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a b s t r a c t

The largest eigenvalue of a single or a double Wishart matrix, both known as Roy’s
largest root, plays an important role in a variety of applications. Recently, via a small
noise perturbation approach with fixed dimension and degrees of freedom, Johnstone
and Nadler derived simple yet accurate approximations to its distribution in the real
valued case, under a rank-one alternative. In this paper, we extend their results to
the complex valued case for five common single matrix and double matrix settings. In
addition, we study the finite sample distribution of the leading eigenvector. We present
the utility of our results in several signal detection and communication applications, and
illustrate their accuracy via simulations.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Wishart matrices, both real and complex valued, play a central role in statistics, with numerous engineering applica-
tions, specifically signal processing and communications. Of particular interest are the roots of a single Wishart matrix
H , and of a double Wishart matrix E−1H , with H and E independent [1]. The latter can be viewed as the multivariate
analogue of the univariate F distribution and is also closely related to the multivariate beta distribution [32, Section 3.3].
Here we consider the largest eigenvalue ℓ1 of either the matrix H or the matrix E−1H , a test statistic proposed by
Roy [38,39], known as Roy’s largest root [32, Section 10.6]. Specifically, we focus on the complex-valued case where
H, E are independent complex-valued Wishart matrices. Throughout this paper, we consider m × m matrices, where E
follows a complex valued central Wishart distribution with nE degrees of freedom and identity covariance matrix ΣE = I ,
denoted E ∼ CWm(nE, I). The distribution of the matrix H will either be central H ∼ CWm(nH , ΣH ), or non-central
H ∼ CWm(nH , ΣH , Ω). For the definition of central and non-central complex valued Wishart matrices, see for example [15]
and [19, Section 8].

Obtaining simple expressions, exact or approximate, for the distribution of this top eigenvalue, denoted by ℓ1, in
the single or double matrix case has been a subject of intense research for more than 50 years. Khatri [27] derived
an exact expression for the distribution of ℓ1 in the single central matrix case with an identity covariance matrix
(ΣH = I). His result was generalized to several other settings, such as an arbitrary covariance matrix or a non-centrality
matrix [24,28,36,37,41]. The resulting expressions are, in general, challenging to evaluate numerically. More recently,
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Table 1
Five common single-matrix and double-matrix cases. The middle column describes the distribution of the covariance
matrices of the observed data. In the first two cases only one sample covariance matrix is computed. The right column
describes several relevant applications.
Case General Form of Distribution Application

1 H ∼ CWm(nH , Σ + λvv†) Signal detection in noise,
Σ is known known noise covariance matrix.

2 H ∼ CWm(nH , Σ, ωvv†) Constant modulus signal detection in noise,
Σ is known known noise covariance matrix.

3 H ∼ CWm(nH , Σ + λvv†) Signal detection in noise,
E ∼ CWm(nE , Σ) estimated noise covariance matrix.

4 H ∼ CWm(nH , Σ, ωvv†) Constant modulus signal detection in noise,
E ∼ CWm(nE , Σ) estimated noise covariance matrix.

5 H ∼ CWp(q, Φ, Ω) Canonical correlation analysis
E ∼ CWp(n − q, Φ) between two groups of sizes p ≤ q
Ω is a rank-one matrix

Zanella et al. [44] derived simpler exact, yet recursive expressions, both for the central case with arbitrary ΣH and for the
non-central case but with ΣH = I . Alternative recursive formulas in the real-valued case and in the complex-valued case
were derived by Chiani [4–6].

A different approach to derive approximate distributions for the largest eigenvalue when ΣE = ΣH = I , is based on
random matrix theory. Considering the limit as nH and m (and in the double matrix case also nE) tend to infinity, with
their ratios converging to constants, ℓ1 in the single matrix case and ln(ℓ1) in the double matrix case, asymptotically
follow a Tracy–Widom distribution [20–22]. Furthermore, with suitable centering and scaling, the convergence to these
limiting distributions is quite fast [10,31].

In this paper, motivated by statistical signal detection and communication applications, we consider complex valued
Wishart matrices H whose population covariance is a rank-one perturbation of a base covariance matrix. Specifically, in the
central case we assume ΣH = I+λvv†, where λ is a measure of signal strength, the unit norm vector v ∈ Cm is its direction,
and v† denotes the conjugate transpose of v. Similarly, in the non-central case, we assume that H ∼ CWm(nH , I, Ω), with
a rank-one non-centrality matrix Ω = λvv†. Our goal is to study the distribution of ℓ1 and its dependence on λ, which as
discussed below is a central quantity of interest in various applications. A classical result in the single-matrix case is that
with dimension m fixed, as nH → ∞, the largest eigenvalue of H converges to a Gaussian distribution [1]. In the random
matrix setting, as both nH and m tend to infinity with their ratio tending to a constant, Baik et al. [3] and Paul [34] proved
that if λ >

√
m/nH then ℓ1 still converges to a Gaussian distribution, but with a different variance. In the two-matrix

case, the location of the phase transition and the limiting value of the largest eigenvalue of E−1H were recently studied
by Nadakuditi and Silverstein [33]. Dharmawansa et al. [8] proved that above the phase transition, ℓ1 converges to a
Gaussian distribution and provided an explicit expression for its asymptotic variance.

Whereas the above results assume that dimension and degrees of freedom tend to infinity, in various common
applications these quantities are relatively small. In such settings, the above mentioned asymptotic results may provide a
poor approximation to the distribution of the largest eigenvalue ℓ1, which can be quite far from Gaussian, see Fig. 1 (left)
for an illustrative example. Accurate expressions for the distribution of ℓ1, for small dimension and degrees of freedom,
were recently derived for single and double real-valued Wishart matrices by Johnstone and Nadler [23], via a small noise
perturbation approach. In this paper, we build upon their work and extend their results to the complex valued case and
to the study of the distribution of the leading sample eigenvector, not considered in their work. As discussed below, both
are important quantities in various applications.

Propositions 1–5 in Section 2 provide approximate expressions for the distribution of ℓ1 under the five single-matrix
and double-matrix cases outlined in Table 1. In Section 3 we study the finite sample fluctuations of the leading eigenvector
and its overlap with the population eigenvector. Next, in Section 4 we illustrate the utility of these approximations in
signal detection and communication applications. Specifically, Section 4.1 considers the power of Roy’s largest root test
under two common signal models, whereas Section 4.2 considers the outage probability in a specific multiple-input and
multiple-output (MIMO) communication system [24]. For a rank-one Rician fading channel, we show analytically that to
minimize the outage probability it is preferable to have an equal number of transmitting and receiving antennas. This
important design property was previously observed via simulations [24].

2. On the distribution of Roy’s largest root

Table 1 outlines five common single matrix and double matrix complex Wishart cases, along with some representative
applications. Propositions 1–5, are the complex analogues of those in [23], and provide simple approximations to
the distribution of Roy’s largest root in these cases. As outlined in the appendix, their proof follows those of [23],
with some notable differences. In particular, we present complex valued analogues of some well known results for
real valued Wishart matrices. In what follows we denote by E the expectation operator. We also denote by χ2

k the
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chi-squared distribution with k degrees of freedom and by χ2
k (η) the non-central chi-squared distribution with

non-centrality parameter η. Throughout the manuscript we follow the standard definition of complex valued multivariate
Gaussian random variables, see [15]. Specifically, if X ∼ CN (0, σ 2) then it can be written as (A + ιB)/

√
2 where A, B ∈ R

are independent N (0, σ 2) random variables and ι =
√

−1.
We start with the simplest Case 1 in Table 1, involving a single central Wishart matrix, H ∼ CWm(nH , Σ + λvv†). In

various engineering applications the matrix Σ denotes the covariance of the noise measured at m sensors and is often
assumed to be known, whereas λ is a measure of the signal strength and the unit norm vector v denotes its direction.
Without loss of generality, we thus assume Σ = σ 2I , where σ 2 then denotes the noise variance. In contrast to previous
asymptotic approaches, whereby the number of samples nH → ∞ and possibly also the dimension m → ∞, in the
following we keep nH and m fixed, and study the distribution of the largest eigenvalue in the limit of small noise, namely
as σ → 0. To emphasize that we study the dependence of the largest eigenvalue of H on the parameter σ , we shall denote
it by ℓ1(σ ).

