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Abstract: The recent growth in real-time, high-capacity ride-sharing has made on-demand public transit (ODPT) a reality. ODPT
systems serving passengers using a vehicle fleet that operates with flexible routes, strive to minimise fleet travel distance.
Heuristic routing algorithms have been integrated in ODPT systems in order to improve responsiveness. However, route
computation time in such algorithms depends on problem complexity and hence increases for large scale problems. Thus,
network segmentation techniques that exploit parallel computing have been proposed in order to reduce route computation time.
Even though computation time can be reduced using segmentation in existing techniques, it comes at the cost of degradation of
route quality due to static demarcation of boundaries and disregarding real road network distances. Thus, this work proposes, a
directionality-centric bus transit network segmentation technique that exploits parallel computation capable of computing routes
in near real-time while providing high scalability. Additionally, a dynamic fleet allocation algorithm that exploits proximity and
flexibility to minimise vehicle detours while maximising fleet utilisation is proposed. Experimental evaluations on a real road
network confirm that the proposed method achieves notable speed-up in flexible route computation without compromising route
quality compared to a widely used unsupervised learning technique.

௑Nomenclature
Variables

Q queue of nodes to process (initially empty)
s new elementary base cluster
B list of junctions (initially empty)
C list of elementary clusters (initially empty)
Ci cluster at the ith index of C
T list of leaf nodes (initially empty)
R root node of the polyline tree
W list of child nodes (initially empty)
Wi child node at the ith index of W
L all leaf nodes

1௑Introduction
The global on-demand transit market is expected to be a 250 billion
USD industry by 2026 [1] with its rapid growth in the recent past.
Driven by the technological developments in fields such as GPS-
based location tracking, mobile communication, smartphone
technology and cashless payments, novel on-demand transit
systems such as ride-hailing, ride-sharing, car-pooling etc. have
emerged as attractive alternatives to public transit. Lately, the on-
demand transit market has seen a trend in real-time, high-capacity,
ride-sharing systems [2].

Commonly known as on-demand public transit (ODPT)
systems, ODPT is characterised by a fleet of high-capacity vehicles
such as minivans or minibuses, that respond to passenger demand
in real-time by picking passengers from the origin and dropping-off
at the destination. Furthermore, vehicles in an ODPT system do not
follow fixed routes, unlike public transit, necessitating to compute
routes prior to deployment. At the same time, in an ODPT system,
the operator strives to increase profits by optimally utilising the
fleet of vehicles while providing real-time service to passengers.
Thus, the vehicle miles travelled (VMT) of the fleet need to be
minimised in order to reduce operating costs. High responsiveness
is also of paramount importance while serving the significantly
high demand. This implies that the computed routes for the fleet of
vehicles not only need to be optimised to reduce the VMT but also

need to be generated rapidly to improve responsiveness. As a
result, exact algorithms which produce optimal results but consume
a significantly high computation time cannot be used to generate
routes in an ODPT system as the responsiveness is crucial for
system performance. Therefore, works propose efficient heuristic
algorithms that generate near-optimal results significantly faster.
However, a common drawback of the heuristic algorithms is the
dependency of the computation time with the complexity of the
network. This increases the computation time for scenarios with
high demand such as ODPT. As a result, network segmentation
techniques that can leverage on parallel computing to speed-up
computations have been proposed.

Network segmentation breakdowns the large network into a set
of independent sub-networks, which can be solved in parallel
resulting in reduced computation time. Clustering is a well-known
unsupervised learning method used to segment a network into a set
of independent sub-networks that enables to exploit parallel
computing architectures. Although clustering can reduce the
computation time of route generation, it can lead to poor quality
solutions if the clusters lead to a higher VMT of the fleet. Existing
works rely on methods such as proximity-based clustering and
static clustering [3, 4]. The former method is based on the
proximity of the locations while the latter demarcates cluster
boundaries based on major roads, common destinations etc.
However, in an ODPT system, the locations of demand change
dynamically. Therefore, existing clustering methods cannot be
relied upon to generate near-optimal routes significantly faster.
Hence, there is a need to develop rapid and robust, road network-
aware clustering methods for ODPT to speed-up computations
while maintaining accuracy.

ODPT systems have been specifically deployed to provide easy
and convenient connections to rapid transit nodes [5]. In these
systems, passengers request for rides indicating the pick-up
location and the system matches the passenger with available
vehicles, which operate in shared-ride mode. Thus, we use the
setup proposed in our previous work [5] which studies an ODPT
system consisting of a fleet of homogeneous, high-capacity,
electric vehicles (EVs) dispersed in a neighbourhood, that responds
to the passenger demand in real-time by picking passengers from
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the origin and dropping off at the nearest metro station (common
destination). The system generated near-optimal routes using a
genetic algorithm (GA). However, the GA consumes several
minutes to execute when the demand is high, which affects the
responsiveness of the algorithm. Thus, in this work, we propose a
bus transit network segmentation method that leverages the
proposed GA to compute routes in each cluster parallelly. The
contributions of this work are: (i) a directionality-centric technique
for systematic segmentation of bus transit network; (ii) a technique
for identifying clusters based on feasible shortest path routes from
bus stops to the destination; (iii) a dynamic fleet allocation
algorithm that exploits proximity and flexible clusters to minimise
vehicle detours and maximise fleet utilisation, respectively; and
(iv) analysis of the VMT by the fleet, computation time and failed
requests for peak and off-peak period demands. The proposed
method can generate routes significantly faster while maintaining
accuracy.

