INVESTIGATION OF TOROIDAL INDUCTORS BASED ON NON-GRAIN ORIENTED SILICON STEEL: COMPARATIVE STUDY

Hemanga Kolitha Ekanayake

(07/8314)

Degree of Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

October 2011

INVESTIGATION OF TOROIDAL INDUCTORS BASED ON NON-GRAIN ORIENTED SILICON STEEL: COMPARATIVE STUDY

Hemanga Kolitha Ekanayake

(07/8314)

Dissertation submitted in partial fulfillment of the requirements for the degree

Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

October 2011

DECLARATION OF THE CANDIDATE & SUPERVISOR

I declare that this is my own work and this dissertation does not incorporate without acknowledgment any material previously submitted for a Degree or Diploma in any other University or institution of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in whole or part in future work (such as articles or books).

Signature

:

:

Date:

Name of the Candidate_{Ctron}: H.K. Ekanayake_{Dissertations} www.lib.mrt.ac.lk

The above candidate has carried out research for the Masters Dissertation under my supervision.

Signature

Date:

Name of the Supervisor : Dr. J.P. Karunadasa

ACKNOWLEDGEMENT

I would like to extend my sincere appreciation first to my supervisor Dr. J.P. Karunadasa for the technical support and advise he gave me to work on this research. I am also grateful to Mr. Roshan Costa, Senior Engineer in Noratel International UK Ltd. for providing the necessary research material and guidance whenever required. Warmest thanks go to all other lecturers of the Department of Electrical Engineering, University of Moratuwa for their knowledge sharing from the first day onwards of my Electrical Installation M.Sc course.

I would also like to thank all the reviewers who attended in the progress review presentation for giving me their constructive suggestions and criticisms, much of which has been incorporated in this dissertation.

I appreciate the help given to me by my colleagues Sameera, Prathiba and Sumith in my work place and special thanks goes to my colleague Buddika Bandara for the continuous encouragement in difficult times.ty of Moratuwa, Sri Lanka.

Finally I wish to thank my wife, my two kids and my mother for their unwavering and resolute support during the eventful period.

ABSTRACT

Inductor or reactor or sometimes called as 'Choke' as per its intended situational assignment, is a basic magnetic component which is very useful for many fields and particularly in the fields of Electrical and Electronics Engineering. Amongst its endless applications in the fields, inductors functions in the low frequency range such as the power system frequencies (i.e. 50Hz, 60Hz) are considered mainly in this research.

Main concern of this paper is to popularize toroidal steel core inductor construction which is advantages in many aspects over the common other types of inductors such as EI laminated and C-Core constructions.

Conventionally for toroidal silicon steel core inductors, cores are constructed with magnetically Grain Oriented Silicon Steel (GOSS). This paper describes a methodological approach to find out the suitability of magnetically Non Grain Oriented Silicon Steel (NGOSS) for the inductor core material. A comparative study is carried out selecting inductor designs made with Grain Oriented Silicon Steel (GOSS) and their corresponding Non grain oriented silicon steel (NGOSS) ones. Comparisons of the designs with regards to their electrical, thermal characteristics are primarily carried out and the economical viability of these inductors with proposed steel type is also verified in this dissertation.

Analyzed results shows the advantages of using Non Grain Oriented Silicon Steel (NGOSS) for inductor designs over its cost considerations and at the same time matching performances of the conversional grain oriented types.

To have the best optimized outcome from the proposed new steel type for inductor manufacturing, it is necessary to incorporate characteristics of non grain electrical silicon steel to inductor design programs and such program is proposed and developed towards the end of this dissertation.

Electronic Theses & Dissertations

Key Words: Toroidal Inductor, Grain Oriented Silicon Steel, Non grain oriented silicon steel, inductor manufacturing and inductor design program.

