
constr.

Mean ±
Std. Dev

No. of
constr.

0.95 5.63±6.76 18 13.86±7.67 2098
0.9 2.15±0.71 94 6.29±3.67 4241
0.8 1.06±0.51 384 5.49±3.61 10582
0.7 0.77±0.46 715 5.19±3.48 17020
0.6 0.81±0.76 1150 5.35±3.34 23859
0.4 0.80±0.79 2198 5.49±3.66 42625
0.2 1.06±0.89 3494 5.94±4.02 66423
0.1 1.09±0.95 4517 6.09±3.94 85834

TABLE V
EVALUATION OF THE MEAN POSITIONING ACCURACY UNDER THE IMPACT

OF DIFFERENT SETTINGS OF ϑs AND ϑr FOR TANGO-BASED APPROACH.

ϑs
ϑr

-90 -80 -75 -70 -65 -60 -50
0.9 2.96 2.65 2.38 2.15 1.81 2.08 2.61
0.8 1.68 1.29 1.16 1.06 1.23 1.41 2.58
0.7 1.39 1.26 1.06 0.77 0.92 1.24 2.44
0.6 1.22 1.02 0.87 0.81 0.89 1.27 2.35
0.5 0.88 0.83 0.78 0.82 0.93 1.57 2.33
0.4 0.99 0.91 0.82 0.80 0.85 1.54 2.40
0.3 1.19 1.16 1.08 0.92 0.89 1.61 2.35
0.2 1.26 1.27 1.22 1.06 0.96 1.65 2.35
0.1 1.28 1.29 1.23 1.09 1.01 1.70 2.30

a good accuracy, as it will filter out the suspicious radio
signals. However, a threshold larger than -65 leads to a bad
result (for example, 1.24 meters of accuracy with ϑr = −60
for Tango-based system). The ground truth, estimation, and
odometry of individual tracks using two different pedestrian
dead reckoning systems are visualized in Figure 8. A part of
estimated trajectory and the constraints inferred are shown in
Figure 7.

D. Impact of Different Similarity Threshold ϑs

Next, we performed a series of experiments to examine
the influence of accuracy with respect to different similarity
thresholds ϑr. We show the results in Table IV. We fixed
RSS threshold ϑr = −70 and a binning size r = 0.2. We
increased the similarity threshold ϑs from 0.1 to 0.95 to
evaluate the accuracy and the number of constraints inferred.
From Table IV, we can observe that the number of constraints
is different for Tango and step counter-based PDR due to
different sampling rates of the device (5 seconds for Tango and
1 second for step counter): Tango-based PDR offers a small
number of constraints as compared to step counter-based PDR.
In addition, the threshold has a high impact on the accuracy
and the number of constraints. Applying a high threshold will

TABLE VI
EVALUATION OF THE POSITIONING ACCURACY (MEAN, STANDARD

DEVIATION, MEDIAN, AND MAXIMUM IN METERS) WITH TWO
PEDESTRIAN DEAD RECKONING SYSTEMS UNDER THE IMPACT OF

DIFFERENT CONFIGURATIONS OF BINNING SIZE r.

r
Tango-based Step counter-based

Mean ±
Std. Dev

Max. /
Median

Mean ±
Std. Dev

Max. /
Median

1.0 1.03±0.63 4.29/0.89 6.23±3.84 24.83/5.59
0.8 0.85±0.50 4.22/0.85 5.71±3.50 21.97/5.03
0.6 0.84±0.39 3.62/0.79 5.32±3.54 21.78/4.60
0.4 0.81±0.62 4.26/0.76 5.22±3.51 21.93/4.46
0.2 0.77±0.46 3.79/0.73 5.19±3.48 21.64/4.47
0.1 0.79±0.40 3.59/0.86 5.23±3.79 20.97/4.13
0.05 0.81±0.39 4.00/0.87 5.29±3.52 21.48/4.50

result in a small number of constraints and a decrease of the
accuracy. For Tango-based system, we obtain a mean accuracy
of 0.77m with ϑs = 0.7, which is an improvement of 86.3%
as compared to the mean accuracy of 5.63m with ϑs = 0.95.
Yet, such an improvement is at the expense of a higher number
of constraints added (i.e., 715 constraints with ϑs = 0.7 as
compared to 18 with ϑs = 0.95). But the accuracy does not get
improved with a threshold smaller than 0.6. One reason could
be because a low similarity value will always come along with
a very large covariance, and has very less strength to correct
the odometric error. A setting of ϑs = 0.7 seems to be a good
trade off between the accuracy and the number of constraints
inferred. Table V showed the accuracy by jointly optimizing
the parameters ϑs and ϑr for Tango-based approach. As can be
seen from this table, a careful examination of ϑs and ϑr will
improve the accuracy. A too large or too small will obviously
deteriorate the performance of our approach.