The rest of the paper is organised as follows. In Section 2, we
discuss the existing state-of-the-art work and highlight the
limitations. Next, in Section 3, we present the proposed
methodology. The results of the study are discussed in Section 4.
Section 5 presents the conclusions and identifies future research
directions.

2௑Literature review
ODPT systems necessitate high responsiveness for real-time
performance as well as near-optimal routes to reduce the VMT of
the fleet. However, a drawback of heuristic methods commonly
deployed to solve the underlying vehicle routing problem (VRP) is
the increase in computation time with the problem size. Thus,
works have explored methods to reduce the complexity of a
problem. Segmentation is a common method used to decompose a
large problem into independent small problems in order to leverage
parallel computing architectures to speed-up computations.
Existing segmentation techniques use proximity-based clustering
methods (such as the well-known k-means and k-medoids
algorithms), and methods that use static boundaries to segment
road networks. Generated clusters can be either hard or fuzzy
(soft). In hard clustering, a data point belongs to only a single
cluster as opposed to soft clustering where a data point can belong
to multiple clusters [6]. Although clustering can reduce the
computation time, the solution quality can degrade drastically if
performed unwisely. In this section, we present the existing bus
transit network segmentation methods and highlight key
shortcomings.

Ioachim et al. [7] presented a clustering algorithm for a door-to-
door transportation service. The work presents a hard clustering
method in combination with a heuristic routing algorithm to
generate routes. Given a feasible set of itineraries, the method
segments the itineraries into clusters, with each cluster containing a
segment of an itinerary where the vehicle is never empty between
the first pick-up point and the last drop-off point. Next, the authors
created a network of clusters and solved a multiple travelling
salesman problem by column generation. The authors also
proposed a heuristic to reduce the size of the network without
degrading the quality of the solution.

Jorgensen et al. [8] proposed a cluster-first, route-second
method to a dial-a-ride problem. The authors used a GA to
generate hard clusters, which consisted of a set of passengers and a
vehicle. Next, independent routes are generated for each cluster
using a heuristic routing algorithm.

Saez et al. [9] proposed a hybrid adaptive control method for a
multi-vehicle dynamic pick-up and delivery problem. The work
proposes a soft clustering method to predict the demand, which is
used to dispatch vehicles. A GA is then used in each cluster to
obtain routes.

Quadrifoglio et al. [4] and Shen and Quadrifoglio [3] evaluated
centralised and de-centralised clustering strategies for on-demand
transit service. Here, the service area is divided into clusters based
on natural boundaries such as highway corridors, administrative
zones, depot locations etc. The authors strive to cluster based on
natural boundaries to balance the number of inter-cluster trips,

which results in reducing dead-head and empty vehicle miles.
Furthermore, the authors proposed a soft clustering method to
reduce the empty vehicle miles.

Pelzer et al. [10] proposed a clustering-based match-making
algorithm for dynamic ride-sharing that strives to maximise the
utilisation while limiting the vehicle detours. The authors
introduced a segmentation method to divide the entire road
network into clusters of custom size and shape. Similar to Shen and
Quadrifoglio [3], the road network is used to identify the
boundaries of each cluster. However, in this work, the authors
proposed to scale certain clusters by a predefined factor, which
results in overlapped clusters. The authors claimed that overlapped
clusters increase the chances of matching passenger requests.

Zheng et al. [11] proposed a cluster-first, route-second method
to generate routes for a shuttle service that caters large-scale peak
demands. In the proposed method, the distance between two points
is represented using the temporal distance instead of the actual
routes. In addition, the authors also introduced a request rejection
mechanism and a scheme for ensuring solution feasibility.
Furthermore, the authors claimed that the soft clustering provides
better results compared to conventional hard clustering.

Chen et al. [12] proposed a method to solve the first-mile ride-
sharing problem using autonomous vehicles. The authors
formulated a mixed Integer Linear Programming (ILP) model to
determine the ride-sharing schemes to minimise operating costs.
The authors also introduced a hard clustering method that
facilitates parallel computing in order to reduce computational
times in large problems.

Comert et al. [13] presented a case study of the cluster-first,
route-second method using conventional hard clustering for the
capacitated VRP. The authors explored three hard clustering
algorithms, namely k-means, partitioning around medoids (PAMs)
and random clustering based on vehicle capacity and concluded
that PAM provides better solutions.

Lowalekar et al. [14] proposed to use the clustering method to
reduce the computational complexity for handling large scale real-
time ride-sharing. The authors explored three clustering algorithms,
namely grid-based clustering, hierarchical agglomerative clustering
with complete-linkage (HAC_MAX) and hierarchical
agglomerative clustering with mean linkage. Based on the
experiments, the authors concluded that HAC_MAX gives better
results.

This literature review (summarised in Table 1) reveals that
cluster-first, route-second methods reduce the computational
complexity of large scale VRP problems.

Furthermore, it highlights that soft clustering outperforms
standard hard clustering. It also shows that state-of-the-art works
rely on proximity-based clustering methods and identifying static
boundaries to demarcate clusters. However, a sub-optimal grouping
of bus stops due to unawareness of real road network distance and
disregarding the location of the destination respectively in the two
techniques lead to poor solutions. This necessitates the
development of a directionality-centric clustering method that can
not only speed-up the computations but also be accurate.

3௑Methodology
The proposed bus transit network segmentation method shown in
Fig. 1 strives to reduce the computation time of flexible route
generation while minimising the VMT of the fleet. The method
considers the road network of the geographical area as the input.
Then leverages the direction of travel and similarity of the shortest
path route from the origin to the destination along the road network
for clustering of bus stops followed by intelligent fleet allocation
and parallel computation of flexible routes in each cluster. The
method outputs the flexible routes for the fleet. The subsequent
sections explain the proposed method in detail.