TABLE OF CONTENTS

Declaration of the Candidate & Supervisor		i	
Acknowledgement			ii
Abstract			iii
Table of Content			iv
List of	Figure	s	vi
List of Tables			viii
List of abbreviations			ix
List of Appendices			xi
1.	Introduction		1
	1.1	Applications of laminated gap Inductors	1
	1.2	Type of Inductors	3
		1.2.1 EI laminated inductor	3
		1.2.2 C- Core inductor	3
		1.2.3 Toroidal type inductor	4
	1.3	Motivation for promote Toroidal Inductors	5
	1.4 Objective and Scope		6
2.	Toroidal inductor		7
	2.1	Toroidal winding	
	2.2 Toroidal Core		8
		2.2.1 Silicon steel used in toroidal construction	8
		2.2.2 Toroidal Silicon core for inductor	9
	2.3	Types of Silicon steel used in toroidal construction	9
		2.3.1 Grain Oriented Silicon Steel (GOSS)	10
		2.3.2 Non Grain Oriented Silicon Steel (NGOSS)	10
	2.4	Price comparison of GOSS and NGOSS in the steel market	10
	2.5	Use of NGOSS to toroidal cut core inductors	12
	2.6 Advantages of Toroidal inductor as components		13
3.	Research Design		14
	3.1	Need for customized Inductor	14

	3.2	Selection of Inductors for the analysis	15
	3.3	Selection of core material for the analysis	15
	3.4	Characteristic curves of the used steel	16
	3.5	Theoretical Background	20
4.	Experimental data collection		23
	4.1	Voltage Vs Load current across inductor	23
	4.2	Thermal Endurance test	24
	4.3	Inductor losses data	25
	4.4	Inductor losses at higher frequencies	26
	4.5	Inductor costing	31
5.	Analys	sis of the data	33
	5.1	Sample calculations	33
		5.1.1 Calculation of Inductances	33
		5.1.2 Calculation of Inductor core losses	34
		5.1.3 Calculation of Inductor efficiency	34
	5.2	Inductance Vs Load current analysis	35
	5.3	Thermal analysis	36
	5.4	Inductor losses analysis	37
	5.5	Inductor core losses analysis	38
	5.6	Inductor efficiency analysis	42
	5.7	Economic comparisons of the designs	43
		5.7.1 Cost comparisons of the designs	43
		5.7.2 Life cycle cost comparisons of the designs	45
6.	Result	s Discussion	47
	6.1	Meeting desired inductance	47
	6.2	Meeting thermal endurance	47
	6.3	Losses, Efficiency and Cost considerations	48
	6.4	Hi frequency losses and Harmonic effects	49
7.	Conclu	usions and Recommendations	50
Refere	nce Lis	t	51
Appendix A: Visual Basic Program co		Visual Basic Program code	53
Appendix B:		Typical customer specification for an Inductor	56

LIST OF FIGURES

Figure 1.1	EI type Laminated Inductor	3
Figure 1.2	'C' core type Inductor	4
Figure 1.3	Toroidal core type Inductor	5
Figure 2.1	Silicon steel mother coils	8
Figure 2.2	Production technology for GOSS	11
Figure 2.3	Production technology for NGOSS	11
Figure 2.4	Price variation in Steel market for Electrical steel	12
Figure 3.1	Magnetization characteristics for GOSS-AISI Grade M5	16
Figure 3.2	Core loss curve for GOSS-AISI Grade M5	17
Figure 3.3	Magnetization characteristic for GOSS-AISI Grade MOH	18
Figure 3.4	Core loss curve for GOSS-AISI Grade MOH	18
Figure 3.5	Magnetization characteristic for NGOSS-AISI Grade JIS C2552	19
Figure 3.6	Core loss curve for NGOSS-AISI Grade JIS C2552	20
Figure 3.7	Flux density vs. current curve for magnetic material	22
Figure 4.1	Inductor costing sheet for TI-103858	31
Figure 4.2	Inductor costing sheet for TI-103858A	32
Figure 4.3	Inductor costing sheet for TI-103858B	32
Figure 5.1	Inductance Vs Load current characteristic of TI-103858,	
	TI-103858A and TI-103858B	36
Figure 5.2	Thermal loading characteristic of TI-103858 and TI-103858A	37
Figure 5.3	Graph of Inductor losses Vs input Voltage (V) for TI-103858,	
	TI-103858A and TI-103858B	38
Figure 5.4	Graph of Inductor core losses vs. input Current for TI-063560B1,	
	TI-063560B2 and TI-063560B3 at 50Hz	39
Figure 5.5	Graph of Inductor core losses vs. input Current for TI-063560B1,	
	TI-063560B2 and TI-063560B3 at 500Hz	41
Figure 5.6	Graph of Inductor core losses vs. input Current for TI-063560B1,	
	TI-063560B2 and TI-063560B3 at 1kHz	42