Proposition 1. Let H ∼ CWm(nH , λvv†
+ σ 2I), with ∥v∥ = 1, λ > 0 and let ℓ1(σ ) be its largest eigenvalue. Then, with

(m, nH , λ) fixed, as σ → 0

ℓ1(σ ) =
λ + σ 2

2
A +

σ 2

2
B +

σ 4

2(λ + σ 2)
BC
A

+ oP (σ 4) (1)

where A, B, C are independent random variables, distributed as A ∼ χ2
2nH

, B ∼ χ2
2m−2, and C ∼ χ2

2nH−2.

Remark 1. Given that ℓ1 is the largest eigenvalue of a Wishart matrix, it has finite mean and variance. Approximate
formulas for these quantities follow directly from (1). Since E{χ2

k } = k Var{χ2
k } = 2k, and E{1/χ2

k } = 1/(k − 2) for k > 2
then for nH > 1

E{ℓ1(σ )} = λnH + (nH + m − 1)σ 2
+

σ 4

λ + σ 2 (m − 1) + o(σ 4),

and similarly,

Var{ℓ1(σ )} = λ2nH + 2λnHσ 2
+ (nH + m − 1)σ 4

+ o(σ 4).

Remark 2. The exact distribution of the largest eigenvalue ℓ1 in the setting of Proposition 1, with number of samples
larger than the dimension, has been recently derived by Chiani [6, Theorem 4, part 3]. The result is given in terms of the
determinant of an m×m matrix whose entries depend on the generalized incomplete gamma function, with parameters
that depend on λ and on σ . In contrast, while (1) is approximate, the dependence on the values of λ and σ is more explicit.

The next proposition considers a non-central single Wishart, Case 2 in Table 1.

Proposition 2. Let H ∼ CWm(nH , σ 2I, (ω/σ 2)vv†), with ∥v∥ = 1, ω > 0 and let ℓ1(σ ) be its largest eigenvalue. Then, with
(m, nH , ω) fixed, as σ → 0

ℓ1(σ ) =
σ 2

2

(
A + B +

BC
A

)
+ oP (σ 4) (2)

where A, B, C are all independent and distributed as A ∼ χ2
2nH

(2ω/σ 2), B ∼ χ2
2m−2 and C ∼ χ2

2nH−2.

Remark 3. By definition, E{χ2
k (η)} = k + η. Furthermore, it is easy to show that as η → ∞, E{(χ2

k (η))
−1

} =

(k − 2 + η)−1
{1 + O(η−1)} and Var{(χ2

k (η))
−1

} = 2/{(k + η − 2)2(k + η − 4)} · {1 + O(η−1)}. Note that as σ → 0 the
non-centrality parameter 2ω/σ 2 which appears in the random variable A in (2) tends to infinity. Hence, for small σ , we
can approximate the mean and variance of ℓ1(σ ) in (2) by

E{ℓ1(σ )} ≈ ω + (nH + m − 1)σ 2
+

(nH − 1)(m − 1)
σ 2(nH − 1) + ω

σ 4

and

Var{ℓ1(σ )} ≈ 8ω + 4σ 2

{
nH + m − 1 +

(nH − 1)(m − 1)

2(nH +
σ2

ω
− 1)2(nH +

σ2

ω
− 2)

}
.

The next two propositions provide approximations to the distribution of Roy’s largest root in the central and non-
central double matrix settings, which correspond to Cases 3 and 4 in Table 1. For Case 3, for example, in principle we
need to study ℓ1(E−1H) where E ∼ CWm(nE, Σ) and H ∼ CWm(nH , Σ + λ̃ww†). However, a simplification can be made
based on the following observations: (i) The matrix E−1H has the same eigenvalues as Σ1/2E−1HΣ−1/2, which is equal
to (Σ−1/2EΣ−1/2)−1(Σ−1/2HΣ−1/2), (ii) the matrix Σ−1/2EΣ−1/2

∼ CWm(nE, I) and (iii) the matrix Σ−1/2HΣ−1/2
∼

CWm(nH , I + λvv†), where v = Σ−1/2w/∥Σ−1/2w∥ has unit norm, and λ = ∥Σ−1/2w∥
2 λ̃. Hence, in the following

propositions we assume without loss of generality that the covariance matrix of E is Σ = I .
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Fig. 1. Density of the largest eigenvalue in Case 1 (left) and Case 2 (right). The parameters for Case 1 are nH = m = 5, λ = 5 and σ 2
= 0.01. For

Case 2 they are nH = m = 5, ω = 1 and σ 2
= 0.01. The red solid line corresponds to Propositions 1 and 2.

Proposition 3. Let H ∼ CWm(nH , I + λvv†) and E ∼ CWm(nE, I) be independent, with nE > m + 1 and ∥v∥ = 1. Let ℓ1 be
the largest eigenvalue of E−1H. Then, with (m, nH , nE) fixed, as λ becomes large

ℓ1(λ) ≈ (1 + λ)a1Fb1,c1 + a2Fb2,c2 + a3 (3)

where the two F distributed random variates are independent and

a1 =
nH

nE − m + 1
, a2 =

m − 1
nE − m + 2

, a3 =
m − 1

(nE − m)(nE − m − 1)
,

b1 = 2nH , b2 = 2m − 2, c1 = 2nE − 2m + 2, c2 = 2nE − 2m + 4.

(4)

Proposition 4. Suppose that H ∼ CWm(nH , I, ωvv†) and E ∼ CWm(nE, I) are independent, with nE > m + 1, ω > 0, and
∥v∥ = 1. Let ℓ1 be the largest eigenvalue of E−1H. Then, with (m, nH , nE) fixed, as ω becomes large

ℓ1(ω) ≈ a1Fb1,c1 (2ω) + a2Fb2,c2 + a3 (5)

where the two F distributed random variates are independent and the parameters ai, bi, ci are given in (4).

Remark 4. In the limit as nE → ∞, the two F-distributed random variables in (3) and (5) converge to χ2 distributed
random variables, thus recovering the leading order terms in (1) and (2), respectively.

Let us illustrate the accuracy of our approximations via several simulations. Fig. 1 compares the empirical density of
the largest eigenvalue, computed from 105 independent Monte Carlo realizations, in Cases 1 and 2 defined in Table 1,
to the two corresponding propositions. For reference, we also plot the standard Gaussian density. The accuracy of our
proposition for computing tail probabilities of the form Pr(ℓ1 > t) is illustrated in Fig. 2 for Case 1. Similar results (not
shown) hold for other cases. Results for Cases 3 and 4 of Table 1 are shown in Fig. 3. As can be seen, in all cases, due
to the small sample size and dimension, the distribution of the largest root deviates significantly from the asymptotic
Gaussian one, with our propositions being significantly more accurate.

2.1. On the leading canonical correlation coefficient

We now consider the fifth Case of Table 1 and study the largest sample canonical correlation coefficient between a first
group of p variables and a second group of q variables, in the presence of a single large canonical correlation coefficient
in the population. Canonical correlation analysis is widely used in a variety of applications, for example in medical image
processing [7,26,30], signal processing [2,35,40], and array processing [11].

Since the canonical correlation is invariant under unitary transformations within each of the two groups of variables,
in the presence of a single large correlation coefficient, without loss of generality we can choose the following form for
the matrix Σ ,

Σ =

(
Ip P̃

P̃⊤ Iq

)
.