3.1 Directionality and shortest-path centric generation of
clusters

In this section, we present the directionality and shortest-path
centric clustering algorithm and describe each step in detail. The
ODPT system assumes that the demand originates at existing bus
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stop locations. Also, it assumes that vehicles are distributed at car
parks near the bus stops and all passengers travel to a common
destination. The method first identifies the bus stops and the
destination of the geographical area. Next, the algorithm obtains
the shortest path routes from each bus stop to the destination. Then,
based on the shortest paths, the bus stops are arranged in a tree

structure (polyline tree) to facilitate clustering. Next, leveraging the
polyline tree, elementary clusters are identified. Thereafter,
elementary clusters are combined to generate large base clusters. In
addition, the method identifies flexible clusters that are utilised
intelligently in the fleet allocation step in Section 3.2. The
proposed technique for generation of clusters is shown in Fig. 2. 

3.1.1 Identification of bus stops and destination: Initially, all
the bus stops and the destination of the geographical area are
identified. As mentioned, it is assumed that all passengers travel to
the metro station, which is considered as the destination. The
output of this step generates the GPS coordinates of bus stops and
the metro station.

3.1.2 Obtaining shortest path routes: Shortest path data is
obtained using open source routing machine (OSRM) [15] by
providing the GPS coordinates identified in the above step. The
output contains the shortest path route from each bus stop to the
destination. In addition, the distance matrix, which gives the
shortest path distances between all bus stops and the destination is
also obtained. Information of the shortest path route from a bus
stop to the destination is represented by a sequence of encoded
polylines. In general, an encoded polyline represents a route
segment which is constructed by connecting multiple way-points.
For example, let the bus stop (origin) and destination GPS
coordinates (latitude, longitude) be (1.344260°, 103.703293°),
(1.337736°, 103.697289°), respectively. The points are shown
using B1 green drop and the blue flag, respectively, in Fig. 3. The
shortest path route obtained by OSRM for the given coordinates is
shown using the blue line. The junctions (waypoints) along the
path are marked in red markers.

The sequence of polylines for the respective route is given in
Table 2. Each encoded polyline represents a segment of the route.
For example, polyline 1 represents the route segment starting from
the bus stop to the first junction marked in Fig. 3. This is shown in
Fig. 4a. Similarly, polyline 2 represents the next segment of the
route continuing from the first junction to the second junction as
shown in Fig. 4b. The remaining route segments (polylines 3–5)
can also be identified similarly by tracing the route along the
shortest path. Furthermore, we observe that the length of the route
segment is proportional to the number of encoded characters in the
polyline (the length of the polyline). This property of polylines is
exploited to generate the clusters.

3.1.3 Generation of the polyline tree: After obtaining the
shortest path routes from all the bus stops to the destination as a
collection of polyline sequences, a tree is constructed using the
similarities of polyline sequences. The tree facilitates clustering by
arranging the bus stops in an organised structure based on the
similarity of the shortest path routes. In the polyline tree, the bus
stops, junctions and destination are represented using nodes and
each polyline sequence is represented by an edge. The root, branch
and leaf nodes of the tree represent the destination, junctions and
bus stops, respectively. The edges starting from leaf nodes
represent polyline sequences (route segments) starting at bus stops,
while edges at branch nodes represent the polyline sequences
starting from junctions. Therefore, traversing the tree from a leaf

Table 1 Summary of literature
Property Ioachim

et al. [7]
Jorgensen

et al. [8]
Saez
et al.
[9]

Quadrifoglio
et al. [4]

Shen
et al.
[3]

Pelzer
et al.
[10]

Zheng
et al.
[11]

Chen
et al.
[12]

Comert
et al. [13]

Lowalekar
et al. [14]

Proposed
work

on-demand
transit

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

travel to a
common
destination

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓

soft clusters ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓

directionality
and shortest-
path centric

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

 

Fig. 1௒ Proposed bus transit network segmentation method
 

Fig. 2௒ Technique for generation of clusters
 

Fig. 3௒ Shortest path route obtained from OSRM
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node to the root provides the polyline sequence of the shortest path
route from the bus stop to the destination. Thus, it can be seen that
a group of nodes which have the same parent will have an
overlapped sequence of nodes. This is explained using the example
shown in Fig. 5. Here, three bus stops (green drop) B1, B2 and B3,
four junctions (red ball) J1, J2, J3 and J4, destination (blue flag)
and the shortest path routes from each bus stop are shown. The
nodes along the shortest path routes are marked in Fig. 5a. The
generated polyline tree for this scenario is shown Fig. 5b. In this
polyline tree, the destination is node 1, while the bus stops B1, B2
and B3 are represented by nodes 6, 7 and 8, respectively. The
junctions J1, J2, J3 and J4 are represented by nodes 5, 4, 3 and 2,
respectively. The polyline sequence of the shortest path routes from

each bus stop can be shown as a set of nodes; Bus stop B1: 6, 4, 3,
2, 1; Bus stop B2: 7, 4, 3, 2, 1; and Bus stop B3: 8, 5, 3, 2, 1.

