

FRAMEWORK TO MIGRATE ANGULARJS BASED

LEGACY WEB APPLICATION TO REACT

COMPONENT ARCHITECTURE

Thilanka Kaushalya Lanka Geeganage

179328A

Degree of Master of Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

March 2021

FRAMEWORK TO MIGRATE ANGULARJS BASED

LEGACY WEB APPLICATION TO REACT

COMPONENT ARCHITECTURE

Thilanka Kaushalya Lanka Geeganage

179328A

Thesis submitted in partial fulfillment of the requirements for the degree Master of

Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

March 2021

i

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without

acknowledgement any material previously submitted for degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another

person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce

and distribute my dissertation, in whole or in part in print, electronic or other

medium. I retain the right to use this content in whole or part in future works (such as

articles or books).

Signature: Date:...................

Name: Thilanka Kaushalya Lanka Geeganage

I certify that the declaration above by the candidate is true to the best of my

knowledge and that this report is acceptable for evaluation for the Masters thesis.

Signature of the supervisor: Date:...................

Name: Dr. Indika Perera

ii

ABSTRACT

Due to the increased complexity and the high expectation of the modern web applications,
the legacy applications built on top of previous generation frontend frameworks such as

AngularJS fail to serve both end users and developers. The AngularJS based legacy

applications start poorly performing when the application grows larger. At the same time
they become highly challenging for developers to maintain and add new functionality over

time. The next generation component based frontend frameworks such as React has

outperformed AngularJS from both the end user and developer expectations. Since the whole

industry has evolved to gain the benefits of the component architecture, sooner or later all
these legacy applications need to migrate to new component based architecture. The

concepts, patterns and the architecture of the old school AngularJS application and the

component based React applications are different so the migration is not a straightforward
step. The successor of AngularJS which is named as Angular2 provides some tooling to

support migrating old AngularJS applications to Angular2 but those are not directly

compatible with React migration. This makes the organizations and developers who are

planning to migrate AngularJS application to stick with Angular2 which is a less popular and
flexible framework when compared with React. This research tries to define a clear

migration path from AngularJS applications to React applications which will allow

organizations and developers to choose React also as a goto framework option and will save
hundreds of research and development hours in setting up the migration.

This research compares and contrasts approaches of legacy frontend application migrations
with respect to steps, best practices, technologies tools and pain points. By comparing

different approaches, the research provides a step by step guideline which can be referred to

and followed when migrating any AngularJS based legacy application to component base
React application. These guidelines are organized as a migration framework with steps of

refactorings and provide as the first outcome of this research. As the second step of this

research, a migration assistant tool which is called as Ng-React Copilot was implemented to
guide the developer through the migration steps and apply them to the existing code base.

The tool was developed by converting the critical refactorings proposed in the framework

into a set of detection algorithms and providing the ability to scan against the provided

codebase as a command line tool as well as an integrated tool with populer IDEs.

The framework and the tool were validated by applying them to selected small, medium and

enterprise level AngularJS legacy applications. One application was selected from each
category and used the tool and the framework to step by step migrating to React where the

small application was fully migrated to React while the medium and enterprise applications

were migrated partially with the interest of the time. The results from the migration assistant
tool and the framework were collected and validated the accuracy of them and except for a

few false positives, the migration assistant tool was detecting the required refactoring

accurately and was making the migration straight forward. Improving the algorithms and

configurations to avoid false positives, improve the tool to guide the users as a step by step
workflow rather than showing all the refactorings at once, automating few more time

consuming manual refactorings, improving the framework to address external library

coupling and improve the tool to guide the user on where in the application to start the
migration were identified as future improvements for the identified limitations during the

evaluation process. By looking at the evaluation results, the migration framework and the

Ng-React Copilot tool can be considered as good starting materials to get assistance for

AngularJS to React application migration and the effectiveness can be further improved by
applying the identified future improvements.

iii

ACKNOWLEDGEMENTS

I would like to express my gratitude to Dr. Indika Perera, my project supervisor for

providing advice and guiding the project into success. Even though I had an idea

about the domain initially I didn’t have a clear idea on how to converge the scope of

the research into a meaningful outcome. Dr. Indika helped me and guided on how to

narrow down the scope and focusing on building up the framework proposed in this

report. Also I would like to express my gratitude to my family for supporting me in

focusing on the research. Last but not least I wish to thankful for all my colleagues

who have encouraged me to continue the research by expressing their experiences.

iv

TABLE OF CONTENTS

DECLARATION .. i

ABSTRACT .. ii

ACKNOWLEDGEMENTS .. iii

TABLE OF CONTENTS .. iv

LIST OF FIGURES .. vi

LIST OF TABLES .. viii

LIST OF ABBREVIATIONS .. x

1. INTRODUCTION .. 1

1.1. From Javascript libraries to frameworks .. 1

1.2. What did AngularJS offer .. 2

1.3. Limitations and anti-patterns in AngularJS applications 4

1.4. AngularJS successors which provides component architecture 8

1.5. Using React is a business decision, not a technology decision[15]10

1.6. Problem ..12

1.7. Objectives...13

2. LITERATURE REVIEW ...15

2.1 Choosing the migration strategy ..15

2.2 Prepare AngularJS code for migration ...16

2.3. Migrate component by component ..26

2.4. Migrate the forms ...29

3. METHODOLOGY..31

3.1. A migration framework from AngularJS to React ...31

3.2. Migration assistant tool ...35

3.3. Set of algorithms to detect the required refactoring47

v

3.4. Evaluating the migration framework and the assistant tool48

4. IMPLEMENTATION ...50

4.1. Implementation of the Ng-React-Copilot tool ...50

4.2. Implementation of the refactoring detection rules ...52

5. RESULTS AND EVALUATION..82

5.1. Migrating small AngularJS applications having less complicated code83

5.2. Migrating medium level of AngularJS applications87

5.3. Migrating Enterprise level of AngularJS applications91

5.4. Evaluation of the results ...96

6. CONCLUSION ... 100

6.1. Limitations ... 103

6.2. Future work .. 104

7. REFERENCES.. 106

vi

LIST OF FIGURES

Figure 1: How complex are the AngularJS aspects and features [3] 6

Figure 2: Data flow in a react application and a MV* application............................12