Here P̃ =
(
P 0p×(q−p)

)
with P = diag (ρ, 0, . . . , 0) ∈ Rp×p and ρ is the value of the correlation coefficient.
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Fig. 2. Tail probabilities for largest eigenvalue in Case 1, same parameters as in Fig. 1.

Fig. 3. Density of the largest eigenvalue in Case 3 (left) and Case 4 (right). In both plots nE = nH = 10, m = 5. In Case 3, λ = 50 and in Case 4
ω = 150. The blue solid line corresponds to Propositions 3 and 4.

To study the sample canonical correlation, consider n + 1 complex-valued m-dimensional multivariate Gaussian
observations xi ∼ CN (0, Σ) , i ∈ {1, . . . , n + 1} on m = p + q variables, where without loss of generality p ≤ q.
The corresponding sample covariance matrix S decomposes as

nS =

(
Y †Y Y †X
X†Y X†X

)
,

where Y ∈ Cn×p and X ∈ Cn×q represent the first p variables and the remaining q variables, respectively.
Our interest is in the largest sample canonical correlation coefficient, denoted by r1. Similar to the real valued case

[32, Chapter 10], its square r21 is the largest root of the following characteristic equation

det
(
r2Y †Y − Y †QY

)
= 0, (6)

where Q = X
(
X†X

)−1 X†. Introducing the notation H = Y †QY and E = Y †(Ip − Q )Y , (6) can be rewritten as

det
(
r2(H + E) − H

)
= 0.

Hence, we may equivalently study the largest root of E−1H , since it is related to r21 by ℓ1 = r21/(1 − r21 ).
Similar to [23], it can be shown that with Φ = Ip − P2, conditional on X , the two matrices H and E are independent

and distributed as

H|X ∼ CWp (q, Φ, Ω) and E|X ∼ CWp (n − q, Φ) (7)

with the non-centrality matrix given by

Ω = Φ−1P̃X†XP̃⊤
=

ρ2

1 − ρ2

(
X†X

)
11 e1e

†
1 = ω e1e†

1 where ω =
ρ2

1 − ρ2

(
X†X

)
11 . (8)
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Fig. 4. Density function of ℓ1(E−1H) in canonical correlation analysis.

Since X†X ∼ CWq
(
n, Iq

)
, then all diagonal entries of X†X follow a chi-square distribution. In particular,

(
X†X

)
11 ∼ χ2

2n/2.
The next proposition provides an approximation to the distribution of the largest sample canonical correlation in the
presence of a single population canonical correlation. To this end, we introduce the following notation. We denote by
Fχ

a,b(c, n) a random variable, which is defined as a function of three other random variables as follows: First, generate a
random variable Z ∼ cχ2

n . Next, generate two independent random variables, one distributed as χ2
a (Z) and the other as

χ2
b . Finally, compute their ratio

χ2
a (Z)/a
χ2
b /b

∼ Fχ

a,b(c, n). (9)

Proposition 5. Let ℓ1 = r21/(1 − r21 ), where r1 is the largest sample canonical correlation between two groups of size p ≤ q
computed from n + 1 i.i.d. observations with ν = n − p − q > 1. Then in the presence of a single large population correlation
coefficient ρ between the two groups, asymptotically as ρ → 1,

ℓ1 ≈ a1F
χ

b1,c1

(
ρ2

1 − ρ2 , 2n
)

+ a2Fb2,c2 + a3

where

a1 = q/(ν + 1), a2 = (p − 1)/(ν + 2), a3 = (p − 1)/ν(ν − 1),
b1 = 2q, b2 = 2p − 2, c1 = 2(ν + 1), c2 = 2(ν + 2).

Remark 5. It can be shown that the probability density of Fχ

a,b(c, n) is

fX (x) =
1

B
(

c1
2 ,

b1
2

)
(1 + c)n/2

(
b
a

) b
2 x

a
2 −1(

x +
b
a

) 1
2 (a+b)

· 2F1

(
n
2
,
1
2
(a + b);

a
2
;

xc
(c + 1)

(
x +

b
a

))

where 2F1(a, b; c; z) is the Gauss hypergeometric function and B(p, q) is the beta function. This formula is useful for
numerical evaluation for small parameter values.

Fig. 4 illustrates the accuracy of Proposition 5. A good match between the theoretical approximation formula and
simulation results is clearly visible, particularly at the right tail of the distribution.

3. Distribution of the leading sample eigenvector

Another key quantity of both theoretical and practical importance is the squared dot product between the leading
sample eigenvector, denoted v̂, and its corresponding population eigenvector v. Assuming ∥v∥ = ∥v̂∥ = 1,

R = |v̂†v|2. (10)

A practical application where it is important to understand the behavior of R under a rank one spike, involves
the design of dominant mode rejection (DMR) adaptive beamformers in array processing [42]. The main purpose of
this beamformer is to eliminate interferences from undesired directions other than the steering direction. As shown
in [43], an important parameter which determines the performance of the DMR scheme is the correlation between the
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random sample eigenvectors and the unknown population eigenvectors. Specifically, in the presence of a single dominant
interferer, the population covariance matrix takes the form of a rank one spiked model [43, Eq. 17], and the effectiveness
of the DMR depends on the quantity R. Another application where the quantity R plays a key role is passive radar
detection with digital illuminators having several periodic identical pulses [12]. In a sequence of papers [12–14], the
authors developed a new framework for passive radar detection based on the leading eigenvector of the sample covariance
matrix. This detection scheme outperforms traditional detectors [12]. Motivated by these and other applications, we now
develop stochastic approximations to R. For Case 1 of Table 1, we have:

Proposition 6. Let H ∼ CWm(nH , λvv†
+σ 2I), with ∥v∥ = 1 and λ > 0. Let v̂ be the eigenvector corresponding to the largest

eigenvalue of H. Then, with (m, nH , λ) fixed, for small σ

R ≈
1

1 +
σ 2

λ + σ 2

B
A

+
2σ 4(

λ + σ 2
)2 BC

A2

,

where A ∼ χ2
2nH

, B ∼ χ2
2m−2 and C ∼ χ2

2nH−2 are all independent.

The distribution of R in Case 2 of Table 1 is given by the following proposition.

Proposition 7. Let H ∼ CWm(nH , σ 2I, (ω/σ 2)vv†), with ∥v∥ = 1 and ω > 0. Let v̂ be the eigenvector corresponding to the
largest eigenvalue of H. Then, with (m, nH , ω) fixed, for small σ

R ≈
1

1 +
B
Aσ

+ 2
BC
A2

σ

,

where Aσ ∼ χ2
2nH

(2ω/σ 2), B ∼ χ2
2m−2 and C ∼ χ2

2nH−2 are all independent.

Propositions 6 and 7 can be useful to analyze theoretically various DMR and radar detections schemes, and shed light
on their dependence on the relevant system parameters.

For the double-matrix Case 3 in Table 1, we have

Proposition 8. Let H ∼ CWm(nH , λvv†
+ I) and E ∼ CWm(nE, I) be independent, with nE > m + 1 and ∥v∥ = 1. Let v̂ be

the eigenvector corresponding to the largest eigenvalue of E−1H. Then, with (m, nH , nE) fixed, for large λ

R ≈
1

1 +
B
D

,

where B ∼ χ2
2m−2 and D ∼ χ2

2nE+4−2m are independent.

In the context of array processing, the double matrix Case 3 of Table 1 corresponds to a setting where the noise
characteristics of the m sensors are not perfectly known, but rather their covariance matrix is estimated from nE samples
that do not contain any signal. Comparing Proposition 8 with Proposition 6 sheds light on the effect of estimating the
covariance matrix of the noise. Whereas in Case 1, as signal strength λ → ∞ the quantity R converges to one, in Case 3,
the random variable R does not converge to one, but rather to a Beta distribution.

Figs. 5 and 6 illustrate the accuracy of our approximate distributions of the squared inner product between the leading
sample and population eigenvectors.