3.1.4 Identification of elementary clusters: The next step is the
identification of elementary clusters by leveraging the generated
polyline tree. Elementary clusters contain a group of bus stops with
similar shortest path routes to the destination except for the first
polyline, which is the polyline starting from the bus stop. Assume
that the bus transit network consists of only six bus stops as shown
in Fig. 6. Based on the given definition, the six bus stops can be
classified into three elementary clusters as shown in Fig. 6a.
However, an elementary cluster where the shortest path route does
not overlap with any other shortest path route of another
elementary cluster is termed as an elementary base cluster. For
example, elementary clusters 1 and 2 in Fig. 6a are elementary
base clusters. This is shown in Fig. 6b. The shortest path route of
bus stops in the elementary cluster 3 falls along the path of the bus
stops in the elementary base clusters (elementary clusters 1 and 2).
Therefore, the vehicles travelling from an elementary base cluster
can pick-up the passengers in the elementary clusters along the
shortest path route. Thus, elementary cluster 3 is termed as a
flexible cluster. The algorithm for identifying elementary base
clusters and flexible clusters is given in Algorithm 1 (see Fig. 7). 
Variables used in Algorithm 1 are summarised in the Nomenclature
section. Objects and functions used in Algorithm 1 are introduced
in Tables 3–6. 

Algorithm 1 is explained using the example scenario shown in
Fig. 8a. This shows five bus stops (B1 − B5) and two junctions
(J1, J2), which connects the remaining bus stops in the vicinity in
the road network. The corresponding polyline tree is given in
Fig. 8b. The polyline tree is traversed using a breadth-first search
starting from the root node (denoted by R in Fig. 8b). Initially, an
empty queue (Q) is defined and the root node of the polyline tree is
enqueued to Q (line 2). Then, while Q is not empty, a node (n) is
dequeued from Q (line 5) and the child nodes of n are put into the
list W (line 6). Next, the child nodes in W are sorted in the
descending order of polyline length (line 7). After sorting, the first
node W0  in W is the node with the polyline that ends furthest
away from the polyline represented by the parent node (n). While
W is not empty, in each iteration, the first element W0  of W is
removed (lines 9–10) and either an elementary base cluster or
flexible cluster is initialised. For the example given in Fig. 8a, W0

will be a leaf node (bus stop B1). Therefore, the case when W0 is a
leaf node is explained first followed by the case when W0 is a non-
leaf node.

Case 1: W0 is a leaf node (Bus stop) (lines 11–25). If W0 is a
leaf node, a new cluster cbase  is initialised and W0 is added to cbase

(lines 12–13). Then, starting from the first index, all remaining
nodes are read iteratively from W (let a removed node be denoted
by Wi). Here, node Wi is determined to be combined with W0 in
order to form an elementary base cluster if the character match
between the polyline sequences representing the shortest path route
to the destination from the two nodes are greater than or equal to
the Pn% (similartyPercentageForNodes) (line 16). The value for Pn
(70%) was determined through experimentation. The relatively
high value ensures that the bus stops in elementary base clusters
are physically nearby in the road network. However, it should be
noted that only leaf nodes are added to the newly created cluster,
cbase (lines 17–19). Else, the algorithm moves on to the next node
and repeats the process until a non-leaf node with a similarity
percentage greater than or equal to Pn% is encountered (non-leaf
node J1). In Fig. 8b, leaf nodes B1 and B2 are added to cbase. In this
case, cbase is determined to be an elementary base cluster since
there are no existing clusters which can be formed such that cbase is
flexible. Also, cbase is added as a new elementary base cluster for
the flexible clusters that will be discovered during the search
process of the remaining nodes in W (line 24). New base
elementary cluster functions similarly to elementary base clusters.
However, new base elementary cluster is denoted separately since
it is not possible to identify these clusters using the contents of the
list of junctions (B), which is used to identify the elementary base

Table 2 Encoded polyline sequence
Polyline
number

Encoded polyline generated using [16]

1 upeGsp}wRg@T_B'AaAd@EDMH
2 sweGel }wRMVKVEL? ^Xp@∼AxDd@hAd@dABH

FJx@rArIhLpA∼Aj@v@l@x@HJf@ x@v@|CvB’@\
3 {vdGm∼ {wRt@HHBRBVAb@Q'Ae@hAc@rBi@|A]
4 mgdGac|wREUAiF
5 ugdGak|wR

 

Fig. 4௒ Route segments representing polylines in Table 2
(a) Polyline 1 (bus stop to first junction), (b) Polyline 2 (first junction to second
junction)

 

Fig. 5௒ Shortest path routes from bus stops B1, B2 and B3 to the
destination
(a) Identified nodes, (b) Generated tree

 

Fig. 6௒ Example of elementary clusters
(a) Identified elementary clusters, (b) Classified clusters
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clusters of a flexible cluster. Then, the new instantiated cluster
cbase  is added to the list of elementary clusters, C (line 25), and

the algorithm moves to the next iteration of the nested while loop,
starting at line 8. In the next iteration, the removed node from W at
lines 9 and 10, W0, will be a non-leaf node, representing the
junction J1. Therefore, the algorithm moves to case 2.

Case 2: W0 is a non-leaf node (Junction) (lines 26–59). If W0 is
a non-leaf node, then W0 is enqueued to Q (line 27) and added to
the list of junctions (B) (line 28). B will be used to identify the
corresponding elementary base clusters of a flexible cluster. Then,
starting from the first index, all remaining nodes are read from W
iteratively (let a removed node be denoted by Wi). If the similarity
percentage of Wi is higher than Pn%, Wi is validated if it is a leaf
node. If it is valid, Wi is added to T (temporary buffer of leaf
nodes) in each iteration (in this example, leaf nodes B3 and B4 will
be added to T in two iterations) (lines 33 and 34). If Wi is a non-
leaf node (in this example, the non-leaf node representing J2), it is
enqueued to Q (line 36) and a new flexible cluster, cflex is
instantiated with all the leaf nodes stored in T (lines 37–39). At the
same time, all the contents of B (in this example, J1) are added to
the list of junctions of cflex (line 40). The motivation of identifying
cflex as a flexible cluster is that it will be placed along the shortest
path route of elementary base clusters formed from the child nodes
of the nodes in B. For example, the bus stops B3 and B4 in cflex will
be flexible to all the elementary base clusters formed farther away
from the destination, where the routes overlap from junction J1.
Similarly, if a new elementary base cluster (s) exists, it is also
updated (lines 42–43). Then, the new instantiated flexible cluster
cflex is added to list of elementary clusters, C (line 44). Afterwards,
T is cleared (line 45) and Wi is added to the list of junctions, B (line
46, now B will contain J1 and J2). This process is repeated until