Figure 3: How data flow happens through React2Angular middleware26

Figure 4: Workflow of the migration framework ...34

Figure 5: Ng-React Copilot tool logo in the command line44

Figure 6: Ng-React Copilot component diagram ...45

Figure 7: Ng-React Copilot flow diagram ...46

Figure 8: Ng-React Copilot select scan mode ..50

Figure 9: Ng-React Copilot highlights of the analysis results...................................51

Figure 10: Ng-React Copilot summary report ..51

Figure 11: Ng-React Copilot detailed report ..52

Figure 12: Ng-React Copilot rules highlighting a required refactoring in a code

opened with Visual Studio ..52

Figure 13: AST for detecting a directive..54

Figure 14: AST for detecting a directive factory defined as a function.....................65

Figure 15: AST for detecting a directive factory defined as an identifier67

Figure 16: AST for detecting a directive factory defined as function returned from a

function expression ...69

Figure 17: Initial scan results for Angular-Phonecat application83

Figure 18: Scan results for Angular-Phonecat application after generating

PhoneDetailsComponent ...84

Figure 19: Highlighted AngularJS specific feature refactoring in

PhoneDetailsComponent ...85

Figure 20: Highlighted AngularJS scope reference refactoring in

PhoneDetailComponent ..85

Figure 21: Migrated PhoneListComponent ..86

Figure 22: Migrated PhoneDetailedComponent ...86

Figure 23: Initial scan results for AngularJS CRUD application87

Figure 24: Scan results for ToolbarComponentof the AngularJS CRUD application 89

Figure 25: Scan results for FormComponent of the AngularJS CRUD application ..90

vii

Figure 26: Migration completed Login Form of the AngularJS CRUD application ..91

Figure 27: Initial scan for OrangeHRM application ..92

Figure 28: Scan results for List directive of the the OrangeHRM application93

Figure 29: Scan results for ListComponent of the the OrangeHRM application94

Figure 30: Migration completed ListComponent of the OrangeHRM application96

Figure 31: Workflow of the migration framework ... 102

viii

LIST OF TABLES

Table 1: Comparison between Angular 2 and React[14] ... 9

Table 2: Alternatives for AngularJS features[4]...24

Table 3: Refactoring and their groupings...33

Table 4: List of refactoring and their automation feasibility38

Table 5: Sample AST for JS code..42

Table 6: Event list of the HTMLHint code scanner...43

Table 7: Summary of selected technologies for the migration process44

Table 8: Code samples to define an angular directive and a component53

Table 9: Code samples to define an angular using different syntaxes56

Table 10: Pseudo code for rule - Place all the code of a directive together58

Table 11: Code samples to define an angular directive restrict.................................59

Table 12: Pseudo code for rule - Favor directives as elements over attributes,

comment and classes ...59

Table 13: Code samples on how to use ng-transclude directive60

Table 14: Pseudo code for rule - Eliminate transclusion ..60

Table 15: Code samples on how to use ng-include directive61

Table 16: Pseudo code for HTMLHint rule - Extract directive from large templates 62

Table 17: Pseudo code of the isTwoWayDataBindingNotUsed method64

Table 18: Pseudo code of the extractFactoryFunctionObject method when directive

factory defined as a function ...66

Table 19: Pseudo code of the extractFactoryFunctionObject method when directive

factory defined as an identifier ..68

Table 20: Pseudo code of the extractFactoryFunctionObject method when directive

factory returned from another function ..70

Table 21: Pseudo code of the extractFactoryFunctionObject method when directive

function defined with dependency injection ..71

Table 22: Consolidated pseudo code of the isTwoWayDataBindingNotUsed method

 ...72

Table 23: List of AngularJS inbuilt directives selected to detect inside the JSX74

Table 24: AST generated for AngularJS directive usage detection in JSX75

ix

Table 25: Pseudo code for algorithm to detect AngularJS directive usage in JSX76

Table 26: AST generated for variable references used in JSX78

Table 27: Pseudo code for algorithm to detect scope references in in JSX80

Table 28: Scan results for Angular-Phonecat application after generating

PhoneDetailComponent ..84

Table 29: Initial scan results for AngularJS CRUD application88

Table 30: Scan results for ToolbarComponentof the AngularJS CRUD application .89

Table 31: Scan results for FormComponent of the AngularJS CRUD application90

Table 32: Initial scan results for OrangeHRM application92

Table 33: Initial scan results for List directive in OrangeHRM application93

Table 34: Initial scan results for ListComponent in OrangeHRM application94

Table 35: Summary of all detected refactorings ...97

Table 36: Migration Framework.. 101

x

LIST OF ABBREVIATIONS

DOM Document Object Model

MVC Model View Controller

MVVM Model View View Model

MVP Model View Presenter

MV* Model View Any

AST Abstract Syntax Tree

JS Javascript

CSS Cascading Style Sheets

XML Extensible Markup Language

JSX Javascript XML

