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Real-Time Instrument Segmentation in Robotic
Surgery Using Auxiliary Supervised Deep
Adversarial Learning

Mobarakol Islam

Abstract—Robot-assisted surgery is an emerging technology that
has undergone rapid growth with the development of robotics and
imaging systems. Innovations in vision, haptics, and accurate move-
ments of robot arms have enabled surgeons to perform precise min-
imally invasive surgeries. Real-time semantic segmentation of the
robotic instruments and tissues is a crucial step in robot-assisted
surgery. Accurate and efficient segmentation of the surgical scene
not only aids in the identification and tracking of instruments but
also provides contextual information about the different tissues
and instruments being operated with. For this purpose, we have
developed a light-weight cascaded convolutional neural network
to segment the surgical instruments from high-resolution videos
obtained from a commercial robotic system. We propose a multi-
resolution feature fusion module to fuse the feature maps of differ-
ent dimensions and channels from the auxiliary and main branch.
We also introduce a novel way of combining auxiliary loss and
adversarial loss to regularize the segmentation model. Auxiliary
loss helps the model to learn low-resolution features, and adversar-
ial loss improves the segmentation prediction by learning higher
order structural information. The model also consists of a light-
weight spatial pyramid pooling unit to aggregate rich contextual
information in the intermediate stage. We show that our model sur-
passes existing algorithms for pixelwise segmentation of surgical
instruments in both prediction accuracy and segmentation time of
high-resolution videos.

Index Terms—Deep learning in robotics and automation, visual
tracking, object detection, segmentation and categorization.

I. INTRODUCTION

OBOT-ASSISTED minimally invasive surgery (RMIS)
has revolutionized the practice of surgery by optimiz-
ing surgical procedures, improving dexterous manipulations and
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enhancing patient safety [1]. Recent developments in the field
of robotics, vision and smaller instruments have impacts on
minimally invasive intervention. The common extensively used
surgical robotic system is the Da Vinci Xi robot [2]-[5] en-
able remote control laparoscopic surgery with long kinematic
chains. The Raven II [6] is a robust surgical system consists of
spherical positioning mechanisms. Remarkable recent surgical
tools with complex actuation systems utilized micro-machined
super-elastic tool [7] and concentric tubes [8]. However, with
the reduction in size and complex actuation mechanisms, con-
trol of the instruments and cognitive representation of the robot
kinematics are forthwith remarkably challenging in a surgical
scenario. In addition, there are factors that complicate the sur-
gical environment such as shadows and specular reflections,
partial occlusion, smoke, and body fluid as well as the dynamic
nature of background tissues. Hence, real-time surgical instru-
ments detection, tracking, and isolation [9]-[12] from tissue are
the key focus in the field of RMIS.

Previously, marker-based instruments tracking techniques ap-
ply in the robotic-assisted surgery [9], [10]. However, it in-
creases the instrument’s size and sterilization can be an issue in
the MIS. Vision-based marker-free approaches for tracking are
particularly desirable without increasing tools size on the exist-
ing setup. Prior methods utilize handcrafted features like color
and texture features [13]-[15], Haar wavelets [16], HoG [17],
DFT shape matching [18] and some studies leverage classical
machine learning models such as Random Forest [19], Naive
Bayesian [14] and Gaussian Mixture Model [20] to segment
instrument’s background. However, all these models are either
solve a simple problem or not robust in intensity changes and
typical motion of the instruments. Moreover, these models only
apply for binary segmentation where it is necessary to detect
parts and categories of the instruments to understand complex
surgical scenario (see Fig. 1).

Recently, deep learning has been excelled in the performance
of the classification, detection and tracking problems. Seman-
tic segmentation and tracking involving convolutional neural
networks (CNN) have successfully been used in the field of
medicine, for example, brain tumor segmentation [21], [22],
stroke lesion segmentation [23], brain lesion segmentation [24],
vessel tracking [25], and tumor contouring [26].

A. Related Work

There are several successful deep learning approaches to lo-
calize and detect the pose and movement of instruments. To find
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(a) A video frame

(b) Binary

Fig. 1.

(c) Parts (d) Instruments

Visualization of the robotic surgery image from the dataset that contains robotic instruments performing surgery on a tissue. The annotation of tools

as binary (2 classes: Background and Instruments), parts (4 classes: Background, Shaft, Wrist, Claspers) and Instrument types (8 classes: Background, Bipolar
Forceps, Prograsp Forceps, Large Needle Driver, Vessel Sealer, Grasping Retractor, Monopolar Curved Scissors, Other).

the use of the real-time application, there are also few models fo-
cusing on prediction speed as well as accuracy. Mostly, two type
of studies for instruments tracking using CNN. First, tracking-
by-detection using bounding box [27], [28] and pose estimation
[17]. However, bounding detection is not precise enough and
seldom predicted locations are along instrument’s body instead
tip. Second, tracking-by-segmentation where instruments can
be annotated into binary, parts and categories. ToolNet [29], a
holistically nested real-time instrument segmentation approach
of a robotic surgical tool. The work only focuses on binary seg-
mentation with the observation of real-time prediction. Deep
residual learning and dilated convolution are integrating to seg-
ment multi-class segmentation (instrument parts) and improve
the binary segmentation [30]. Subsequently, Shvets et al. [31]
segment the instruments into binary, parts and categories (the
type of instruments) and further observe the prediction time
for online application. The study uses the Jaccard index-based
loss function to train LinkNet [32] and obtains better accuracy
compared with other segmentation models. Laina et al. [33] pro-
pose simultaneous segmentation and localization for tracking of
surgical instruments. A pre-trained fully convolutional network
(FCN) and affine transformation are used for non-rigid surgical
tools tracking [34]. Another study [35] checks the usage of the
surgical tools by a joint model of CNN and recurrent neural
network (RNN). Most of the approaches are attempting to track
the instruments by emphasizing detection using convolutional
networks which need tremendous computation. However, track-
ing instruments during surgery is an online task and it is crucial
to supporting faster prediction speed for seamless surgery.
Online tasks such as instrument tracking during surgery are
required an optimized model with good accuracy and prediction
speed. There are very few works emphasize on fast semantic
segmentation system with decent prediction performance from
high-resolution video frames. ICNet [36] introduces cascade
feature fusion (CFF) and auxiliary loss for real-time semantic
segmentation. It leverages multiple branches with pyramid pool-
ing and appends softmax cross-entropy loss in each branch. An
encoder-decoder approach, LinkNet [32], utilizes the model pa-
rameters efficiently and shows accurate instance level prediction
without compromising processing time. Some other approaches
such as ENet [37], SqueezeNet [38] trade-off accuracy and pro-
cessing time by reducing filter size and input channels. Recently,
adversarial learning models have been shown state of the art per-
formance in the image synthesizing [39], segmentation [40] and
tracking [41]. Adversarial training optimizes objective function
by adding adversarial term with conventional cross-entropy loss.

Auxiliary Class Maps
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Fig.2.  Our Proposed Multi-resolution Feature Fusion (MFF) Module. Feature

maps of Auxiliary branch (1/16) are downsampled and fused with main branch
(1/32) and produced MFF feature maps and auxiliary class maps.

It can enforce the higher-order consistency of the feature maps
without changing model complexity.

B. Contributions

In this letter, we propose a light-weights CNN model with
adversarial learning scheme for real-time surgical instruments
segmentation from high-resolution videos. We have designed a
multi-resolution feature fusion (MFF) module to aggregate the
multi-resolution and multi-channel feature maps from auxiliary
and master branches. We have also proposed a model regulariza-
tion technique combining auxiliary and adversarial loss where
auxiliary loss learns the low-resolution features and adversarial
loss refines the higher order inconsistency of the feature maps.
The proposed model further consists of convolution and decon-
volution blocks, residual block, class block, decoder, and spatial
pyramid pooling unit. To train in adversarial manners, we adopt
an FCN followed by up-sampling layers as a discriminator [40].
To enable real-time instruments tracking, we have tuned the
model parameters and a trade-off between speed and accuracy
to find out the optimized architecture. Our model has surpassed
the performance of previous work on the MICCAI robotic in-
strument segmentation challenge 2017 [42] in each category of
segmentation such as binary, parts, and instruments.

II. PROPOSED METHOD

Our proposed model consists of multiple branches over which
contextual information from different resolutions of input im-
ages are fused to generate high-resolution semantic feature
maps. We propose a Multi-resolution Feature Fusion (MFF)
block to aggregate multi-scale features from a different branch.
We also adopt spatial pyramid pooling where rich contextual
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Our proposed segmentation network. It has 2 branches with the different resolution of inputs. The feature maps of both branches are fused by proposed

@ Up-sampling

Multi-resolution feature fusion (MFF) module. In training time, the main loss calculated on (1/2) of the original resolution. Feature maps have been upsampled to

2% to fit with original dimension in the testing phase.

features are reconstructed at different grid scales from bottom-
up. Fig. 3 shows our proposed segmentation network of auxiliary
(top) and main (bottom) branch and arrangement of different
units such as Conv-Block, Residual-Block, MFF, Decoder, and
Up-sampling. We refine predicted feature maps of our segmenta-
tion network by using a discriminator network in an adversarial
learning manner, as illustrated in Fig. 4.

A. Multi-Resolution Feature Fusion (MFF)

To combine the feature maps of different dimensions from
main and auxiliary branches, we design multi-resolution feature
fusion (MFF) module, as illustrated in Fig. 2. MFF can also
produce the auxiliary class maps to calculate auxiliary loss. We
adopt the idea of CFF from ICNet [36]. However, we replace the
interpolation layer (upsample) with convolution layer (stride 2)
to downsample the maps and added bottleneck layer to reduce
channel without increasing complexity. We deal with various di-
mensions and channels of feature maps from multiple branches
with MFF where CFF only works on different dimensions.

There are two inputs of scale 1/16 (auxiliary) and 1/32 (main)
to MFF module where it downsamples auxiliary inputs and fuses
with feature maps of the main branch. Auxiliary class maps and
fused feature maps are the two outputs of the module.

B. Network Architecture

In Fig. 3, the main branch consists of a Conv-Block followed
by a max-pooling layer, 4 Residual-block, and a spatial pyramid
pooling (SPP) unit. Conv-Block is the starting unit which forms
with the layers of convolution, batch-normalization, and ReLU.

It performs convolution on high-resolution input frames scale 1
such as 3 x 1024 x 1280 with a kernel size of 7 x 7 and stride
of 2. There is a max-pooling immediately after Conv-Block to
downsample the feature map into the half. Subsequently, there
is 4 Residual-Blocks similar combination of layers as ResNet18
[43] which is lighter and optimized with computation and accu-
racy. The quantity and scale of feature maps of each layer are
depicted in the top and bottom respectively (Fig. 3). A spatial
pyramid pooling (SPP) [44] unit utilizes to extract multi-scale
semantic features from the output feature maps of the Residual-
Blocks. To reduce feature length, we replace the concatenation
operation of the pyramid pooling module with summation. The
center of the segmentation architecture consists of MFF module
which fuses the feature maps and produces auxiliary class maps.
The latter part of the architecture has 3 decoder blocks and a
class block similar to LinkNet [32]. Each decoder forms of Con-
volution (1 x 1)-Deconvolution (3 x 3, stride 2)-Convolution (1
x 1) followed by batch-norm and ReL.U layers. There are also
3 layers inside the class block which connected as Deconvolu-
tion (3 x 3)-Convolution (3 x 3)-Deconvolution (2 x 2). To
recover spatial information lost in downsampling, there is skip
connection to each decoder from corresponding residual block.
The overall framework of our proposed model is depicted in
Fig. 4. Generated feature maps from segmentation network and
One-hot maps from ground truth are the input to the discrimina-
tor network. The network can differentiate the maps belongs to
the segmentation network or ground truth and refine the high-
level inconsistency. There are 5 Conv-Blocks and corresponding
up-sampling (interpolation) layers in the discriminator network
as [45]. The network can detect and correct the higher-order
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TABLE I
PERFORMANCE OF OUR MODEL WITH AND WITHOUT ADVERSARIAL FOR
BINARY SEGMENTATION

m Up-sampling

Our proposed segmentation framework with adversarial learning scheme. Discriminator has 5 convolution layers followed by upsample layers.

TABLE III
AVERAGE TIME CONSUMED AND REQUIRED MEMORY FOR BINARY
PREDICTION. INFERENCE TIME MEASURES ON ONE NVIDIA GTX 1080T1
GPU AND BATCH SIZE 1

Dice | Hausdorft | Specificity | Sensitivity
With Adversarial 0.916 11.11 0.989 0.928 Time Memory | No. of Params
Without Adversarial | 0.913 11.43 0.990 0.916 Model (ms) fps (MB) (Millions)
Ours 5.75 173.78 81.8 1491
EVALUATION SCORE FOR TESTING DATASET OF BINARY PREDICTION. DR ICNet [36] 9.13 | 109.50 31.0 6.69
DENOTES AS DOWN-SAMPLING RATE FOR BINARY SEGMENTATION UNet [49] 4.46 | 22421 31.4 7.84
TernausNet [50] 4.20 238.09 128.8 46.91
DR | Dice | Hausdorff | Specificity | Sensitivity PSPNet [44] 16.25 61.55 272.8 68.05
Ours No 0.916 11.110 0.989 0.928
LinkNet [31] No | 0.906 11.228 0.989 0.920
TICNet [36] No | 0.882 11.923 0.986 0.892 TABLE IV
UNet [49] No 0.878 12112 0.985 0.891 PERFORMANCE COMPARISON FOR BINARY, INSTRUMENTS AND PARTS
TernausNet [50] | No | 0.835 | 12.706 0.983 0.830 SEGMENTATION WITH DIFFERENT MODELS
PSPNet [44] 2 0.831 12.510 0.990 0.788
Model Binary | Parts | Instruments
Ours 0.916 0.738 0.347
LinkNet [31] 0.906 0.704 0.324
inconsistency of the predicted feature maps of the segmentation ICNet [36] 0.882 | 0.553 0.266
network. UNet [49] 0.832 | 0.588 0258
TernausNet [50] 0.835 0.587 0.263
PSPNet [44] 0.831 0.559 0.232
C. Loss Function
TABLE V

The auxiliary loss at the intermediate stages helps to optimize
the learning process and can be added with the main loss. It
exploits the discrimination in low stages and provides more
regularization in training. The segmentation loss (L4 ) function
can be written as-

Lseg = Liain + )‘auxLauxy (D
where L, .in and L, are the softmax cross-entropy loss in
main branch loss and auxiliary loss. We choose auxiliary weight
factor A, = 0.4 as [36].

The later portion of our model is an adversarial loss which dis-
criminates the feature maps of the segmentation network from
label maps of the ground truth. Adversarial loss term penalized
the mismatches in a higher ordered label such as a region labeled
with certain class exceeds the threshold. Overall, training loss is
the combination of the master and auxiliary branches loss with

PERFORMANCE ANALYSIS IN DIFFERENT BRANCHES OF OUR PROPOSED MODEL

Branch fps . Dice
Binary | Parts | Instruments
Main 173.78 0.916 | 0.738 0.347
Auxiliary | 227.38 | 0911 0.732 0.339

the adversarial loss.

L= Lmain + )\aquauw + )\adead’va (2)

where L4, is the adversarial loss that is spatial cross entropy
loss with respect to two classes (0 for feature maps of the seg-
mentation network or 1 for label maps of the ground truth). We
adopt the weight factor X, 4, for the adversarial loss to be 0.01
as [40].
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Visualization of prediction results for the binary, parts and instruments wise segmentation. Proposed model shows high performance in binary and parts

wise segmentation. There are many false positives predicted in instruments wise segmentation.

either of the categories, namely rigid shafts, articulated wrists,
clampers or miscellaneous instruments such as a laparoscopic
instrument or drop-in ultrasound probe. Each image has a 1920
x 1080 resolution, which is reduced to 1280 x 1024 after crop-
ping out the black canvas. For binary segmentation, we encode
the value of 1 for every pixel that has an instrument and O for
the background. For partwise segmentation, we encode every
component of the instrument with values (0,1,2,3). For instru-
ment segmentation, we encode every instrument category with
an incremental numerical value starting at 1.

We split the given training data into training and testing data.
The image sequence from the first 6 surgeries consists of our
training data, and contain a total of 1350 training images. The
testing data consists of the image sequence from the remaining
2 surgeries and consists of a total of 450 images.

B. Preprocessing

The training dataset is augmented using simple augmentation
(Flip Horizontal and Flip vertical) and the data set is normalized
within each image channel by subtracting each channel’s mean
to get zero mean image. However, when the pre-trained model
needs to be used for practical purposes, we can use additional
augmentation techniques like Gaussian blur, Brightness change,
and Image skew to simulate surgical conditions like fogging of
the camera lens, changing of the brightness of input image and
skewing of recording angle.

C. Training

We use 3 channel (RGB) endoscopy images and correspond-
ing manually segmented images to train our model. The model is
trained with Adam optimizer and the base learning rate of 0.001

for the segmentation network and 0.00015 for the discrimina-
tor. We adopt “poly” learning rate policy as [47]. Momentum
is chosen to be 0.9 and weight decay term of 0.0005 used. We
use Pytorch [48] deep learning platform to perform our exper-
iments and the performance accuracy is calculated using the
performance matrices given in Table I, II and IV. All the mod-
els train with 2 NVIDIA GTX 1080Ti GPU and inference time
calculates on model prediction only excluding pre-processing
and augmentation part. Batch size and number of GPU keep 1
in the inference phase so that we can have a fair comparison of
speed.

IV. RESULTS

The comparison of our model with existing architecture for
binary, parts, and instruments wise segmentation is presented in
Table I-IV and Fig. 5 and 6. The visualization of binary seg-
mentation of robotic instruments from background tissues is
represented in Fig. 5. Our model is close to the ground truth
whereas there are false positive and true negatives in other ar-
chitectures. In Table I, we have evaluated performance metrics
for our segmentation architecture with and without adversarial
learning. It’s evident that using adversarial learning results in
better smoothens the class probabilities over the large region
by enforcing spatial consistency. Table II is the comparison of
different models for the binary prediction on the testing data
set. Our model achieves Dice and Hausdorff of 0.916 and 11.11
respectively which is almost a human level performance. This is
the best results reported in literature up to now. In Table III, we
provide a comparison of time for prediction, training parame-
ters and memory required. Though LinkNet [31] has shown the
fastest model, but our model performs better in terms of accu-
racy(see the Table II ). ICNet [36] requires minimum memory
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and number of parameters to train, but it also shows lower ac-
curacy in parts and instruments segmentation (see Table V). In
Table IV, we present the results for binary, parts and instrument
segmentation and we have visualized using Fig. 6. There are
only 4 instruments (in total 7) used in the testing videos which
could be the reason behind the lower segmentation accuracy
of instrument categories. By investing dataset, we find that the
missing instruments (Large Needle Driver and Prograsp For-
ceps) in the testing set are dominating the training sequences.
LinkNet demonstrates competitive performance in all three seg-
mentation types with the proposed model. Though UNet and
ICNet also perform well in binary segmentation, they work
poorly in parts and instruments segmentation. Overall, with the
fps of 147.83 and best segmentation accuracy in binary, parts,
and instruments segmentation our model has a clear edge over
existing architectures.

A. Branch Analysis

We calculate the speed and accuracy in our auxiliary branch
and compare with the main branch. Table V compares the fps and
Dice scores of both branches in binary, parts, and instruments
wise segmentation. It requires 8x upsample of auxiliary feature
maps to measure performance with original ground-truth. As
MEFF is fusing master branch features with the auxiliary branch,
hence it has almost similar performance as a master branch but
faster inference time. It can be a trade-off to auxiliary branch
instead of the main branch if it needs higher speed.

V. DISCUSSION AND CONCLUSION

In this work, we present a real-time robotic instrument seg-
mentation method based on pixel level semantic segmentation.
We propose a multi-resolution feature fusion (MFF) module
which can fuse the feature maps with different dimensions
and channels. We also adopt spatial pyramid pooling by re-
placing concatenation operation with summation which ensures
the multi-scale contextual features without increasing trainable
parameters. We choose an auxiliary branch to extract low-
resolution features and provides auxiliary loss to optimize model
training. Our adversarial training scheme improves the predic-
tion accuracy by detecting and correcting higher order incon-
sistencies. We compare the real-time performance of our model
with the existing state of the art models in terms of segmentation
accuracy and inference speed. However, we trade-off between
the speed with accuracy to design an optimized model archi-
tecture. Sometimes, we use a decoder or deconvolution layer
instead of an up-sampling layer which increases the trainable
parameters and model complexity. Hence, our model requires
higher trainable parameters and slower comparing to LinkNet
and UNet. On the other hand, we replace the concatenation op-
eration with summation and tune the kernel size and number
to maintain a light-weight architecture. However, there are still
limitations in our model. Case 5 (failure) in Fig. 5 appears false
positives (light reflection) and false negatives (instruments) in
the prediction of all the models. Moreover, in Table 1V, it is
clear that all the models perform poorly in the segmentation on
instrument category. These can be improved by doing further
investigation.
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Moreover, Surgical scene understanding in robot-assisted
surgery includes the segmentation of tissue as well as in-
struments. The experimental results suggest that the proposed
method is highly optimized for robotic instrument segmenta-
tion and can also be applied in tissue segmentation. Thus, our
work has incorporated substantial innovations as compared to
previous findings and provides a baseline for future work on
real-time surgical guidance and robot-assisted surgeries.
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