Fig. 7௒ Algorithm 1 Identifying elementary clusters
 

Table 3 Objects and functions: node (n)

Function Description
n.getChildren() returns the list of child nodes of the node n
n . getMatchScore n2 returns the matching score between the two

nodes n and n2
n.getClusters() returns the list of base clusters where the root

node is n
 

Table 4 Objects and functions: cluster (c)

Function Description
c . getMatchScore c2 returns the matching score between the

two clusters c and c2
c.addNode(n) adds node n to the cluster c
c.isFlexible() returns true, if the cluster c is a flexible

cluster, otherwise false
c.setFlexibility(T/F) set the value for the flexible attribute of c

(as true or false)
c.setListofJunctions(b) sets the list of nodes, b, as the tailing list of

junctions of the cluster c
c.getListofJunctions() returns the list of tailing junctions of the

cluster c
c.setNewBaseCluster cs sets new base cluster cs of flexible cluster c
c.getNewBaseCluster() returns the new base cluster of cluster c
 

Table 5 Objects and functions: list (h)

Function Description
h.add(m) add the element m to the end of the list h
h.remove(i) removes the element at index i from the list h
h.get(i) returns the element at index i in the list h
h.clear() removes all the elements from the list h
h.size() returns the number of elements in the list h
 

Table 6 Objects and functions: Queue (q)

Function Description
q.enqueue(m) adds the element, m, to the end of the queue q
q.dequeue() returns the element that is in front of the queue and

removes that element from the queue
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the algorithm iterates over all the elements in W. Then, the
algorithm checks if T is empty (line 51). T can be non-empty, if the
last node removed from W is a leaf node (in this example, last node
removed from W is the leaf node B5). Therefore, another flexible
cluster is added in the same manner explained above (lines 52–59).
Then, s is set to null (line 60) and B is cleared (line 61), which
indicates the end of clustering the nodes, whose parent is n.
Thereafter, the next node in Q is dequeued (line 5) and the whole
process is repeated until Q is empty. Table 7 summarises the
clusters and the corresponding data for the example in Fig. 8.

3.1.5 Combining of elementary clusters: Output of Algorithm 1
provides all the elementary base and flexible clusters of the
polyline tree. Generally, an elementary base cluster contains 3–4
bus stops, which implies that the possibility of improving routes
during optimisation is limited. Moreover, the high-capacity
vehicles used in the ODPT system will be underutilised if the
number of passengers in the elementary base clusters are low.
Thus, elementary base clusters are combined to form base clusters
considering the geographical placement. For example, combining
two elementary base clusters that are placed apart in the road-
network will significantly increase the VMT. Therefore, the
proximity of the elementary clusters is crucial for enabling the
combination of clusters. While combining clusters, the following
two cases are considered.

Case 1: In this case, we consider combining two elementary
base clusters into a single base cluster. The criteria for combining
elementary base clusters considers the similarity of the route to the
destination. However, since a cluster is a collection of leaf nodes,
which represent different bus stops, a single leaf node must be
selected to represent the whole cluster. For this, the node which has
the median distance to the destination among all the nodes of the
cluster (henceforth referred to as median node) is selected. Here,
distance is identified by the length of the polyline sequence
representing the route to the destination. During the combining
process, the median nodes of the two clusters are compared for a
Pc% (similartyPercentageForClusters) character match in the
encoded polylines. If the comparison is valid, the two elementary
base clusters are combined to a single base cluster.

Case 2: In this case, we consider combining a base cluster and a
flexible cluster into a single base cluster. This case occurs either
when two or more elementary base clusters which originally had a
common flexible cluster, is combined into a single base cluster
using case 1 or if a flexible cluster was only flexible to one
elementary base cluster. Therefore, the flexible cluster is now only
flexible to a single base cluster thus, necessitating to combine and
form a base cluster.

The algorithm for generating base clusters is given in Algorithm
2 (see Fig. 9). The supplementary functions used in Algorithm 2
are given in Table 8. As shown in Fig. 2, combining clusters is an
iterative process. Therefore, Algorithm 2 is iteratively executed
until there is no change in the set of clusters. Therefore, in the first
iteration, all the base clusters extracted are elementary base
clusters. From the second iteration onwards, combining can occur
between combined base clusters and elementary base clusters.
However, for clarity of explanation these are referred as base
clusters irrespective of the iteration number.

Initially, all base clusters are extracted from the list of clusters,
C, and assigned to a list, L (line 2). Then, one base cluster L0  is
removed from L (line 4). Thereafter, all remaining base clusters
which can be combined with L0 is combined, while removing each
combined base cluster from the remaining cluster list (lines 6–8).
Also, each combined cluster is added to a list G (line 9). This is
used to update the flexible clusters. Then, L0 is added to the
updated list of base clusters, L′ (line 10). This process is iterated
until the remaining base cluster list, L, is empty. Next, all flexible
clusters are extracted from C into a list F (line 11). Then, base
clusters are combined with flexible clusters (line 12). Algorithm 3
(see Fig. 10) shows the pseudo code of the function that updates
flexible clusters. In Algorithm 3, for all flexible clusters Fi , a list
(Z) is compiled with the corresponding new elementary base
cluster (s) and the base clusters that Fi is flexible. Then, if Z

Fig. 8௒ Example network for Algorithm 1
(a) Network, (b) Corresponding polyline tree

 
Table 7 Clusters of the example in Fig. 8
Cluster
No.