E. Impact of the Binning Size of Training

Next, we examined the influence of accuracy with respect
to various binning sizes r. We chose RSS threshold ϑr = −70
and similarity threshold ϑs = 0.7. To evaluate accuracy under
impact of different binning sizes, we set r to the following
values r = {0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0}. In our approach,
the uncertainty model is trained with all the collected data. We
show a comparison of the results in Table VI. This table shows
that the best choice of r is 0.2. The covariance estimated with
a large r is usually too large to compensate for the error from
the odometry. Optimizing r gives an improvement of 25.2%
(0.77m and 1.03m for r = 0.2 and r = 1.0 respectively)
for Tango-based PDR and 16.6% (5.19m and 6.23m for
r = 0.2 and r = 1.0 respectively) for step counter-based PDR.
Covariance of the loop is a key to optimize the pose graph, as it
is the only information to measure how close the two locations
are in a loop, therefore, a careful examination of the parameter
will lead to an improvement of the accuracy. The covariance
added here (see Figure 2(b)) is much smaller as compared
to the accumulated odometry error (notice that the maximum
positioning error of Tango and step counter in Table III are
31.55m and 41.23m respectively). This is why we are still
able to correct the accumulated odometry error. The approach



2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2957293, IEEE Internet of
Things Journal

TABLE VII
COMPARISON OF MEAN POSITIONING ACCURACY UNDER DIFFERENT

SIMILARITY MODELS TRAINED AT TWO DIFFERENT BUILDINGS
REGARDING TANGO-BASED PEDESTRIAN DEAD RECKONING SYSTEM.

Model Binning size r
0.05 0.1 0.2 0.4 0.6 0.8 1.0

Bld1 0.81 0.79 0.77 0.81 0.84 0.85 1.03
Bld2 0.84 0.81 0.78 0.85 0.86 0.91 1.07

presented here provides a way to automatically calibrate the
uncertainty model with the odometry measurement. The model
generated in different environments might be slightly different,
as shown in Figure 2(b). To evaluate the accuracy under the
impact of different similarity models, Table VII compared the
results using the similarity models produced from two different
buildings, namely Building1 (the one used for the verification
of the positioning accuracy) and Building2 regarding to Tango-
based approach. As can be seen from this table, the two
models provide similar positioning accuracy, which proves our
assumption that the similarity model can be applied to different
environments.

F. Impact of Turning Detection and Matching

We compared the accuracy with and without the integration
of turning features in the next series of experiments. We fixed
RSS threshold ϑr = −70, similarity threshold ϑs = 0.7, and
binning size r = 0.2. We varied the setting of w and ϑf

to evaluate their impact on the accuracy. Figure 9 shows a
comparison of the results. This figure shows that the accuracy
can be improved by additional integration of turning features:
we obtain an improvement of 22.1% for the Tango-based
pedestrian dead reckoning (from 0.77m to 0.6m with w = 40
and ϑf = 0.5) and 8.3% for step counter-based dead reckoning
(from 5.19m to 4.76m with w = 40 and ϑf = 0.5). The
improvement of Tango is slightly higher as compared to the
step counter-based system. Since the odometry error of Tango
is smaller than step counter, the turning feature here exhibits
great capability to correct the drift error of odometry. However,
for step counter-based PDR, the error is dominated by the
odometry and the turning feature shows less improvement to
the accuracy as compared to Tango-based PDR.

The number of turnings detected with different settings of
w is shown in Table VIII. The constraints are mostly from
the fingerprinting matching. As can be seen from Table VIII,
only 26 turnings are detected with w = 40, which is much
less than the number of fingerprinting-based constraints (715
for Tango-based approach with ϑs = 0.7 as shown in Table
IV). Due to the low sampling rate, Tango-based PDR leads to
a small number of turnings as compared to the step counter-
based PDR. A large value of w leads to an increasing number
of turnings detected. From Figure 9, we can also observe that
a window size w = 40 leads to the best accuracy for both
systems. A too high or too small w obviously results in a less
improvement to the accuracy.

In addition, Figure 9 shows that a too large or too small
ϑf leads to a decrease of the accuracy. A suitable fitness
threshold ϑf will help to remove the false turning-based loop
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Fig. 9. The impact of turning detection and matching on average positioning
accuracy with two different pedestrian dead reckoning systems under various
settings of window size w and ϑf .

