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ABSTRACT 

Due to the increased complexity and the high expectation of the modern web applications, 
the legacy applications built on top of previous generation frontend frameworks such as 

AngularJS fail to serve both end users and developers. The AngularJS based legacy 

applications start poorly performing when the application grows larger. At the same time 
they become highly challenging for developers to maintain and add new functionality over 

time. The next generation component based frontend frameworks such as React has 

outperformed AngularJS from both the end user and developer expectations. Since the whole 

industry has evolved to gain the benefits of the component architecture, sooner or later all 
these legacy applications need to migrate to new component based architecture. The 

concepts, patterns and the architecture of the old school AngularJS application and the 

component based React applications are different so the migration is not a straightforward 
step. The successor of AngularJS which is named as Angular2 provides some tooling to 

support migrating old AngularJS applications to Angular2 but those are not directly 

compatible with React migration. This makes the organizations and developers who are 

planning to migrate AngularJS application to stick with Angular2 which is a less popular and 
flexible framework when compared with React. This research tries to define a clear 

migration path from AngularJS applications to React applications which will allow 

organizations and developers to choose React also as a goto framework option and will save 
hundreds of research and development hours in setting up the migration. 

 
This research compares and contrasts approaches of legacy frontend application migrations 
with respect to steps, best practices, technologies tools and pain points. By comparing 

different approaches, the research provides a step by step guideline which can be referred to 

and followed when migrating any AngularJS based legacy application to component base 
React application. These guidelines are organized as a migration framework with steps of 

refactorings and provide as the first outcome of this research. As the second step of this 

research, a migration assistant tool which is called as Ng-React Copilot was implemented to 
guide the developer through the migration steps and apply them to the existing code base. 

The tool was developed by converting the critical refactorings proposed in the framework 

into a set of detection algorithms and providing the ability to scan against the provided 

codebase as a command line tool as well as an integrated tool with populer IDEs. 
 

The framework and the tool were validated by applying them to selected small, medium and 

enterprise level AngularJS legacy applications. One application was selected from each 
category and used the tool and the framework to step by step migrating to React where the 

small application was fully migrated to React while the medium and enterprise applications 

were migrated partially with the interest of the time. The results from the migration assistant 
tool and the framework were collected and validated the accuracy of them and except for a 

few false positives, the migration assistant tool was detecting the required refactoring 

accurately and was making the migration straight forward. Improving the algorithms and 

configurations to avoid false positives, improve the tool to guide the users as a step by step 
workflow rather than showing all the refactorings at once, automating few more time 

consuming manual refactorings, improving the framework to address external library 

coupling and improve the tool to guide the user on where in the application to start the 
migration were identified as future improvements for the identified limitations during the 

evaluation process. By looking at the evaluation results, the migration framework and the 

Ng-React Copilot tool can be considered as good starting materials to get assistance for 

AngularJS to React application migration and the effectiveness can be further improved by 
applying the identified future improvements.  
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