Flexible
(Y/N)

Bus
Stops

Junctions New base
elementary

cluster
1 N B1,B2 — —
2 Y B3,B4 J1 Cluster 1
3 Y B5 J1, J2 Cluster 1

 

Fig. 9௒ Algorithm 2 Generating base clusters
 

Table 8 Supplementary functions for Algorithm 2
Function Description
getAllBaseClsuters(C) returns a list containing all base clusters

in the list of clusters C
getAllFlexibleClusters(C) returns a list containing all flexible

clusters in the list of clusters C
updateFlexibleClusters(F, G) given the list of elementary flexible

clusters (F) and the list of base clusters
that were combined with other base

cluster (G), returns the updated list of
flexible clusters, F′
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contains only one element, Fi is combined with this base cluster
and the new list F′  is updated. Algorithm 3 returns the updated
list of flexible clusters F′. Finally, the algorithm outputs the list of
updated clusters, C′, by adding elements in L′ and F′ (line 13).

3.2 Fleet allocation

After generating the list of base and flexible clusters, the next step
in the method is to allocate vehicles to each cluster based on the
demand of base clusters while leveraging the demand of flexible

clusters. The objective of the fleet allocation algorithm is to
minimise vehicle usage by optimally allocating vehicles to clusters.
Since vehicles are assumed to be distributed in car parks near the
bus stops, each cluster will contain a specific number of passengers
and vehicles. Therefore, some clusters contain enough vehicles to
satisfy the passenger demand while some clusters require
additional vehicles. Thus, the fleet allocation algorithm has to
optimally manage the supply and demand parameters. For
example, clusters with excess vehicles can assign the excess to
other clusters which require vehicles. However, the main problem
that needs to be addressed in the allocation is to determine the
vehicle/s that must be retained to satisfy the demand in the cluster.
Also, the fleet allocation algorithm can leverage the demand in
flexible clusters which can be picked-up by vehicles in multiple
base clusters. This will significantly affect the quality of the results.
The fleet allocation algorithm is given in Algorithm 4 (see Fig. 11).

Initially, the number of vehicles required for a base cluster is
calculated based on the demand. Then, excess vehicles in each base
cluster are added to a list of vehicles, vehiclePool. When selecting
the excess vehicles, the algorithm uses the polyline sequence of
each location to determine the proximity of the vehicles to the
destination. Then, the vehicles farthest away from the destination
in each cluster are allocated to pick-up the passengers in the
respective cluster. The motivation of selecting the vehicles farthest
away is that it will be able to pick-up a higher number of
passengers from other flexible clusters along the way to the
destination. Next, all vehicles in flexible clusters are also added to
the vehiclePool. Here, the demand in flexible clusters is not
considered since it is preferable to satisfy the demand from
vehicles of the corresponding base clusters. Thereafter, the
algorithm identifies the base clusters which require additional
vehicles and allocates from the vehiclePool. Here, the actual road
network distance to the median node of the cluster from each
vehicle is used for allocation. Therefore, vehicles closest to the
median node are selected. Next, the algorithm computes the excess
number of seats in a base cluster by subtracting the no of
passengers in a base cluster from the total number of seats
available in vehicles (total number of seats = no of vehicles × 
vehicle capacity). Finally, passengers in flexible clusters are
assigned to the relevant base clusters with excess capacity as
computed above. Here, if the algorithm must select between
multiple base clusters, priority is given to the base cluster with the
highest excess capacity. This facilitates to reduce the probability of
filling up the remaining base clusters as there could be other
flexible clusters that needs more seats. On the other hand, if a few
passengers have to be allocated to the remaining seats, a separate
selection mechanism is not considered since selecting any
passenger in a flexible cluster has the same impact.

However, at the end of this step some passengers may not be
allocated to a cluster. Consider the following two scenarios: (i) lack
of vehicles to satisfy demand; and (ii) base clusters that can
accommodate flexible clusters are already filled up. In case 1, since
the demand is higher than the supply, excess passengers are
indicated as skipped passengers. In case 2, there can be vehicles in
the vehiclePool, which can be allocated to pick-up the passengers.
However, a separate cluster is created with all the unallocated
passengers and remaining vehicles (henceforth referred as
unallocated cluster). The routing algorithm for this cluster is
executed as given in Section 3.3.

3.3 Flexible routing

The technique for flexible route generation is given in Fig. 12. The
input contains clusters with a set of vehicles and passengers that
need to be routed such that all constraints are satisfied while
minimising the VMT. To this end, we use the GA proposed in our
previous work [5]. After executing the algorithm in parallel for
each cluster, passengers that are not picked-up due to the violation
of a constraint is added to the unallocated cluster created in Section
3.2. Next, the unallocated cluster is executed using the GA.
However, it should be noted that this step can only be executed if
excess vehicles are available in the vehiclePool. If this is not the

Fig. 10௒ Algorithm 3 Pseudo code: updateFlexibleClusters(F, G)

 

Fig. 11௒ Algorithm 4 Fleet allocation
 

Fig. 12௒ Flexible routing technique
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case, passengers in the unallocated cluster are assigned as skipped
passengers. Finally, the flexible routes that consists of the routes of
each vehicle is generated.