TABLE VIII
COMPARISON OF NUMBER OF TURNINGS DETECTED WITH TWO DIFFERENT
PEDESTRIAN DEAD RECKONING SYSTEMS UNDER VARIOUS SETTINGS OF

WINDOW SIZE w.

Window size w 10 20 40 60 80
Turnings (Tango) 0 6 26 45 78

Turnings (step counter) 0 423 1447 2666 3973

closures. A small ϑf will not be able to identify true matched
turnings and results in a small number of turning-based loops
and therefore has less strength to improve the accuracy. A
large ϑf produces too many false turning-based loops, which
leads to a deterioration of the result. As an example, for step
counter-based PDR with w = 40, a setting of ϑf = 0.5 gives
an accuracy of 4.76m, which produces an improvement of
3.8% and 7.0% when compared to ϑf = 10.0 (4.95m) and
ϑf = 0.02 (5.12m), respectively.

G. Computational Time

Finally, we evaluated the time consumption at each stage
of our approach. The results are listed in Table IX. In our
approach, we process the recordings in a batch matter, which
means that we optimized the graph after all loop closures
are identified. An Intel Core i5-4200M CPU with 2.5GHz
frequency and 4GB RAM is used to process the measurements.
We set ϑr = −70, ϑs = 0.7, r = 0.2, w = 40, and ϑf = 0.5.
As can be seen from Table IX, the entire data processing
took 17.81 (6.08+5.73+5.93+0.07) seconds for tango-based
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TABLE IX
EVALUATION OF THE COMPUTATIONAL TIME (IN SECONDS) IN EACH

STAGE USING TWO DIFFERENT PEDESTRIAN DEAD RECKONING SYSTEMS.

Stage duration(s)
Tango Step counter

Data recording (time per track) 544.75 544.75
Model training+

variance computation 6.08 23.58

Loop closure detection 5.73 72.34
Turning detection and matching 5.93 31.82

Pose graph optimization 0.07 1.65

dataset, which is almost 30 times faster than the data recording
stage (544.75 seconds), while the processing time is much
longer for step counter-based dataset (approx. 129.39 seconds,
i.e., 23.58+72.34+31.82+1.65), due to its higher sampling
rate. Additionally, optimization of the graph only took less
than two seconds (0.07 and 1.65 seconds for Tango and
step counter-based system respectively). In our current offline
implementation, we compute the similarity of all pairs of Wi-
Fi measurements in the entire dataset to find the potential loop
closures. This module consumes too much time (72.34 seconds
for the step counter version as shown in Table IX), and thus
cannot be used for real time pose estimation. However, we
believe the computation can be further optimized to make on-
line implementation possible, e.g. we only need to compare the
current Wi-Fi measurement with the previous measurements
for the loop closure detection (estimated to be 72.34/2179 =
0.03 seconds), which is less than the current Wi-Fi sampling
rate of one second interval. Nonetheless, we believe further
optimization is needed to ensure online implementation in real
time.

When more users are involved in the experiment, it will take
longer time to run the algorithm due to the increasing number
of nodes and the constraints in the graph. Still, our approach
is efficient when compared to vision-based approaches, as
vision-based approach requires heavy computational resources
due to feature extraction and feature matching. In addition,
there can be data association problems which will result in
the loop closure failure. On other hand, the MAC address of
the AP is unique. It is not necessary to run the optimization
algorithm for each new Wi-Fi measurement. We suggest to run
the optimization when a loop closure is detected or a certain
amount of loop closures has been identified. Solutions to
reduce the computational time can be found in [71] [72]. One
might notice that the model training described in Section III-E
takes long time. But this phase can be performed offline, and
the learned model can be saved and applied to other users or
different environments once it is generated.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel approach for collab-
orative simultaneous localization and radio fingerprint map-
ping (C-SLAM-RF) in unknown environments. The proposed
system makes use of a pedestrian dead reckoning system
and the RSS measurement from surrounding wireless access

points. We further incorporate the motion features to improve
the accuracy of the system. The proposed approach does not
require any knowledge of the map and locations of the access
points. The performance of our approach is evaluated in a
large scale environment under two pedestrian dead reckoning
systems with different motion tracking accuracies. Our results
reveal that the accuracy of a pedestrian tracking system plays
an important role in the accuracy of our approach. We obtained
an accuracy of 0.6m and 4.76m for Tango and step counter-
based pedestrian dead reckoning systems, respectively. The
quality of the radio map will increase with more users involved
in collecting the measurements due to the crowdsourcing
nature of the proposed approach. One of our future work is
to enhance the accuracy of step counter-based PDR by stride
length estimation and the fusion of gyroscope measurement.
Another direction would be the evaluation of the indoor
positioning accuracy by applying the radio map constructed
from our SLAM system.
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