4. Applications

We now demonstrate the utility of our approximations to Roy’s largest root distribution under a rank-one perturbation
in three different engineering applications. The first two are concerned with common problems in signal detection,
whereas the third with the outage probability of a rank-one Rician fading MIMO channel.

4.1. Signal detection in noise

Detecting the presence of a signal in a noisy environment is a fundamental problem in detection theory. Specific
examples include spectrum sensing in cognitive radio [17] and target detection in sonar and radar [42]. Assuming additive
Gaussian noise, the observed vector y(t) ∈ Cm at time t is of the form

y(t) =
√

λs(t)u + n(t), (11)

where s(t) ∈ C is the time dependent signal, u ∈ Cm is normalized such that ∥u∥ = 1 is its direction, λ ≥ 0 is a measure
of the signal strength and the vector n ∈ Cm is a zero mean complex valued random noise, assumed to be independent of
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Fig. 5. Empirical versus theoretical density of R in Case 1 (left) and Case 2 (right).

Fig. 6. Comparison of empirical density of R in Case 3 of Table 1 with Proposition 8, for nH = 10, nE = 16, m = 5 and λ = 100.

the signal and distributed as n ∼ CN (0, Σ). The positive definite Hermitian matrix Σ is thus the population covariance of
the additive random noise. In some cases it is assumed to be explicitly known, whereas in others it needs to be estimated.
The signal s(t) is often modeled as a random quantity with E{|s(t)|2} = 1. For example, in multiple antenna spectrum
sensing for cognitive radio a common model is that s(t) ∼ CN (0, 1), namely s(t) = s1(t) + ιs2(t) where s1(t) and s2(t)
are real valued and independent random variables distributed N (0, 1) [45,46]. Similarly, in detection of constant modulus
signals (e.g., FM signals [18]), s(t) = exp(ιφ(t)), where φ(t) is random.

When the covariance matrix Σ of the noise vector n is assumed known, the observed data used to detect if a signal
is present are often nH i.i.d. observations y1, . . . , ynH , from (11). A popular approach is to compute the sample covariance
matrix H =

∑nH
j=1 yjy

†
j , and declare that a signal is present if some function of its eigenvalues is larger than a suitable

threshold. Several such detection tests have been proposed [18,45,46], including Roy’s largest root [29]. As discussed
below, depending on the model of the signal, this leads precisely to Cases 1 and 2 in Table 1.

In other situations, Σ is unknown, but it is possible to observe both the nH samples yi of (11) as well as an additional
set of nE independent realizations n1, . . . ,nnE of the noise vector n. The latter are measured, for example, in time slots
at which it is a-priori known that no signals are emitted. Here, a typical approach is to form both the matrix H as above
and the matrix E = Σ

nE
j=1njn†

j and detect the presence of a signal via some function of the eigenvalues of E−1H . Signal
detection based on the largest eigenvalue of E−1H leads to Cases 3 and 4 in Table 1.

As discussed in Section 2, one may assume without loss of generality that Σ = σ 2I . Thus, when s ∼ CN (0, 1),

H ∼ CWm(nH , λuu†
+ σ 2I).
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Fig. 7. Detection power profile for several signal to noise ratios as a function of threshold µ for a known covariance matrix or an unknown covariable.
In both cases λ = 1, nH = 5,m = 5. In the right panel nE = 10. From top to bottom, σ = 1/10, 2/10 and 3/10.

In contrast, if s = exp(ιφ), conditional on φ1, . . . , φnH ,

H ∼ CWm

(
nH , σ 2I,

λnH

σ 2 uu†

)
.

Propositions 1–4 can thus be used to approximate the detection power of Roy’s largest root test as a function of signal
strength λ in both the single matrix cases and the double matrix cases,

PD = Pr {ℓ1 > µ | signal present with strength λ} , (12)

where µ is a given threshold parameter. The accuracy of (12) is illustrated in Fig. 7.

4.2. Rank-one Rician-fading MIMO channel

As a last application, consider the outage probability of a MIMO communication channel with nT transmitters and nR
receivers. Here, the transmitted signals x ∈ CnT and received signals y ∈ CnR are related as

y = Hx + n

where H is the nR × nT channel matrix and n is additive random complex valued noise, assumed to be distributed as
n ∼ CN

(
n, σ 2

n I
)
, where σ 2

n is its (real-valued) variance. Due to fluctuations in the environment, the channel matrix H is
modeled as a random quantity. In particular, under a common Rician fading model [16], H has the form

H =

√
K

K + 1
H1 +

√
1

K + 1
H2 (13)

where H1 represents the specular (Rician) component from a direct line-of-sight between transmitter and receiver
antennas and H2 represents the scattered Rayleigh-fading component. With fixed sender and receiver locations, the matrix
H1 is constant whereas H2 is random with entries modeled as i.i.d. complex Gaussians, CN (0, σ 2

H ). Under the normalization
tr(H1H

†
1 ) = nRnT , the factor K represents the ratio of deterministic-to-scattered power of the environment.

Under the maximal ratio transmission strategy, where the transmitter sends information along the leading eigenvector
of HH†, the channel signal to noise ratio is given by

µ =
ΩD

σ 2
n

ℓ1
(
HH†) (14)

where ΩD = E[∥x∥2
] is the power of the transmitted signal vectors [24]. An important quantity is the channel’s outage

probability, defined as the probability of failing to achieve a specified minimal SNR µmin required for satisfactory reception.
Based on (14), the outage probability Pout can be written as

Pout = Pr
(

ΩD

σ 2
n

ℓ1 ≤ µmin

)
. (15)

One particularly interesting case is when the Rician component H1 is assumed to be of rank one, H1 = uv†, where
u ∈ CnR , v ∈ CnT . An important design question is which configuration of antennas minimizes (15), under the constraint
that the total number of transmitting and receiving antennas is fixed. Via simulations, [24] showed it is best to have an
equal number of transmitting and receiving antennas. Here we analytically prove this result asymptotically in the limit
of small scattering variance (i.e., σH ≪ 1).



10 P. Dharmawansa, B. Nadler and O. Shwartz / Journal of Multivariate Analysis 174 (2019) 104524

Fig. 8. Outage probability as a function of nT , with nT+nR fixed. Circles represent a Monte-Carlo simulation whereas the solid line is our approximation
(which can be computed for any non-integer nT ∈ R+). These graphs support Proposition 9 and demonstrate the accuracy of our approximations.
In both graphs, K = 2, σH = 0.3, σn = 1 and ΩD = 5.

Proposition 9. Consider a rank-one Rician fading channel with a fixed number of antennas, nT + nR = N. Then, for σH ≪ 1,
the outage probability is minimized at nT = nR = N/2 for N even (or say nT = ⌊N/2⌋, nR = ⌈N/2⌉ for N odd).

Proof. Under the model in (13) and the assumption that H1 = uv† is rank one, the jth column of H , of dimension nR, is
distributed as CN

(√
K/(K + 1)uvj, σ

2
H/(K + 1)InR

)
. Therefore,

HH†
∼ CWnR (nT , α

2InR , β
2/α2ww†)

is non-central Wishart, with

w = v/∥v∥, α2
=

1
K + 1

σ 2
H and β2

=
K

K + 1
∥u∥

2
∥v∥2

=
K

K + 1
nRnT .

Thus, Proposition 2 implies that for fixed (nT , nR, K ),

µ =
ΩD

σ 2
n

ℓ1 = c1

(
A + B +

BC
A

)
+ oP (σ 4

H ) (16)

where A, B, C are independent random variables distributed as

A ∼ χ2
2nT (c2), B ∼ χ2

2nR−2, C ∼ χ2
2nT−2

and

c1 =
ΩDσ

2
H

2(K + 1)σ 2
n

, c2 =
2β2

α2 =
2K
σ 2
H
nRnT . (17)

Since E(A) = 2nT + c2 ≫ 1, and c2 → ∞ as σH → 0, we may neglect the third term in (16). Furthermore, since A and B
are independent,

µ ≈ c1 (A + B) = c1(χ2
2nT (c2) + χ2

2nR−2) = c1χ2
2N−2(c2).

Clearly Pout of (15) is minimal when the largest eigenvalue ℓ1 is stochastically as large as possible, or in turn, when its
non-centrality parameter c2 is maximal. Since by (17), c2 ∝ nTnR, the proposition follows (see Fig. 8). □
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Appendix A. Proofs of main propositions

We prove our main results using the analytical framework developed in [23]. For a complex-valued number z ∈ C,
its real and imaginary parts are denoted ℜ(z) and ℑ(z), respectively, whereas z is its complex conjugate. We begin with
the following auxiliary lemma, which describes the analytic structure of the leading eigenvalue and eigenvector of a
covariance matrix constructed from vectors all in the same direction, which without loss of generality we choose as the
standard vector e1 = (1, 0, . . . , 0)⊤, but corrupted by small perturbations. Its proof is in Appendix B.
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Lemma 1. Let {xj}nj=1 be n vectors in Cm of the form

xj = uje1 + ϵξ⊥

j (A.1)

where uj are complex valued scalars, ξ⊥

j =

(
0
ξj

)
with ξj ∈ Cm−1 are the perturbations in orthogonal directions to e1 and ϵ ∈ R

is a small parameter. Define z ∈ R, b ∈ Cm−1 and Z ∈ C (m−1)×(m−1)

z =

n∑
j=1

ujuj, b = z−
1
2

n∑
j=1

ujξj, Z =

n∑
j=1

ξjξ
†
j . (A.2)

Let ℓ1(ϵ) be the largest eigenvalue of H(ϵ) =

n∑
j=1

xjx†
j with corresponding leading eigenvector v1(ϵ) normalized such that

e†
1v1(ϵ) = 1. Then ℓ1(ϵ) is an even analytic function of ϵ, whereas v1(ϵ) − e1 is an odd function of ϵ. In particular, the Taylor

expansions of ℓ1(ϵ) and v1(ϵ) around ϵ = 0 are given by

ℓ1(ϵ) = z + ∥b∥2ϵ2
+ z−1b†(Z − bb†)bϵ4

+ · · · (A.3)

v1(ϵ) = e1 + z−1/2
(
0
b

)
ϵ + z−3/2

(
0

Zb − ∥b∥2b

)
ϵ3

+ · · ·

Proof of Propositions 1 and 2. Since the eigenvalues of H do not depend on the direction of the vector v, without loss
of generality we thus assume that v = e1. Then, H may be realized from nH i.i.d. observations of the form (A.1) with ϵ

replaced by σ ,

ξj ∼ CN (0, Im−1), uj ∼

{
CN (0, σ 2

+ λ), Proposition 1,
CN (µj, σ

2), Proposition 2,
(A.4)

and µj are arbitrary complex numbers satisfying
∑

j |µj|
2

= ω.
For each realization of u = (uk) and Ξ = [ξ1, . . . , ξnH ] ∈ C(m−1)×nH , Lemma 1 yields the approximation (A.3) for ℓ1(σ ).

To derive the distributions of the various terms in (A.3) we proceed as follows. Define o1 = u/∥u∥ ∈ CnH , choose columns
o2, . . . , on so that O = [o1, . . . , onH ] is an nH ×nH unitary matrix, and consider the following (m−1)×nH matrix V = ΞO.
Its first column is v1 = Ξu/∥u∥ = b, and thus the O(ϵ2) term in (A.3) is b†b = ∥v1∥

2. For the fourth order term, observe
that Z = ΞΞ †

= VV † and so the quantity D = b†(Z − bb†)b may be written as

D = v
†
1(VV

†
− v1v

†
1)v1 = (v†

1V )(v†
1V )† − (v†

1v1)(v
†
1v1)† =

nH∑
j=2

|v
†
1vj|

2
.

Hence, (A.3) becomes

ℓ1(ϵ) = V0 + V2ϵ
2
+ V4ϵ

4
+ · · ·

where V0 = ∥u∥2, V2 = ∥v1∥
2 and V4 = V−1

0 D. To study the distributions of V0, V2, V4, note that by assumption in (A.4),
uj =

(
aj + ıbj

)
/
√
2 with

aj ∼

{
N (0, λ + σ 2) Proposition 1
N (

√
2ℜ(µj), σ 2) Proposition 2

bj ∼

{
N (0, λ + σ 2) Proposition 1
N (

√
2ℑ(µj), σ 2) Proposition 2.

Therefore, ∥u∥2
=

1
2

nH∑
j=1

(a2j + b2j ) is a sum of 2nH independent squares of either mean centered or non-centered Gaussian

random variables. This in turn gives

V0 = ∥u∥2
∼

{
σ2

+λ
2 χ2

2nH
, Proposition 1,

σ2

2 χ2
2nH

( 2ω
σ2 ), Proposition 2.

Since given u, O is unitary and fixed, then vj|u ∼ CN (0, Im−1). Since this distribution is independent of u, vj ∼ CN (0, Im−1).
By similar arguments

V2 = ∥v1∥
2

∼
1
2
χ2
2m−2
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which is independent of ∥u∥2. Finally, conditioned on (u, v1), we have v
†
1vj ∼ CN (0, ∥v1∥

2) and |v
†
1vj|

2
∼ ∥v1∥

2χ2
2 /2.

Thus,

D|(u, v1) =

nH∑
j=2

|v
†
1vj|

2
|(u, v1) ∼

∥v1∥
2

2
χ2
2nH−2,

where the χ2
2nH−2 variate is independent of (u, v1). We conclude that

V4 ∼

{
1

2σ2+2λ
(χ2

2nH
)−1χ2

2m−2χ
2
2nH−2, Proposition 1,

1
2σ2 (χ2

2nH
( 2ω
σ2 ))−1χ2

2m−2χ
2
2nH−2, Proposition 2.

Since the random variables V0, V2, V4 are independent, then so are A, B, C in either (1) or (2). This completes the proof of
Propositions 1 and 2. □

To prove Propositions 3 and 4, we first introduce some additional notation and two auxiliary lemmas, whose proofs
are deferred to Appendix B. For a matrix S, denote by Sjk and S jk the (j, k)th entries of S and S−1, respectively.

Lemma 2. Let E ∼ CWm(nE, I) and M = [e1, b] ∈ Cm×2, with the vector b fixed and orthogonal to e1. Define a 2 × 2
diagonal matrix D = diag

(
1, 1/∥b∥2

)
. Then

S = (M†E−1M)−1
∼ CW2(nE − m + 2,D),

and the two random variables S11 and S22 are independent with

S11 ∼
2

χ2
2nE−2m+2

, S22 ∼
χ2
2nE−2m+4

2∥b∥2 .

Lemma 3. Let E ∼ CWm(nE, I) and let A2 =

(
0 0
0 Z

)
where Z is an (m − 1) × (m − 1) random matrix independent of E,

with E(Z) = Im−1. Then

E

(
e†
1E

−1A2E−1e1
E11

)
=

m − 1
(nE − m)(nE − m + 1)

.

Proof of Propositions 3 and 4. Without loss of generality we may assume that the signal direction is v = e1. Hence

H ∼

{
CWm(nH , I + λe1e†

1), Proposition 3,
CWm(nH , I, ωe1e†

1), Proposition 4.

Next, we apply a perturbation approach similar to the one used in the previous proof. To introduce a small parameter,
set

ϵ2
=

{
1/(1 + λ), Proposition 3,
1/ω, Proposition 4.

The matrix Hϵ = ϵ2H has a representation of the form X†X with X = [x1, . . . , xnH ] where each xj follows (A.1) but now
with

ξj ∼ CN (0, Im−1), uj ∼

{
CN (0, 1), Proposition 3,
CN (µj/

√
ω, 1/ω), Proposition 4,

where
∑

|µj|
2

= ω. In particular,

z =

nH∑
j=1

|uj|
2

∼

{
1
2χ

2
2nH

, Proposition 3,
1
2ω χ2

2nH
(2ω), Proposition 4.

With b as in (A.2), using the same arguments as in the previous proof, we have that b ∼ CN (0, Im−1), independently of u.
The matrix Hϵ may be written as Hϵ = A0 + ϵA1 + ϵ2A2, where

A0 =

(
z 0
0 0m−1

)
, A1 =

√
z
(
0 b†

b 0m−1

)
, A2 =

(
0 0
0 Z

)
(A.5)

with Z as in (A.2). For future use we define the following quantities

E11
= e†

1E
−1e1, b̂ =

(
0
b

)
, Eb1

= b̂†E−1e1, Ebb
= b̂†E−1b̂.
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Note that the condition nE ≥ m ensures that E is invertible with probability 1. This follows for example from Theorem
3.2 in [9].

The matrix E−1Hϵ is similar to the Hermitian matrix E−1/2HϵE−1/2. Therefore, all its eigenvalues are real-valued for any
value of ϵ. Furthermore, since E−1/2HϵE−1/2 is a holomorphic symmetric function of ϵ, it follows from Kato ([25], Theorem
6.1 page 120) that the largest eigenvalue ℓ1 and its eigenprojection P̃(ϵ) are analytic functions of ϵ in some neighborhood
of zero, where the largest eigenvalue has multiplicity one. The projection to the corresponding eigenspace of E−1Hϵ is
P(ϵ) = E−1/2P̃(ϵ). As the matrix E does not depend on ϵ, this projection is also an analytic function in some neighborhood
of ϵ = 0.

At ϵ = 0, E−1e1 is an eigenvector with eigenvalue E11z, that is,

E−1H0E−1e1 = zE−1e1e†
1E

−1e1 = zE11E−1e1,

from which we obtain

e†
1P̃(0)E

−1e1 = e†
1E

−1e1 = E11. (A.6)

Since P̃(ϵ) is an analytic function of ϵ and the inner product is a smooth function, then there exists a neighborhood of
ϵ = 0 where e†

1P̃(ϵ)E
−1e1, e1 is both analytic in ϵ and strictly positive. In this neighborhood, we may define

v1(ϵ) =
E11

e†
1P̃(ϵ)E−1e1

P̃(ϵ)E−1e1. (A.7)

Clearly v1(ϵ) is the eigenvector corresponding to the eigenvalue ℓ1(ϵ) and it is also analytic. We thus expand

ℓ1(ϵ) =

∞∑
j=0

λjϵ
j, v1(ϵ) =

∞∑
j=0

wjϵ
j. (A.8)

Inserting these expansions into the eigenvalue–eigenvector equations E−1Hϵv1 = ℓ1v1 gives the following equations: at
the O(1) level,

E−1A0w0 = λ0w0

whose solution is

λ0 = zE11, w0 = const · E−1e1. (A.9)

By (A.6)–(A.7), w0 = v1(0) = E−1e1, so the above constant is one.
By (A.7), e†

1v1(ϵ) = E11
= e†

1w0. Hence e†
1wj = 0 for all j ≥ 1. Furthermore, since A0 = ze1e†

1, then A0wj = 0 for all
j ≥ 1. The O(ϵ) equation is thus

E−1A1w0 + E−1A0w1 = λ1w0 + λ0w1. (A.10)

However, A0w1 = 0. Multiplying this equation by e†
1 gives that

λ1 =
e†
1E

−1w0

E11 =

√
z

E11

{
e†
1E

−1
(
0 b†

b 0

)
E−1e1

}
=

√
z

E11

{
e†
1E

−1
(
0 b†

0 0

)
E−1e1 + e†

1E
−1
(
0 0
b 0

)
E−1e1

}
= 2

√
zℜ(Eb1). (A.11)

Inserting the expression for λ1 into (A.10) gives that

w1 =
1

√
zE11

{
E−1

(
0 b†

b 0

)
E−1e1 − 2ℜ(Eb1)E−1e1

}
=

1
√
zE11

(
Eb1E−1e1 + E11E−1b̂ − 2ℜ(Eb1)E−1e1

)
=

1
√
z

(
E−1b̂ −

Eb1

E11 E
−1e1

)
.

The next O(ϵ2) equation is

E−1A2w0 + E−1A1w1 + E−1A0w2 = λ2w0 + λ1w1 + λ0w2.

Multiply this equation by e†
1 and recall that A0w2 = 0 and e†

1w0 = E11 gives

λ2 =
e†
1E

−1A2E−1e1
E11 +

e†
1E

−1A1
1

√
z (E

−1b̂ −
Eb1
E11

E−1e1)

E11

=
e†
1E

−1A2E−1e1
E11 +

E11Ebb
+ (Eb1)2 − 2Eb1ℜ(Eb1)

E11 =
e†
1E

−1A2E−1e1
E11 +

E11Ebb
− Eb1Eb1

E11 . (A.12)
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Combining (A.9)–(A.12), we obtain the following approximate stochastic representation for the largest eigenvalue ℓ1 of
E−1Hϵ

ℓ1(ϵ) = zE11
+ 2ϵ

√
zℜ(Eb1) + ϵ2 e

†
1E

−1A2E−1e1
E11 + ϵ2 E

11Ebb
− Eb1Eb1

E11 + OP (ϵ3). (A.13)

Next, to derive the approximate distribution of ℓ1 corresponding to the above equation, we study a 2 × 2 Hermitian
matrix S, whose inverse is defined by

S−1
=

(
E11 Eb1

Eb1 Ebb

)
= M†E−1M,

where M = [e1, b̂] is a 2 × 2 matrix. Inverting this matrix gives

S =
1

E11Ebb − Eb1Eb1

(
Ebb

−Eb1

−Eb1 E11

)
.

Hence in terms of the matrices S and S−1, (A.13) can be written as

ℓ1(ϵ) = zS11 + 2ϵ
√
zℜ(Eb1) +

ϵ2

S22
+ ϵ2 e

†
1E

−1A2E−1e1
E11 + OP (ϵ3). (A.14)

To establish Propositions 3 and 4, we start from (A.14). We neglect the second term T1 = 2ϵ
√
zℜ(Eb1) which is

symmetric with mean zero, and whose variance is much smaller than that of the first term. We also approximate the
last term, denoted by T2, by its mean value, using Lemma 3. We now have

ℓ1(ϵ) ≈ zS11 + ϵ2
{

1
S22

+ c(m, nE)
}

,

where c(m, n) is the expectation from Lemma 3. Since ℓ(ϵ) is the largest eigenvalue of E−1Hϵ = ϵ2E−1H , (A.14) should be
divided by ϵ2 to obtain the largest eigenvalue of E−1H . By doing so, and inserting the distributions of S11 and combining
this with the S22 from Lemma 2 gives

ℓ1 ≈
2z

ϵ2χ2
2nE−2m+2

+
2∥b∥2

χ2
2nE−2m+4

+
m − 1

(nE − m)(nE − m − 1)
.

Next, by inserting the distributions of ∥b∥2, z and the relevant value of ϵ, we get that for Proposition 3

ℓ1(λ) ≈ (1 + λ)
χ2
2nH

χ2
2nE−2m+2

+
χ2
2m−2

χ2
2nE−2m+4

+
m − 1

(nE − m)(nE − m − 1)

and for Proposition 4

ℓ1(ω) ≈
χ2
2nH

(2ω)

χ2
2nE−2m+2

+
χ2
2m−2

χ2
2nE−2m+4

+
m − 1

(nE − m)(nE − m − 1)
.

From Lemma 2 and the independency of u and z, all of the above χ2 random variables are independent. Finally, since
ratios of independent χ2 random variables follow an F distribution, the two propositions follow. □

Proof of Proposition 5. By (8), the non-centrality parameter ω depends on the data only through X†X . Conditioning on
X†X , following (7), we invoke Proposition 4 with the parameters m = p, nH = q, and nE = n − q to obtain

ℓ1
(
E−1H

)
|X ≈ a1Fb1,c1

(
2ρ2

1 − ρ2

(
X†X

)
11

)
+ a2Fb2,c2 + a3.

Now the final result follows by integrating over the distribution of
(
X†X

)
11 ∼

1
2χ

2
2n, and using the definition of Fχ

a,b(c, n)
given in (9). □

Proof of Propositions 6 and 7. Let us assume without loss of generality that v = e1. If v̂ is not normalized, then we can
write (10) as R = |v̂†e1|

2
/∥v̂∥2. From Lemma 1, we have

v̂ = w0 + σw1 + σ 3w3 + · · ·

where

w0 = e1, w1 =
1

∥u∥

(
0
v1

)
, w3 =

1
∥u∥3

(
0∑nH

j=2 vjv
†
j v1

)
,
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with i.i.d. variables vj ∼ CN (0, Im−1) all independent of u ∈ Cn,

u ∼

{
CN (0, (λ + σ 2)In) for H ∼ CWm(nH , λe1e†

1 + σ 2Im)
CN (µ, σ 2In) for H ∼ CWm(nH , σ 2Im, (ω/σ 2)e1e†

1)

and ∥µ∥
2

= ω. Therefore,

R =
1

1 + σ 2 ∥v1∥
2

∥u∥2 + 2σ 4

∑nH
j=2 |v

†
1vj|

2

∥u∥4 + OP (σ 6)

.

The result follows from the distribution of these quantities. □

Proof of Proposition 8. Let us rewrite (A.8) as follows

v̂(ϵ) = w0 + w1ϵ + OP (ϵ2),

where w0 = E−1e1, w1 =
1

√
z

(
E−1b̂ −

Eb1
E11

E−1e1
)
. For convenience, decompose the matrices E and E−1 as

E =

(
E11 E†

12
E12 E22

)
, E−1

=

(
E11 E12†

E12 E22

)
(A.15)

where E11 ∈ R, E12 ∈ C(m−1)×1, and E22 ∈ C(m−1)×(m−1). Consequently, E11
= 1/(E11 − E12†E22−1E12) ∈ R and

E12
= −E11E22−1E12 ∈ C(m−1)×1. The exact form of E22 is unimportant as it does not affect our calculations.
Let us now focus on the numerator of R. Since e†w1 = 0, we have

v̂†e1 = E11
+ OP (ϵ2),

from which we obtain

|v̂†e1|
2

=
(
E11)2

+ OP (ϵ2).

The denominator of R can be written as

∥v̂∥
2

= e†
1

(
E−1)2 e1 +

2
√
z
ℜ

{
e†
1

(
E−1)2 b̂} ϵ −

2
√
zE11

ℜ
{
Eb1} e†

1

(
E−1)2 e1ϵ + OP (ϵ2)

Using the decomposition of E−1 given in (A.15), we get

∥v̂∥
2

=
(
E11)2

+ ∥E12
∥
2
+

2
√
z
ℜ

{
E11E12†

b + E21†
E22b

}
ϵ −

2
√
zE11

ℜ
{
Eb1} {(E11)2

+ ∥E12
∥
2
}

ϵ + OP (ϵ2).

Now we can conveniently express R as

R =

(
E11
)2(

E11
)2

+ ∥E12∥2
+

(
E11
)2{(

E11
)2

+ ∥E12∥2
}2 (PE − QE) ϵ + OP (ϵ2),

where

PE =
2

√
zE11

{(
E11)2

+ ∥E12
∥
2
}

ℜ
{
Eb1} , QE =

2
√
z
ℜ

{
E12† (

E11Im−1 + E22) b} .

Since PE and QE are zero mean random variables, we neglect them to obtain

R ≈
1

1 + ∥E−1
22 E12∥2

,

where we have used the relation E12
= −E11E−1

22 E12 ∈ C(m−1)×1. Noting that E−1
22 E12|E22 ∼ CN (0, E−1

22 ) with E22 ∼

CWm−1(nE, Im−1), we can show that 1/
(
1 + ∥E−1

22 E12∥2
)
is beta distributed with parameters nE − m + 2 and m − 1. Now

the final result follows from the observation that, for X ∼ χ2
p and Y ∼ χ2

q , X/(X + Y ) is beta distributed with parameters
p/2 and q/2. □

Appendix B. Proof of auxiliary lemmas

Proof of Lemma 1. Write the m × n matrix X(ϵ) = [x1, . . . , xn] and observe that X(−ϵ) = UX(ϵ), where U =

diag(1, −1, . . . ,−1), is an orthogonal matrix. Thus, H(−ϵ) = UTH(ϵ)U has the same eigenvalues as H(ϵ). In particular,
the largest eigenvalue ℓ1 and its corresponding eigenvector v1 satisfy

ℓ1(−ϵ) = ℓ1(ϵ), v1(−ϵ) = Uv1(ϵ). (B.1)

Hence ℓ1 and the first component of v1 are even functions of ϵ whereas the remaining components of v1 are odd.
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We decompose the matrix H(ϵ) =
∑n

j=1 xjx
†
j as

H(ϵ) =

n∑
j=1

(uje1 + ϵξ⊥

j )(uje1 + ϵξ⊥

j )† =

n∑
j=1

|uj|
2e1e†

1 + ϵ

n∑
j=1

[ξ⊥

j · uje†
1 + uje1 · ξ⊥

j
†
] + ϵ2

n∑
j=1

ξ⊥

j · ξ⊥

j
†

=

(
z 0
0 0m−1

)
+ ϵ

√
z
(
0 b†

b 0m−1

)
+ ϵ2

(
0 0
0 Z

)
= A0 + ϵA1 + ϵ2A2,

with the matrices A0, A1 and A2 given in (A.5). Following similar arguments which lead to (A.7) and (A.8) with E = I ,
we can establish that ℓ1(ϵ) and v1(ϵ) are analytic in some neighborhood of zero. Therefore, we have the following Taylor
series expansions:

ℓ1(ϵ) = λ0 + ϵ2λ2 + ϵ4λ4 + · · · and v1(ϵ) = w0 + ϵw1 + ϵ2w2 + ϵ3w3 + ϵ4w4 + · · · (B.2)

Also, the eigenprojection P(ϵ) of ℓ1 satisfies

v1(ϵ) =
1

e†
1P(ϵ)e1

P(ϵ)e1. (B.3)

Inserting the expansions (B.2) into the eigenvalue equation Hv1 = ℓ1v1 gives the following set of equations for r ≥ 0

A0wr + A1wr−1 + A2wr−2 = λ0wr + λ2wr−2 + λ4wr−4 + · · · (B.4)

with the convention that vectors with negative subscripts are zero. From the r = 0 equation, A0w0 = λ0w0, we readily
find that

λ0 = z, w0 = const · e1.

Eq. (B.3) implies that e†
1v1 = 1 and w0 = v1(0) = e1. This implies that wj, for j ≥ 1, is orthogonal to e1, that is orthogonal

to w0.
From the eigenvector remarks following (B.1) it follows that w2j = 0 for j ≥ 1. These remarks allow considerable

simplification of (B.4); we use those for r = 1 and r = 3

A1w0 = λ0w1, A2w1 = λ0w3 + λ2w1 (B.5)

from which we obtain

w1 = z−1/2b̂, w3 = λ−1
0 (A2 − λ2I)w1. (B.6)

Multiply (B.4) on the left by w
†
0 and use the first equation of (B.5) to obtain, for r even,

λr = (A1w0)†wr−1 = λ0w
†
1wr−1

and hence

λ2 = λ0w
†
1w1 = b†b and λ4 = w

†
1(A2 − λ2I)w1 = z−1b†(Z − bb†)b.

Therefore, we can further simplify (B.6) to yield

w1 = z−1/2b̂, w2 = z−3/2 (A2 − ∥b∥2Im−1
)
b̂ = z−3/2

(
0

Zb − ∥b∥2b

)
. □

To prove Lemmas 2 and 3, we shall use the following two claims, which are the complex analogues of Theorems 3.2.10
and 3.2.11 in Muirhead [32]. While their proofs are similar to those in the real valued case, for completeness we present
them below.

Claim 1. Suppose A ∼ CWm(n, Σ) with n > m − 1 where A and Σ are partitioned as follows

A =

(
A11 A12
A21 A22

)
Σ =

(
Σ11 Σ12
Σ21 Σ22

)
and let A11·2 = A11 − A12A−1

22 A21, and Σ11·2 = Σ11 − Σ12Σ
−1
22 Σ21. Then, A11·2 is distributed as CWk(n − m + k, Σ11·2) and is

independent of A12, A21 and A22.

Claim 2. Let A ∼ CWm(n, Σ) and let M be a k × m matrix of rank k, where M is independent of A. Then (MA−1M†)−1
∼

CWk(n − m + k, (MΣ−1M†)−1).

Proof of Claim 1. Let C = Σ−1. We partition it as follows,

C =

(
C11 C12
C21 C22

)
, (B.7)

where C11 ∈ Ck×k, C22 ∈ C(m−k)×(m−k), and C12 ∈ Ck×(m−k) with C†
12 = C21. Consequently, Σ−1

11·2 = C11.



P. Dharmawansa, B. Nadler and O. Shwartz / Journal of Multivariate Analysis 174 (2019) 104524 17

Following [15,19], the density of A is given by

f (A) =
detn−m(A)

Γm(n)detn(Σ)
e−tr

(
Σ−1A

)
(B.8)

where tr(·) denotes the trace operator and

Γm(n) = π
m
2 (m−1)

m∏
j=1

Γ (n − j + 1)

with Γ (·) denoting the classical gamma function.
To prove the claim we shall study the form of det(A) and of tr(Σ−1A). First of all, we have that

det(A) = det (A22) det (A11·2) .

Next, we introduce a change of variables from the entries of the matrix A, to A11·2 = A11−A12A−1
22 A21, B12 = A12, B22 = A22.

The Jacobian of this transformation is an upper triangular matrix, with all diagonal entries equal to one. Hence, the volume
element in (B.8) is dA = dA11dA12dA22 = dA11·2dB12dB22. Furthermore, using the expansion

tr
(
Σ−1A

)
= tr

((
C11 C12
C21 C22

)(
A11·2 + B12B−1

22 B21 B12
B21 B22

))
= tr (C11A11·2) + tr

(
C11B12B−1

22 B21
)
+ tr (C12B21) + tr (C21B12) + tr (C22B22)

along with the fact that B21 = B†
12 yields that

f (A11·2, B12, B22) =
detn−m (B22) detn−m (A11·2)

detn (Σ22) detn (Σ11·2) Γm(n)
×

e−tr
(
Σ

−1
11·2A11·2

)
−tr

(
Σ

−1
11·2B12B

−1
22 B†12

)
× e−tr(C21B12)−tr(C21B12)†−tr(C22B22). (B.9)

Now we may use the decomposition

Γm(n) = π
k
2 (k−1)

k∏
j=1

Γ (n − m + k − j + 1) × π
(m−k)

2 (m+k−1)
m−k∏
j=1

Γ (n − j + 1)

= Γk(n − m + k) × π
(m−k)

2 (m+k−1)
m−k∏
j=1

Γ (n − j + 1)

to rewrite (B.9) as

f (A11·2, B12, B22) = f1 (A11·2) × f2 (B12, B22) , (B.10)

where

f1 (A11·2) =
detn−m+k−k (A11·2)

detn−m+k (Σ11·2) Γk(n − m + k)
e−tr

(
Σ

−1
11·2A11·2

)
, (B.11)

and

f2 (B12, B22) =
detn−m (B22)

π
(m−k)

2 (m+k−1)∏m−k
j=1 Γ (n − j + 1)detm−k (Σ11·2) detn (Σ22)

× e−tr
(
Σ

−1
11·2B12B

−1
22 B†12

)
−tr(C21B12)−tr(C21B12)†−tr(C22B22)

.

The factorization in (B.10) establishes that A11·2 is independent of A12 and A22. Finally, (B.11) implies that A11·2 ∼

CWk (n − m + k, Σ11·2) which concludes the proof. □

Proof of Claim 2. Set B = Σ−1/2AΣ−1/2. Now B ∼ CWm(n, I). For R = MΣ−1/2, (MA−1M†)−1
= (RB−1R†)−1 and

(MΣ−1M†)−1
= (RR†)−1. Thus, it is sufficient to prove that (RB−1R†)−1

∼ CWk(n − m + k, (RR†)−1). Let R = L[Ik : 0]H be
the SVD decomposition of R, where L is k × k and nonsingular and H is m × m unitary. Now,

(RB−1R†)−1
=
(
L[Ik : 0]HB−1H†

[Ik : 0]′L†
)−1

= (L−1)†
(
[Ik : 0](HBH†)−1

[Ik : 0]′
)−1

L−1

= (L−1)†
(
[Ik : 0]C−1

[Ik : 0]′
)−1

L−1

where C = HBH†
∼ CWm(n, I). Let

F = C−1
=

(
F11 F12
F21 F22

)
, C =

(
C11 C12
C21 C22

)
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where F11 and C11 are k × k. Then (RB−1R†)−1
= (L−1)†F−1

11 L−1, and since F−1
11 = C11 − C12C−1

22 C21, it follows from Claim 1
that F−1

11 ∼ CWk(n − m + k, Ik). Hence (L−1)†F−1
11 L−1

∼ CWk(n − m + k, (LL†)−1), and since (LL†)−1
= (RR†)−1, the proof is

complete. □

Proof of Lemma 2. Note that S11 = E11
= eT1E

−1e1. Then, by Claim 2, (S11)−1
∼ CW1(nE − m + 1, I1) = χ2

2nE−2m+2/2,
meaning S11 ∼ 2/χ2

2nE−2m+2. Next, by definition S = (M†E−1M)−1, with fixed M . Thus, by the same claim, S ∼

CW2(nE − m + 2,D) from which we obtain S22 ∼ χ2
2nE−2m+4/(2∥b∥

2). Finally, since (S11)−1
= S11 − S12S−1

22 S21, by Claim 1,
(S11)−1 is independent of S22. □

Proof of Lemma 3. First we decompose the expectation as follows:

E
(

eT1E
−1A2E−1e1

E11

)
= EE

{
EA|E

(
eT1E

−1A2E−1e1
E11

)}
.

Next, since A2 is independent of E,

E(A2|E) = E(A2) =

(
0 0
0 Im−1

)
.

Combining the above two equations gives that

E
(

et1opE
−1A2E−1e1
E11

)
= E

⎛⎝ m∑
j=2

∥E1j∥2

E11

⎞⎠ = (m − 1)E
(

∥E12∥
2

E11

)
.

To compute this expectation, consider the matrix S−1
= [e1 e2]⊤E−1

[e1 e2] =

(
E11 E21

E
21

E22

)
. Since S22 = E22 and

S22 = E11/(E11E22
− ∥E12

∥
2), we have

1
S22

= E22
−

∥E12
∥
2

E11 . (B.12)

Noting that S22 ∼
1
2χ

2
2nE−2m+4 and E22

∼ 2/χ2
2nE−2m+2, we take the expectation of both sides of (B.12) to obtain

E
{
(E12)2

E11

}
= E

(
E22)

− E

(
2

χ2
2nE−2m+4

)
=

1
(nE − m)(nE − m + 1)

which completes the proof. □
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