4௑Results
This section evaluates the performance of the proposed method.
Section 4.1 explains the selected geographical area and Section 4.2
gives the experimental parameters. Section 4.3 presents the
comparison strategy. Finally, Section 4.4 evaluates the suitability of
the proposed methods for route generation in ODPT systems. The
method in Section 3 uses JAVA, while the rest of the code is
implemented in C++. The computation time is measured on a PC
with 32 GB RAM, running Windows 10 Pro on an Intel Xeon
E5-1630V4 CPU at 3.70 GHz.

4.1 Geographical area

We have selected a locality in western Singapore to conduct the
experiments. The selected area encompasses the largest university
in Singapore and the adjoining residential neighbourhood. The
nearest metro station is selected as the common destination. The
university has a large population and currently operates a fixed-
route shuttle to the nearest metro station. Therefore, the students
and staff of the university can further benefit from the ODPT
system. Selecting the adjoining residential neighbourhood not only
increases the complexity of the road network but also provides an
opportunity to validate the proposed methods over a large area.
Fig. 13 shows the selected locality, bus stops in the area (blue dot)
and the metro station (blue flag). 

4.2 Experimental parameters

Here, the parameters used in test cases (TCs) and the GA are
presented. TC parameters in Table 9 give the number of
passengers, number of available EVs in the fleet, EV capacity and
driving range. The passenger count in the TCs are selected based
on the observed demand on fixed-route transit using historical

demand data. In each TC, passengers and EV are randomly
distributed in the bus stops shown in Fig. 13. A medium size EV
capacity and driving range is selected such that the operator can
use super charging facilities which would eliminate the additional
complexities of EV downtime. However, it should be noted that the
GA generates routes such that the driving range is always sufficient
to traverse the entire path to pick-up passengers and reach the
destination. Alternatively, this implies that EV charging can only
occur while the vehicle is empty. In TCs 1–3, the supply exceeds
the demand as opposed to TCs 4–6 where the supply is marginally
sufficient to satisfy the demand. These TCs are henceforth referred
as ‘relaxed test cases’ and ‘tight test cases’ respectively. Tight TCs
have a higher possibility of skipping passengers. They have been
selected to show the robustness of the proposed methods for
different scenarios. Table 10 gives the parameters of the GA. GA
parameters specify the maximum number of iterations and the
population size for both the proposed method and [5] used for
comparison.

4.3 Comparison strategy

4.3.1 Case 1: The performance of the proposed method in terms
of VMT of the fleet and computation time of routes is assessed by
comparing against [5]. In the experiments, each relaxed TC in
Table 9 is repeated three times while randomly distributing
passengers and EVs in the selected area. The parameters given in
Table 10 are used in the respective methods. The lower number of
iterations and population size of the proposed method compared to
[5] enables to validate the rapidity.

4.3.2 Case 2: The benefit of the proposed directionality and
shortest-path centric clustering algorithm is compared with widely-
used clustering algorithms, namely k-means and k-medoids
clustering, and a static clustering technique based on dividing the
locality using main road segments similar to Quadrifoglio et al. [4]
and Shen and Quadrifoglio [3]. Here, we compare the VMT of the
fleet for the four methods. We use the same vehicle allocation
algorithm and the GA in each method in order to ensure a fair
comparison. In this case, one instance of each relaxed TC is used
for evaluation. However, a common drawback of k-means and k-
medoids is the requirement to specify k (the number of clusters).
Thus, we compare the VMT for values of 5, 10 and 20 of k. For the
static clustering technique the selected locality is divided into three
clusters based on the main road network. The three static clusters
are shown in Fig. 14. 

4.3.3 Case 3: In this case, the robustness of the proposed method
in handling tight demands is evaluated. For the tight TCs in
Table 9, the supply is marginally sufficient to satisfy the demand.
Therefore, passengers maybe skipped during the routing phase as
described in Section 3.3. Therefore, in this case, the number of
skipped passengers, VMT of the fleet and computation time of
routes are compared with [5]. One instance of each tight TC is used
for evaluation.

Fig. 13௒ Selected locality, bus stops and metro station
 

Table 9 Parameters of TCs
Parameter TC number

1 2 3 4 5 6
number of passengers 200 250 300 120 200 320
number of EVs 40 50 60 15 25 40
EV capacity 8
EV driving range 30 km
 

Table 10 GA parameters
Parameter Ref. [5] Proposed
iterations 100 20
population size 50 10
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4.4 Evaluation

4.4.1 Case 1: Table 11 shows the VMT of the fleet and
computation time of routes of [5] and the proposed method. It also
shows the percentage improvement (PI) of the results. Here, three
instances (Ins.) of the relaxed TCs are executed to show the
consistency of the proposed method. The results confirm that the
proposed method not only rapidly generates routes with a 95.4%
average improvement in computation time but also produces
superior routes with a 7% average improvement in VMT. The
significant improvement of computation time can be accounted for
the parallel implementation of the routing algorithm and the
reduced number of population and iterations in the GA. The
improvement of the VMT of the fleet can be accounted to the
directionality-centric segmentation of bus transit network. For

example, the clusters formed by the proposed algorithm ensures
that the detours in the vehicle routes are significantly low.
Therefore, the GA can generate superior routes.

4.4.2 Case 2: This case compares the VMT of the fleet of k-
means, k-medoids, static and the proposed clustering algorithm.
The VMT of the fleet will depend on the clusters created by the
algorithm. Fig. 15 shows a sample set of clusters generated using
the proposed clustering algorithm and the corresponding clusters of
k-medoids for k = 5, 10 and 20. In each sub-figure of Fig. 15, the
coloured circles show the clustered bus stops while the triangle in
Fig. 15a shows bus stops in flexible clusters. The diagrams show
that the proposed algorithm considers the directionality to the
destination when generating clusters, while the k-medoids
algorithm generates clusters based on proximity of locations. This
would enable the GA to generate superior routes. This is evident in
the results shown in Fig. 16. Figs. 16a–c show the VMT of the
fleet for the relaxed TCs. The vertical axis in each graph gives the
VMT while the horizontal axis shows the value of k. The two
columns represent k-means and k-medoids algorithms, respectively.
The results of the proposed and static clustering algorithms are
shown in an orange solid and yellow dashed line, respectively. It is
observed that in all instances, the proposed algorithm generates
superior routes with low VMT compared to k-medoids and static
clustering. However, in the case of k-means, in two instances the
VMT of the proposed algorithm is marginally higher (the VMT
obtained using k-means with k = 5 for TCs 1 and 2 is 0.25% and
0.95% higher, respectively). However, finding the best value for k
is practically infeasible. Therefore, k-means clustering algorithm
cannot be relied upon to produce consistently superior routes. On
average, the proposed algorithm generates clusters that result in a
6% reduction in VMT compared to the k-means and k-medoids
algorithms and a 5% reduction compared to static clustering.

4.4.3 Case 3: For the tight TCs, we compare the number of
skipped passengers, VMT of the fleet and computation time of
routes of the proposed method and [5]. The results are shown in
Fig. 17a–c, respectively. The horizontal axis in each graph gives
the TC number and the vertical axis gives the number of skipped

Fig. 14௒ Generated static clusters based on main road segments
 

Table 11 VMT and computation time comparison
Test case Ins. VMT, km Computation time, s

Ref. [5] Proposed PI, % Ref. [5] Proposed PI, %
1 1 125.8 117.8 6 864.75 42.51 95

2 134.6 119.9 11 817.23 44.56 95
3 136.1 119.9 12 813.87 41.31 95

2 1 139.5 131.7 6 1723.79 77.11 96
2 146.7 135.9 7 1736.91 82.73 95
3 142.5 136.0 5 1608.72 74.13 95

3 1 146.7 135.0 8 2810.05 120.95 96
2 168.7 157.3 7 2744.12 122.68 96
3 154.4 152.7 1 2733.24 114.89 96

average 7 95.4
 

Fig. 15௒ Generated clusters for proposed and K-medoids algorithms
(a) Proposed, (b) k = 5, (c) k = 10, (d) k = 20
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passengers, VMT and computation time, respectively. Results
show that the proposed method on average has reduced the number
of skipped passengers by 16.25%. In addition, the method
generates routes with 8.25% less VMT with an 89.5%
improvement in computation time. It should be noted that this
improvement is achieved with additional passengers transported to
the destination. The number of skipped passengers is reduced due
to the superior clusters, which makes the solution space for
exploration small compared to an un-clustered approach. For
example, the population size of the GA will limit the number of
solutions that can be present in each generation. However, in tight
TCs, the constraints will create a significant number of low-quality
solutions. Since [5] is unable to search the full design space, it is
forced to find a few low-quality solutions. In contrast, due to the
superior clusters that are generated in the proposed method, the
number of low-quality solutions in the design space is significantly
reduced. Therefore, the proposed method can generate superior
routes. The results confirm the robustness of the proposed method
to be deployed for route generation in ODPT systems.

5௑Conclusion & future directions
This work presented a directionality-centric, bus transit network
segmentation method to speed-up route computation for an ODPT
system. The proposed methodology groups all the bus stops in a
geographical area into clusters by leveraging the similarity of the
shortest-path routes to the destination. The proposed method also

takes into account the demand and flexible clusters for intelligent
fleet allocation. The flexible routes are generated by leveraging a
GA in parallel for each cluster. The proposed method not only
generates results rapidly but also with minimum degradation of
solution quality.

The method has been evaluated using TCs generated on a real
road network encompassing the largest university in Singapore.
Openly available public transit demand data has been used to
quantify demand and supply. Experimental evaluations confirm
that a notable improvement in computation time compared to an
un-clustered method is achieved while also improving the route
quality. Experiments also show that the proposed directionality and
shortest-path centric clustering method outperforms two widely-
used unsupervised learning algorithms and a method that uses
static boundaries to segment the road network. The robustness of
the methodology has also been demonstrated for scenarios where
the supply is marginally sufficient to meet the demand, which can
be useful for peak periods. This affirms the suitability of the
proposed method to generate rapid and robust routes for real-time
deployment of ODPT system.

Furthermore, the methods proposed in this work can be used to
generate superior routes for a fleet of vehicles significantly faster.
However, the method relies on a homogeneous fleet of vehicles
with similar capacities and driving ranges. Therefore, in the future,
we plan modify the algorithms to incorporate heterogeneous fleets.

Fig. 16௒ Comparing clustering algorithms
(a) Test case 1, (b) Test case 2, (c) Test case 3

 Fig. 17௒ Comparison of results for tight TCs
(a) Skipped passengers, (b) VMT, (c) Computation time
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Also, the proposed methods are based on all passengers traveling to
a common destination. However, passengers may travel to multiple
destinations. Although, multiple destinations can be dealt as
separate instances of the proposed method, it can be possible to
derive more robust algorithms by identifying sub-trees in the
generated polyline tree. Therefore, we plan to adapt the methods
proposed in this work for scenarios involving multiple destinations.
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