Page

Figure 5.7	Graph of Efficiency vs. input Voltage for TI-103858, TI-103858A	
	and TI-103858B	43
Figure 5.8	Cost comparisons of designs TI-103858, TI-103858A and	
	TI-103858B	44
Figure 5.9	Life cycle cost of inductors TI-103858, TI-103858A and	
	TI-103858B	46

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF TABLES

		Page
Table 4.1	Voltage (V) Vs Current (A) data for TI-103858, TI-103858A	
	and TI-103858B	23
Table 4.2	Thermal test data for TI-103858, TI-103858A	24
Table 4.3	Inductor losses for TI-103858	25
Table 4.4	Inductor losses for TI-103858A	25
Table 4.5	Inductor losses for TI-103858B	26
Table 4.6	Inductor losses at 50Hz for TI-063560B1	26
Table 4.7	Inductor losses at 500Hz for TI-063560B1	27
Table 4.8	Inductor losses at 1kHz for TI-063560B1	27
Table 4.9	Inductor losses at 50Hz for TI-063560B2	28
Table 4.10	Inductor losses at 500Hz for TI-063560B2	28
Table 4.11	Inductor losses at 1kHz for TI-063560B2	29
Table 4.12	Inductor losses at 50Hz for TI-063560B3	29
Table 4.13	Inductor losses at 500Hz for TI-063560B3	30
Table 4.14	Inductor losses at 1kHz for TI-063560B3	30
Table 5.1	Inductance (mH) Vs Current (A) for TI-103858, TI-103858A	
	and TI-103858B	35
Table 5.2	Core losses variation for TI-063560B1, TI-063560B2 and	
	TI-063560B3 at 50Hz	39
Table 5.3	Core losses variation for TI-063560B1, TI-063560B2 and	
	TI-063560B3 at 500Hz	40
Table 5.4	Core losses variation for TI-063560B1, TI-063560B2 and	
	TI-063560B3 at 1kHz	41
Table 5.5	Efficiency calculation for TI-103858, TI-103858A and TI-103858B	42
Table 5.6	Cost of inductors TI-103858, TI-103858A and TI-103858B	44
Table 5.7	Life cycle cost of inductors TI-103858, TI-103858A and TI-103858B	45

LIST OF ABBREVIATIONS

Abbreviation	Description
А	Ampere
AC	Alternative Current
Ac	Cross sectional area
AISI	American Iron and Steel Institute
BOM	Bill of Material
DC	Direct Current
EMF	Electro Motive Force
GOSS	Grain Oriented Silicon Steel
Hz	Hertz
Ι	Current
JIS	Japanese Industrial Standards
JSA	Japanese Standards Association
kW	Kilo Watt
mA El	Milli Amperes
mH	Milli Hendry
min	Minutes
MPL	Magnetic Path Length
NGOSS	Non Grain Oriented Silicon Steel
PWM	Pulse Width Modulation
R	Reluctance
RMS	Root Mean Square
USD	United States Dollars
V	Voltage
VA	Volt-Ampere
VB	Visual Basic
W	Watt
°C	Degree Celsius
Ω	Ohm

SMPSSwitch Mode Power SupplyμPermeability

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF APPENDICES

Appendix	Description	Page
Appendix - A	Visual Basic Program code	53
Appendix - B	Typical customer specification for an Inductor	56

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk